地球科学进展 ›› 2023, Vol. 38 ›› Issue (3): 320 -329. doi: 10.11867/j.issn.1001-8166.2023.007

观点 上一篇    下一篇

对黄河上游自然环境要素协调性的几点科学探讨与思考
张强 1 , 2( ), 叶培龙 3 , 4( ), 王健顺 3, 张良 2, 甘泽文 5, 王莺 2   
  1. 1.甘肃省气象局,甘肃 兰州 730020
    2.中国气象局兰州干旱气象研究所/甘肃省干旱气候变化与 减灾重点实验室/中国气象局干旱气候变化与减灾重点开放实验室,甘肃 兰州 730020
    3.兰州大学半干旱气候变化教育部重点实验室/大气科学学院,甘肃 兰州 730000
    4.兰州中心气象台,甘肃 兰州 730020
    5.兰州市气象局,甘肃 兰州 730020
  • 收稿日期:2022-08-12 修回日期:2023-01-04 出版日期:2023-03-10
  • 通讯作者: 叶培龙 E-mail:zhangqiang@cma.gov.cn;lzatmos3636@163.com
  • 基金资助:
    国家自然科学基金重点项目“北方干旱多发带环流多因子联动与陆—气多过程耦合对重大干旱协同作用”(42230611);甘肃省青年科技基金计划项目“黄河上游暖季强降水对暖湿化的响应规律及其形成机理研究”(22JR5RA750)

Scientific Discussion and Ponder on the Coordination of Natural Environmental in the Upper Yellow River Basin

Qiang ZHANG 1 , 2( ), Peilong YE 3 , 4( ), Jianshun WANG 3, Liang ZHANG 2, Zewen GAN 5, Ying WANG 2   

  1. 1.Gansu Meteorological Bureau, Lanzhou 730020, China
    2.Institute of Arid Meteorology of CMA, Key Laboratory of Arid Climatic Change and Disaster Reducing of Gansu Province, Key Laboratory of Arid Climatic Change and Disaster Reducing of CMA, Lanzhou 730020, China
    3.Key Laboratory for Semi-Arid Climate Change of the Ministry Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
    4.Lanzhou Center Meteorological Observatory, Lanzhou 730020, China
    5.Lanzhou Meteorological Bureau, Lanzhou 730020, China
  • Received:2022-08-12 Revised:2023-01-04 Online:2023-03-10 Published:2023-03-21
  • Contact: Peilong YE E-mail:zhangqiang@cma.gov.cn;lzatmos3636@163.com
  • About author:ZHANG Qiang (1965-), male, Jingyuan County, Gansu Province, Professor. Research areas include arid meteorology, land surface processes and climate change. E-mail: zhangqiang@cma.gov.cn
  • Supported by:
    the National Natural Science Foundation of China “Multi-factor linkage of atmospheric circulation and land-atmosphere multi-process coupling on the synergistic effect of significant droughts in the northern drought-prone belt of China”(42230611);The Youth Science and Technology Foundation of Gansu Province “Research on the response of heavy precipitation in warm season to warming and humidification and its formation mechanism over the upper Yellow River Basin”(22JR5RA750)

黄河上游是黄河流域最重要的水源涵养区及其产流与汇流区,大致贡献了全流域一半以上的产流量,对整个黄河流域生态保护及水资源安全和粮食安全有举足轻重的意义,科学认识黄河上游自然环境要素变化特征,并洞察该区域自然环境要素之间的协调性问题是当前推动黄河流域生态保护和高质量发展的核心问题。在宏观了解全球气候变暖背景下及国家生态保护工程和水资源管理政策实施过程中,黄河上游气候、水文及生态等自然环境要素6个方面重要特征的基础上,认识到黄河上游流域气候、水文、生态之间存在5个方面的非协调性。并且,从自然环境要素的协调性角度,对如何突破黄河上游生态与发展问题的传统思维和认识误区提出了5点探讨,也对怎样构建具有区域特色的生态保护和高质量发展模式给出了6条思考与建议。这对于在推进黄河上游流域生态保护和高质量发展过程中,科学打造气候、水文、生态与人类的和谐发展模式等具有重要的指导意义。

The upper Yellow River is the most important water conservation area as well as the runoff and confluence area in the Yellow River Basin, and accounts for more than half of the runoff of the entire basin. Therefore, it is of great significance to the ecological protection, water resource security, and food security of the entire Yellow River Basin. Scientifically understanding the change characteristics of natural environmental factors and deeply exploring the coordination problem of natural environmental factors can promote ecological protection