地球科学进展 ›› 2022, Vol. 37 ›› Issue (8): 798 -810. doi: 10.11867/j.issn.1001-8166.2022.038

综述与评述 上一篇    下一篇

热液羽流中铁形态及其同位素特征
刘美彤( ), 王虎( )   
  1. 同济大学 海洋地质国家重点实验室,上海 200092
  • 收稿日期:2022-04-19 修回日期:2022-06-20 出版日期:2022-08-10
  • 通讯作者: 王虎 E-mail:1931665@tongji.edu.cn;wanghu@tongji.edu.cn
  • 基金资助:
    国家自然科学基金项目“西太平洋劳盆地东北部火山岛弧热液区羽流中铁形态及其同位素特征研究”(42076062);同济大学海洋交叉平台项目(YB-22-202114)

Iron Speciation and Isotope Characteristics in Hydrothermal Plumes

Meitong LIU( ), Hu WANG( )   

  1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
  • Received:2022-04-19 Revised:2022-06-20 Online:2022-08-10 Published:2022-09-13
  • Contact: Hu WANG E-mail:1931665@tongji.edu.cn;wanghu@tongji.edu.cn
  • About author:LIU Meitong (1997-), female, Shenyang City, Liaoning Province, Master student. Research area includes marine analytical chemistry. E-mail: 1931665@tongji.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “Study on Fe speciation and isotope in hydrothermal plumes above the arc volcanoes in the NE Lau Basin, western Pacific Ocean”(42076062);Interdisciplinary Project in Ocean Research of Tongji University(YB-22-202114)

铁元素是海洋中重要的微量金属元素之一,其浓度高低直接影响海洋初级生产力、碳循环以及全球气候变化。海底热液系统是海洋中铁元素以及溶解态铁的重要来源之一,受到了国内外海洋科学家的广泛关注。由于热液来源的铁同位素与背景海水不同,因此可作为示踪铁元素在海洋中迁移和分布的重要工具。回顾了国内外热液羽流中铁形态及其同位素研究现状,总结了羽流中铁元素形态的分布及其特征,包括有机络合态、胶体态和颗粒态,羽流中铁同位素分馏的影响因素,以及羽流中铁同位素组成特征,并展望了未来热液羽流中铁元素的研究方向和需要解决的科学问题。

Iron is an important trace metal in oceans, and its concentrations greatly influence primary productivity, carbon cycling, and global climate change. Submarine hydrothermal venting is an important source of dissolved iron in global oceans and has been widely discussed in marine science. The iron isotopes of hydrothermally sourced Fe are different from those of the surrounding seawater and can be used as a potential tracer for their distribution and migration in the oceans. Previous studies on Fe speciation and isotopes in hydrothermal processes have been reviewed herein. We summarize the iron species in hydrothermal plumes, including organic, colloidal, and particulate iron; the processes influencing iron isotope fractionation; and the characteristics of iron isotopes in hydrothermal plumes. Finally, the key scientific issues that should be highlighted in future studies are presented.

中图分类号: 

图1 东太平洋GEOTRACES GP16断面溶解态和颗粒态铁浓度分布(据参考文献[ 16 ]修改)
(a) 溶解态铁;(b) 颗粒态铁
Fig. 1 The distribution of dissolved and particulate Fe concentration along the GEOTRACES GP16 Eastern Pacific Zonal Transectmodified after reference 16 ])
(a) Dissolved Fe concentrations; (b) Particulate Fe concentrations
图2 热液羽流向深海输入的铁通量示意图(据参考文献[ 18 ]修改)
Fig. 2 Flux diagram for hydrothermal inputs of Fe to the deep oceanmodified after reference 18 ])
表1 热液羽流中有机铁配体浓度和条件稳定常数
Table 1 The concentrations and conditional stability constants of organic iron-binding ligands in hydrothermal plumes
表2 典型热液场上方羽流区和大洋海水中胶体态铁占溶解态铁比例
Table 2 The cFe/dFe from different hydrothermal plumes and ocean waters
图3 全球不同洋脊热液区海水中Fe)氧化过程半衰期(据参考文献[ 10 ]修改)
Fig. 3 FeIIoxidation half-lives for ambient deepwater conditions near various vent sites on the global ridge systemmodified after reference 10 ])
表3 EPR 9°N 羽流颗粒物中铁形态分析结果(据参考文献[ 7 ]修改)
Table 3 Iron speciation in plume particles collected by sediment traps at the East Pacific Risemodified after reference 7 ])
表4 典型热液场上方羽流区中不同形态铁的组分 (%)
Table 4 The proportions of different iron species in total iron in hydrothermal plumes
图4 热液羽流中铁同位素分馏
“+”和“-”分别表示 56Fe富集或亏损;Fe(II)的氧化速率为Field等 10 计算的全球不同大洋中Fe(II)半衰期;Fe/H 2S值代表目前全球不同热液区二者的比值范围
Fig. 4 Iron isotope fractionation in hydrothermal plumes
“+” and “-” indicate the enrichment or depletion of 56Fe, respectively;The oxidation rate of Fe(II) is the half-life of Fe(II) in the ocean, which is calculated by Field et al. 10 ; Fe/H 2S ratio represents the current ratio range of different hydrothermal areas
图5 北大西洋GEOTRACES GA03断面溶解态铁浓度和铁同位素( δ56Fe)分布(据参考文献[ 14 ]修改)
(a)采样站位分布(16-TAG热液区,红色三角形表示周围其他热液区);(b)溶解态铁浓度分布 (nmol/L);(c)溶解态 δ 56Fe分布(‰ IRMM-014
Fig. 5 Dissolved Fe concentration and δ56Fe results from the GEOTRACES North Atlantic GA03 zonal transectmodified after reference 14 ])
(a) Sampling area (16-TAG hydrothermal area, red triangles represent other hydrothermal fields); (b) Dissolved iron concentration (nmol/L); (c) Dissolved Fe isotope ( δ 56Fe) relative to IRMM-014 (‰ IRMM-014
1 BOYD P W, WATSON A J, LAW C S, et al. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization[J]. Nature, 2000, 407(6 805): 695-702.
2 LUPTON J E, DELANEY J R, JOHNSON H P, et al. Entrainment and vertical transport of deep-ocean water by buoyant hydrothermal plumes [J]. Nature, 1985, 316(6 029): 621-623.
3 BAKER E T, MASSOTH G J. Characteristics of hydrothermal plumes from two vent fields on the Juan de Fuca Ridge, northeast Pacific Ocean [J]. Earth and Planetary Science Letters, 1987, 85(1/2/3): 59-73.
4 ELDERFIELD H, SCHULTZ A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean[J]. Annual Review of Earth and Planetary Sciences, 1996, 24: 191-224.
5 MOTTL M J, MCCONACHY T F. Chemical processes in buoyant hydrothermal plumes on the East Pacific Rise near 21°N[J]. Geochimica et Cosmochimica Acta, 1990, 54(7): 1 911-1 927.
6 CHU N C, JOHNSON C M, BEARD B L, et al. Evidence for hydrothermal venting in Fe isotope compositions of the deep Pacific Ocean through time[J]. Earth and Planetary Science Letters, 2006, 245(1/2): 202-217.
7 TONER B, MARCUS M, EDWARDS K, et al. Measuring the form of iron in hydrothermal plume particles[J]. Oceanography, 2012, 25(1): 209-212.
8 STATHAM P J, GERMAN C R, CONNELLY D P. Iron (II) distribution and oxidation kinetics in hydrothermal plumes at the Kairei and Edmond vent sites, Indian Ocean[J]. Earth and Planetary Science Letters, 2005, 236(3/4): 588-596.
9 WANG H, YANG Q H, JI F W, et al. The geochemical characteristics and Fe(II) oxidation kinetics of hydrothermal plumes at the southwest Indian ridge[J]. Marine Chemistry, 2012, 134/135: 29-35.