and high-quality development of the Yellow River Basin. Based on the macro understanding of the six important characteristics of natural environmental elements, such as climate, hydrology, and ecology, in the upper Yellow River under the background of global warming and the implementation of national ecological protection projects and water resource management policies, this study describes the natural disharmony among hydrology, soil, climate, and ecology in the upper Yellow River. Moreover, from the perspective of the coordination of natural environmental elements, this study puts forward five scientific ideas on how to eliminate the traditional thinking and misunderstanding of ecology and development problems in the upper Yellow River, as well as six scientific suggestions on how to build an ecological protection and high-quality development model with regional characteristics. This study has important guiding significance for the promotion of ecological protection and high-quality development of the upper Yellow River.

中图分类号: 

图1 黄河流域及其上游区域分布
Fig. 1 The location of Yellow River Basin and its upper basin
图2 黄河上游流域海拔高度(a)、年平均降水量(b)、年平均气温(c)、土地覆盖类型(d)的分布及其总体分区
Ⅰ区为源头区,Ⅱ区为补流区,Ⅲ区为耗水区
Fig. 2 The distribution of altitudea), annual precipitationb), annual average temperaturecand land cover typesdin the upper Yellow River Basin and its sub-region
Ⅰ is the source area, Ⅱ is the supplementary area, Ⅲ is water consumption area
图3 黄河上游源头区、补流区及耗水区的年平均气温、降水和蒸散及其对应的水分能量分布概念模型
Fig. 3 Annual average temperatureprecipitationevapotranspirationand their corresponding conceptual model on water-energy distribution over the source areasupplementary area and consumption area of upper Yellow River Basin
图4 黄河上游流域降水、气温、蒸散的年际变化(a)及源头区、补流区和耗水区降水(b)、蒸散(c)、气温(d)的年际变化
Fig. 4 Inter-annual variations of precipitationtemperature and evapotranspiration in the upper Yellow River Basina), different sub-region variation of precipitationb), evapotranspirationcand temperatured
图5 黄河上游唐乃亥水文站、兰州水文站年径流量和趋势变化以及下游利津水文站断流天数的年际变化
黑、蓝、红虚线分别为1980—2016年、1980—1998年和1996—2016年趋势
Fig. 5 Annual runoff and its trend change at Tangnaihe and Lanzhou hydrological stationand annual variation of cut-off days at Lijing hydrological station
Black, blue and red dotted lines are trends during 1980-2016, 1980-1998 and 1999-2016
图6 黄河上游流域源头区、补流区及耗水区NDVI指数的年际变化及其对应的线性趋势变化
黑虚线代表黄河上游,红虚线代表源头区,蓝虚线代表补流区,绿虚线代表耗水区
Fig. 6 Inter-annual and linear trend variations of NDVI index in the upper Yellow River Basinthe source areasupplementary area and consumption area
Black dotted line is the upper Yellow River, red dotted line is the source area, blue dotted line is the supplementary area, green dotted line is the consumption area
图7 黄河上游典型“水低地高”区域的河流水面与周边台塬地的海拔高度对比
Fig. 7 Comparison of the altitude between river surface and the surrounding tableland in the typicallow water and high landarea of upper Yellow River
图8 19802020年黄河上游流域不同站点大于等于10 ℃年积温日数与年降水量的分布
Fig. 8 Distribution of annual accumulated temperature10 ℃ days and annual precipitation at different stations in the upper Yellow River Basin from 1980 to 2020
1 习近平. 在黄河流域生态保护和高质量发展座谈会上的讲话[EB/OL].(2019-09-18)[2022-08-09]. .