10 FIELD M P, SHERRELL R M. Dissolved and particulate Fe in a hydrothermal plume at 9°45'N, east Pacific rise: slow Fe (II) oxidation kinetics in Pacific plumes[J]. Geochimica et Cosmochimica Acta, 2000, 64(4): 619-628.
11 KLEINT C, HAWKES J A, SANDER S G, et al. Voltammetric investigation of hydrothermal iron speciation[J]. Frontiers in Marine Science, 2016, 3: 75.
12 WU J F, WELLS M L, REMBER R. Dissolved iron anomaly in the deep tropical-subtropical Pacific: evidence for long-range transport of hydrothermal iron[J]. Geochimica et Cosmochimica Acta, 2011, 75(2): 460-468.
13 NISHIOKA J, OBATA H, TSUMUNE D. Evidence of an extensive spread of hydrothermal dissolved iron in the Indian Ocean[J]. Earth and Planetary Science Letters, 2013, 361: 26-33.
14 CONWAY T M, JOHN S G. Quantification of dissolved iron sources to the North Atlantic Ocean[J]. Nature, 2014, 511(7 508): 212-215.
15 FITZSIMMONS J N, BOYLE E A, JENKINS W J. Distal transport of dissolved hydrothermal iron in the deep South Pacific Ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(47): 16 654-16 661.
16 FITZSIMMONS J N, JOHN S G, MARSAY C M, et al. Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange[J]. Nature Geoscience, 2017, 10(3): 195-201.
17 RESING J A, SEDWICK P N, GERMAN C R, et al. Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean[J]. Nature, 2015, 523(7 559): 200-203.
18 BENNETT S A, ACHTERBERG E P, CONNELLY D P, et al. The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumes[J]. Earth and Planetary Science Letters, 2008, 270(3/4): 157-167.
19 HAWKES J A, CONNELLY D P, GLEDHILL M, et al. The stabilisation and transportation of dissolved iron from high temperature hydrothermal vent systems[J]. Earth and Planetary Science Letters, 2013, 375: 280-290.
20 TONER B M, FAKRA S C, MANGANINI S J, et al. Preservation of iron(II) by carbon-rich matrices in a hydrothermal plume[J]. Nature Geoscience, 2009, 2(3): 197-201.
21 TAGLIABUE A, BOPP L, DUTAY J C, et al. Hydrothermal contribution to the oceanic dissolved iron inventory[J]. Nature Geoscience, 2010, 3(4): 252-256.
22 SEVERMANN S, JOHNSON C M, BEARD B L, et al. The effect of plume processes on the Fe isotope composition of hydrothermally derived Fe in the deep ocean as inferred from the Rainbow vent site, Mid-Atlantic Ridge, 36°14'N[J]. Earth and Planetary Science Letters, 2004, 225(1/2): 63-76.
23 BENNETT S A, ROUXEL O, SCHMIDT K, et al. Iron isotope fractionation in a buoyant hydrothermal plume, 5°S mid-Atlantic ridge[J]. Geochimica et Cosmochimica Acta, 2009, 73(19): 5 619-5 634.
24 KLAR J K, JAMES R H, GIBBS D, et al. Isotopic signature of dissolved iron delivered to the Southern Ocean from hydrothermal vents in the East Scotia Sea[J]. Geology, 2017, 45(4): 351-354.
25 LOUGH A J M, KLAR J K, HOMOKY W B, et al. Opposing authigenic controls on the isotopic signature of dissolved iron in hydrothermal plumes[J]. Geochimica et Cosmochimica Acta, 2017, 202: 1-20.
26 NASEMANN P, GAULT-RINGOLD M, STIRLING C H, et al. Processes affecting the isotopic composition of dissolved iron in hydrothermal plumes: a case study from the Vanuatu back-arc[J]. Chemical Geology, 2018, 476: 70-84.
27 ROUXEL O, SHANKS W C III, BACH W, et al. Integrated fe- and S-isotope study of seafloor hydrothermal vents at east Pacific rise 9-10°N[J]. Chemical Geology, 2008, 252(3/4): 214-227.
28 ROUXEL O, TONER B M, MANGANINI S J, et al. Geochemistry and iron isotope systematics of hydrothermal plume fall-out at East Pacific Rise 9°50'N[J]. Chemical Geology, 2016, 441: 212-234.