2 ZHANG Qiang, ZHANG Cunjie, BAI Huzhi, et al. New development of climate change in northwest China and its impact on arid environment[J]. Journal of Arid Meteorology, 2010, 28(1): 1-7.
张强, 张存杰, 白虎志, 等. 西北地区气候变化新动态及对干旱环境的影响: 总体暖干化, 局部出现暖湿迹象[J]. 干旱气象, 2010, 28(1): 1-7.
3 REN Guoyu, YUAN Yujiang, LIU Yanju, et al. Changes in precipitation over northwest China[J]. Arid Zone Research, 2016, 33(1): 1-19.
任国玉, 袁玉江, 柳艳菊, 等. 我国西北干燥区降水变化规律[J]. 干旱区研究, 2016, 33(1): 1-19.
4 MA Zhuguo, FU Congbin, YANG Qing, et al. Drying trend in northern China and its shift during 1951-2016[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(4): 951-961.
马柱国, 符淙斌, 杨庆, 等. 关于我国北方干旱化及其转折性变化[J]. 大气科学, 2018, 42(4): 951-961.
5 ZHANG Qiang, LIN Jinging, LIU Weicheng, et al. Precipitation seesaw phenomenon and its formation mechanism in eastern and western parts of northwest China during flood season[J]. Science China Earth Sciences, 2019, 49(12):2 064-2 078.
张强, 林婧婧, 刘维成, 等. 西北地区东部与西部汛期降水跷跷板变化现象及形成机制[J]. 中国科学:地球科学, 2019, 49(12): 2 064-2 078.
6 CHEN Yaning, LI Yupeng, LI Zhi, et al. Analysis of the impact of global climate change on dryland areas[J]. Advances in Earth Science, 2022, 37(2): 111-119.
陈亚宁, 李玉朋, 李稚, 等. 全球气候变化对干旱区影响分析[J]. 地球科学进展, 2022, 37(2): 111-119.
7 JIA Junhe, LIU Huiyu, LIN Zhenshan. Multi-time scale changes of vegetation NPP in six provinces of northwest China and their responses to climate change[J]. Acta Ecologica Sinica, 2019, 39(14): 5 058-5 069.
贾俊鹤, 刘会玉, 林振山. 中国西北地区植被NPP多时间尺度变化及其对气候变化的响应[J]. 生态学报, 2019, 39(14): 5 058-5 069.
8 FENG X M, FU B J, PIAO S L, et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits[J]. Nature Climate Change, 2016, 6(11):1 019-1 022.
9 WANG Xueliang, LI Hongyuan, CHEN Rensheng, et al. Runoff evolution characteristics and driving factors of Yellow River above Lanzhou station from 1956 to 2020 under changing environment[J]. Advances in Earth Science, 2022, 37(7):726-741.
王学良, 李洪源, 陈仁升, 等. 变化环境下1956—2020年黄河兰州站以上干支流径流演变特征及驱动因素研究[J]. 地球科学进展, 2022, 37(7):726-741.
10 WANG Genxu, SHEN Yongping, CHENG Guodong. Eco-environmental changes and causal analysis in the source regions of the Yellow River[J]. Journal of Glaciolgy and Geocryology, 2000, 22(3): 200-205.
王根绪, 沈永平, 程国栋. 黄河源区生态环境变化与成因分析[J]. 冰川冻土, 2000, 22(3): 200-205.
11 LAN Yongchao, DING Yongjian, SHEN Yongping, et al. Review on impact of climate change on water resources system in the upper reaches of Yellow River[J]. Advances in Climate Change Research, 2005, 1(3): 122-125.
蓝永超, 丁永建, 沈永平, 等. 气候变化对黄河上游水资源系统影响的研究进展[J]. 气候变化研究进展, 2005, 1(3): 122-125.
12 HUANG Ronghui, WEI Zhigang, LI Suosuo, et al. The interdecadal variations of climate and hydrology in the upper reach and source area of the Yellow River and their impact on water resources in North China[J]. Climatic and Environmental Research, 2006, 11(3): 245-258.
黄荣辉, 韦志刚, 李锁锁, 等. 黄河上游和源区气候、水文的年代际变化及其对华北水资源的影响[J]. 气候与环境研究, 2006, 11(3): 245-258.
13 PRIESTLEY C H B, TAYLOR R J. On the assessment of surface heat flux and evaporation using large-scale parameters[J]. Monthly Weather Review, 1972, 100(2):81-92.
14 MIRALLES D G, de JEU R A M, GASH J H, et al. Magnitude and variability of land evaporation and its components at the global scale[J]. Hydrology and Earth System Sciences, 2011, 15(3): 967-981.
15 CHEN Liqun, LIU Changming. Influence of climate and land-cover change on runoff of the source regions of Yellow River[J]. China Environmental Science, 2007, 27(4): 559-565.
陈利群, 刘昌明. 黄河源区气候和土地覆被变化对径流的影响[J]. 中国环境科学, 2007, 27(4): 559-565.
16 XU J X. Complex response of runoff-precipitation ratio to the rising air temperature: the source area of the Yellow River, China[J]. Regional Environmental Change, 2015, 15(1): 35-43.
17 GU C J, MU X M, GAO P, et al. Changes in Run-off and sediment load in the three parts of the Yellow River Basin, in response to climate change and human activities[J]. Hydrological Processes, 2019, 33(4): 585-601.
18 MA Zhuguo, FU Congbin, ZHOU Tianjun, et al. Status and ponder of climate and hydrology changes in the Yellow River Basin[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(1): 52-60.
马柱国, 符淙斌, 周天军, 等. 黄河流域气候与水文变化的现状及思考[J]. 中国科学院院刊, 2020, 35(1): 52-60.
19 YIN Baoku, CAO Xiayu, ZHANG Jianguo, et al. Soil and water loss change in source region of Yellow River during 1999-2018[J]. Bulletin of Soil and Water Conservation, 2020, 40(3): 216-220.
殷宝库, 曹夏雨, 张建国, 等. 1999—2018年黄河源区水土流失动态变化[J]. 水土保持通报, 2020, 40(3): 216-220.
20 YE Peilong, ZHANG Qiang, WANG Ying, et al. Climate change in the upper Yellow River Basin and its impact on ecological vegetation and runoff from 1980 to 2018[J]. Transactions of Atmospheric Sciences, 2020, 43(6): 967-979.
叶培龙, 张强, 王莺, 等. 1980—2018年黄河上游气候变化及其对生态植被和径流量的影响[J]. 大气科学学报, 2020, 43(6): 967-979.
21 ZHANG Q, YANG J H, WANG W, et al. Climatic warming and humidification in the arid region of northwest China: multi-scale characteristics and impacts on ecological vegetation[J]. Journal of Meteorological Research, 2021, 35(1): 113-127.
22 MA Jianing, GAO Yanhong. Analysis of annual precipitation and extreme precipitation change in the upper Yellow River Basin in recent 50 years[J]. Plateau Meteorology, 2019, 38(1): 124-135.
马佳宁, 高艳红. 近50年黄河上游流域年均降水与极端降水变化分析[J]. 高原气象, 2019, 38(1): 124-135.
23 WANG Ying, LI Yaohui, SUN Xuying. Impact of climate change on the eco-environment in the Yellow River source[J]. Pratacultural Science, 2015, 32(4): 539-551.
王莺, 李耀辉, 孙旭映. 气候变化对黄河源区生态环境的影响[J]. 草业科学, 2015, 32(4): 539-551.
24 YUE Ping, ZHANG Qiang, ZHAO Wen, et al. Influence of environmental factors on land-surface water and heat exchange during dry and wet periods in the growing season of semiarid grassland on the Loess Plateau[J]. Science China Earth Sciences, 2015, 58(11):2 002-2 014.