29 WANG H, YAN Q Y, YANG Q H, et al. The size fractionation and speciation of iron in the longqi hydrothermal plumes on the southwest Indian ridge[J]. Journal of Geophysical Research: Oceans, 2019, 124(6): 4 029-4 043.
30 WANG H, RESING J A, YAN Q Y, et al. The characteristics of Fe speciation and Fe-binding ligands in the Mariana back-arc hydrothermal plumes[J]. Geochimica et Cosmochimica Acta, 2021, 292: 24-36.
31 ZENG Z G, WANG X Y, MURTON B J, et al. Dispersion and intersection of hydrothermal plumes in the manus back-arc basin, western Pacific[J]. Geofluids, 2020, 2020: 4260806.
32 JIANG Zijing, HAN Xiqiu, WANG Yejian, et al. Characteristics of water chemistry and constituents of particles in the hydrothermal plume near 6°48'N, Carlsberg Ridge, northwest Indian Ocean[J]. Journal of Marine Sciences, 2017, 35(4): 34-43.
蒋紫靖, 韩喜球, 王叶剑, 等. 印度洋卡尔斯伯格脊6°48'N附近热液羽状流水化学参数异常和颗粒物成分特征[J]. 海洋学研究, 2017, 35(4): 34-43.
33 WANG Jianqiang, LI Xiaohu, BI Dongwei, et al. Fe isotopic composition heterogeneity of seawater profiles and its influence factors[J]. Earth Science, 2017, 42(9): 1 519-1 530.
王建强, 李小虎, 毕冬伟, 等. 全球海水剖面Fe同位素组成的不均一性及其影响因素[J]. 地球科学, 2017, 42(9): 1 519-1 530.
34 EDMOND J M, MEASURES C, MCDUFF R E, et al. Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: the Galapagos data[J]. Earth and Planetary Science Letters, 1979, 46(1): 1-18.
35 EDMOND J M, von DAMM K L, MCDUFF R E, et al. Chemistry of hot springs on the East Pacific Rise and their effluent dispersal[J]. Nature, 1982, 297(5 863): 187-191.
36 GERMAN C R, CASCIOTTI K A, DUTAY J C, et al. Hydrothermal impacts on trace element and isotope ocean biogeochemistry[J]. Philosophical Transactions of the Royal Society A, Mathematical, Physical and Engineering Sciences, 2016, 374(2 081): 20160035.
37 LUPTON J E, CRAIG H. A major helium-3 source at 15°S on the east Pacific rise[J]. Science, 1981, 214(4 516): 13-18.
38 TAO C H, LIN J, GUO S Q, et al. First active hydrothermal vents on an ultraslow-spreading center: southwest Indian ridge[J]. Geology, 2012, 40(1): 47-50.
39 MULLINEAUX L, FRANCE S. Dispersal mechanisms of deep-sea hydrothermal vent fauna[J]. Geophysical Monograph Series, 1995, 91: 408-424.
40 HELFRICH K, SPEER K. Oceanic hydrothermal circulation: mesoscale and basin-scale flow[J]. Geophysical Monograph Series, 1995, 91: 347-356.
41 HUMPHRIS S E, ZIERENBERG R A, MULLINEAUX L S, et al. Seafloor hydrothermal systems: physical, chemical, biological, and geological interactions[M]. Washington, D. C.: American Geophysical Union, 1995.
42 von DAMM K L. Seafloor hydrothermal activity: black smoker chemistry and chimneys[J]. Annual Review of Earth and Planetary Sciences, 1990, 18: 173-204.
43 LU Yingyu, HAN Xiqiu, WANG Yejian, et al. The hydrothermal plumes over the southwest Indian ridge from 49°E to 56°E: evidence from helium isotope anomalies of deep seawater[J]. Acta Oceanologica Sinica, 2014, 36(6): 42-49.
卢映钰, 韩喜球, 王叶剑, 等. 西南印度洋49°~56°E洋脊段的热液羽状流: 来自深水中的氦同位素异常证据[J]. 海洋学报, 2014, 36(6): 42-49.
44 CULLEN J T, BERGQUIST B A, MOFFETT J W. Thermodynamic characterization of the partitioning of iron between soluble and colloidal species in the Atlantic Ocean[J]. Marine Chemistry, 2006, 98(2/3/4): 295-303.
45 WU J F, LUTHER G W III. Complexation of Fe(III) by natural organic ligands in the northwest Atlantic Ocean by a competitive ligand equilibration method and a kinetic approach[J]. Marine Chemistry, 1995, 50(1/2/3/4): 159-177.
46 KUMA K S, NISHIOKA J, MATSUNAGA K. Controls on iron(III) hydroxide solubility in seawater: the influence of pH and natural organic chelators[J]. Limnology and Oceanography, 1996, 41(3): 396-407.