25 HUANG Jianping, ZHANG Guolong, YU Haipeng, et al. Characteristics of climate change in the Yellow River Basin during recent 40 years[J]. Journal of Hydraulic Engineering, 2020, 51(9): 1 048-1 058.
黄建平, 张国龙, 于海鹏, 等. 黄河流域近40年气候变化的时空特征[J]. 水利学报, 2020, 51(9): 1 048-1 058.
26 MA Pengli, YANG Jinhu, LU Guoyang, et al. The transitional change of climate in the east of northwest China[J]. Plateau Meteorology, 2020, 39(4): 840-850.
马鹏里, 杨金虎, 卢国阳, 等. 西北地区东部气候的转折性变化[J]. 高原气象, 2020, 39(4): 840-850.
27 WU Kai, XIE Xianqun, LIU Enmin. On the general situation, the changingregularities and the forecast of the absenceof flow in the Huanghe River[J]. Geographical Research, 1998, 17(2): 125-130.
吴凯, 谢贤群, 刘恩民. 黄河断流概况、变化规律及其预测[J]. 地理研究, 1998, 17(2): 125-130.
28 ZHAO Yong, HE Fan, HE Guohua, et al. Review the phenomenon of Yellow River cutoff from a whole perspective and identification of current water shortage[J]. Yellow River, 2020, 42(4): 42-46.
赵勇, 何凡, 何国华, 等. 全域视角下黄河断流再审视与现状缺水识别[J]. 人民黄河, 2020, 42(4): 42-46.
29 HUANG Ronghui, ZHOU Degang. The impact of climate change on the runoff of the Yellow River and ecosystem and frozen soil in its source area[J]. Chinese Journal of Nature, 2012, 34(1): 1-9.
黄荣辉, 周德刚. 气候变化对黄河径流以及源区生态和冻土环境的影响[J]. 自然杂志, 2012, 34(1): 1-9.
30 KONG Dongxian, MIAO Chiyuan, WU Jingwen, et al. Impact assessment of climate change and human activities on net runoff in the Yellow River Basin from 1951 to 2012[J]. Ecological Engineering, 2016, 91:566-573.
31 CHEN Kegong, SHI Anlong. New enlightenment from the examination of the West route of the South-to-North water transfer project from the perspective of Hu Huanyong Line[J]. Yellow River, 2021, 43(7):1-6.
陈克恭, 师安隆. 站在胡焕庸线上审视南水北调西线工程的新启示[J]. 人民黄河, 2021, 43(7):1-6.
32 YANG Jinhu, ZHANG Qiang, LIU Xiaoyun, et al. Spatial-temporal characteristics and causes of summer precipitation anomalies in the transitional zone of typical summer monsoon, China[J]. Chinese Journal of Geophysics, 2019, 62(11):4 120-4 128.
杨金虎, 张强, 刘晓云, 等. 中国典型夏季风影响过渡区夏季降水异常时空特征及成因分析[J]. 地球物理学报, 2019, 62(11):4 120-4 128.
33 GU C J, MU X M, GAO P, et al. Changes in run-off and sediment load in the three parts of the Yellow River Basin, in response to climate change and human activities[J]. Hydrological Processes, 2019, 33(4): 585-601.
34 WEI Zhenfeng, REN Zhiyuan, ZHANG Chong, et al. Changes of vegetation cover and its correlation with precipitation and temperature in northwest China[J]. Bulletin of Soil and Water Conservation, 2014, 34(3): 283-289.
韦振锋, 任志远, 张翀, 等. 西北地区植被覆盖变化及其与降水和气温的相关性[J]. 水土保持通报, 2014, 34(3): 283-289.
35 ZHOU Mengtian, LI Jun, ZHU Kangwen. Changes of NDVI in different regions of northwest area and its responses to climate factor[J]. Research of Soil and Water Conservation, 2015, 22(3): 182-187.
周梦甜, 李军, 朱康文. 西北地区NDVI变化与气候因子的响应关系研究[J]. 水土保持研究, 2015, 22(3): 182-187.
36 WANG Ying, ZHANG Lei, WANG Jinsong. Response of the hydrological process to land-use/cover change in Taohe River Basin[J]. Journal of Glaciology and Geocryology, 2016, 38(1): 200-210.
王莺, 张雷, 王劲松. 洮河流域土地利用/覆被变化的水文过程响应[J]. 冰川冻土, 2016, 38(1): 200-210.
37 ZHOU Guangsheng, ZHOU Li, JI Yuhe, et al. Basin integrity and temporal-spatial connectivity of the water ecological carrying capacity of the Yellow River[J]. Chinese Science Bulletin, 2021, 66(22): 2 785-2 792.
周广胜, 周莉, 汲玉河, 等. 黄河水生态承载力的流域整体性和时空连通性[J]. 科学通报, 2021, 66(22):2 785-2 792.
38 ZHANG Chunshan, ZHANG Yecheng, MA Yinsheng, et al. Distribution regularity and regionalization of geological hazards in the upper Yellow River Valley[J]. Acta Geoscientica Sinica, 2003, 24(2):155-160.
张春山, 张业成, 马寅生, 等. 黄河上游地区地质灾害分布规律与区划[J]. 地球学报, 2003, 24(2):155-160.
39 XIAO Guoju, QIU Zhengji, ZHANG Fengju, et al. Influence of increased temperature on the potato yield and quality in a semiarid district of Northwest China[J]. Acta Ecologica Sinica, 2015, 35(3): 830-836.
肖国举, 仇正跻, 张峰举, 等. 增温对西北半干旱区马铃薯产量和品质的影响[J]. 生态学报, 2015, 35(3): 830-836.
40 HUANG J P, YU H P, DAI A G, et al. Drylands face potential threat under 2 ℃ global warming target[J]. Nature Climate Change, 2017, 7(6): 417-422.
41 AN Yongqing, QU Yonghua, GAO Hongyong, et al. Supervising the salted land distribution of Hetao irrigation area in Inner Mongolia by using remote sensing[J]. Remote Sensing Technology and Application, 2008, 23(3): 316-322.
安永清, 屈永华, 高鸿永, 等. 内蒙古河套灌区土壤盐碱化遥感监测方法研究[J]. 遥感技术与应用, 2008, 23(3): 316-322.
42 XIAO Guoju, ZHANG Qiang, LI Yu, et al. Effect of winter warming on soil moisture and salinization[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(8): 46-51.
肖国举, 张强, 李裕, 等. 冬季增温对土壤水分及盐碱化的影响[J]. 农业工程学报, 2011, 27(8): 46-51.
43 WANG Genxu, CHENG Guodong. Ecological features and variance of soils in northwest arid area of China[J]. Journal of Arid Land Resources and Environment, 1999, 13(3): 14-22.
王根绪, 程国栋. 西北干旱区土壤的生态特征与变化[J]. 干旱区资源与环境, 1999, 13(3): 14-22.
[1] 王学良, 李洪源, 陈仁升, 刘俊峰, 刘国华, 韩春坛. 变化环境下 19562020年黄河兰州站以上干支流径流演变特征及驱动因素研究[J]. 地球科学进展, 2022, 37(7): 726-741.
[2] 李锁锁,吕世华,高艳红,奥银焕,柳媛普. 黄河上游玛曲草原湍流统计特征分析[J]. 地球科学进展, 2012, 27(8): 901-907.
[3] 史威,李世杰,马春梅,朱诚,张蕾. 中坝和中堡岛遗址文化堆积连续性的自然及人类活动因素[J]. 地球科学进展, 2010, 25(5): 523-532.
[4] 李延梅;张志强;巩杰. 英国自然环境研究委员会(NERC)地球系统科学研究计划———QUEST计划介绍[J]. 地球科学进展, 2004, 19(6): 921-924.
[5] 李 林,张国胜,汪青春,时兴合. 黄河上游流域蒸散量及其影响因子研究[J]. 地球科学进展, 2000, 15(3): 256-259.
阅读次数
全文


摘要