47 BUCK K N, SOHST B, SEDWICK P N. The organic complexation of dissolved iron along the US GEOTRACES (GA03) North Atlantic Section[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 116: 152-165.
48 TOWN R M, FILELLA M. Dispelling the myths: is the existence of L1 and L2 ligands necessary to explain metal ion speciation in natural waters?[J]. Limnology and Oceanography, 2000, 45(6): 1 341-1 357.
49 KONN C, CHARLOU J L, DONVAL J P, et al. Hydrocarbons and oxidized organic compounds in hydrothermal fluids from Rainbow and Lost City ultramafic-hosted vents[J]. Chemical Geology, 2009, 258(3/4): 299-314.
50 LANG S Q, BUTTERFIELD D A, SCHULTE M, et al. Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field[J]. Geochimica et Cosmochimica Acta, 2010, 74(3): 941-952.
51 BENNETT S A, HANSMAN R L, SESSIONS A L, et al. Tracing iron-fueled microbial carbon production within the hydrothermal plume at the Loihi seamount[J]. Geochimica et Cosmochimica Acta, 2011, 75(19): 5 526-5 539.
52 FINDLAY A J, GARTMAN A, SHAW T J, et al. Trace metal concentration and partitioning in the first 1.5 m of hydrothermal vent plumes along the Mid-Atlantic Ridge: tag, Snakepit, and Rainbow[J]. Chemical Geology, 2015, 412: 117-131.
53 GARTMAN A, FINDLAY A J, LUTHER G W III. Nanoparticulate pyrite and other nanoparticles are a widespread component of hydrothermal vent black smoker emissions[J]. Chemical Geology, 2014, 366: 32-41.
54 YÜCEL M, GARTMAN A, CHAN C S, et al. Hydrothermal vents as a kinetically stable source of iron-sulphide-bearing nanoparticles to the ocean[J]. Nature Geoscience, 2011, 4(6): 367-371.
55 YÜCEL M, LUTHER G W I. Temporal trends in vent fluid iron and sulfide chemistry following the 2005/2006 eruption at East Pacific Rise, 9°50'N[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(4): 759-765.
56 SANDS C M, CONNELLY D P, STATHAM P J, et al. Size fractionation of trace metals in the Edmond hydrothermal plume, Central Indian Ocean[J]. Earth and Planetary Science Letters, 2012, 319/320: 15-22.
57 HAWKES J A, CONNELLY D P, RIJKENBERG M J A, et al. The importance of shallow hydrothermal island arc systems in ocean biogeochemistry[J]. Geophysical Research Letters, 2014, 41(3): 942-947.
58 FITZSIMMONS J N, CARRASCO G G, WU J F, et al. Partitioning of dissolved iron and iron isotopes into soluble and colloidal phases along the GA03 GEOTRACES North Atlantic Transect[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 116: 130-151.
59 THURÓCZY C E, GERRINGA L J A, KLUNDER M B, et al. Speciation of Fe in the eastern north Atlantic Ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2010, 57(11): 1 444-1 453.
60 WU J, BOYLE E, SUNDA W, et al. Soluble and colloidal iron in the oligotrophic north Atlantic and north Pacific[J]. Science, 2001, 293(5 531): 847-849.
61 CAMPBELL A C, PALMER M R, KLINKHAMMER G P, et al. Chemistry of hot springs on the Mid-Atlantic Ridge[J]. Nature, 1988, 335(6 190): 514-519.
62 GERMAN C R, CAMPBELL A C, EDMOND J M. Hydrothermal scavenging at the Mid-Atlantic Ridge: modification of trace element dissolved fluxes[J]. Earth and Planetary Science Letters, 1991, 107(1): 101-114.
63 KADKO D C, ROSENBERG N D, LUPTON J E, et al. Chemical reaction rates and entrainment within the Endeavour Ridge hydrothermal plume[J]. Earth and Planetary Science Letters, 1990, 99(4): 315-335.
64 RUDNICKI M D, ELDERFIELD H. A chemical model of the buoyant and neutrally buoyant plume above the TAG vent field, 26 degrees N, Mid-Atlantic Ridge[J]. Geochimica et Cosmochimica Acta, 1993, 57(13): 2 939-2 957.
65 RUDNICKI M D. Particle formation, fallout and cycling within the buoyant and non-buoyant plume above the TAG vent field[J]. Geological Society, London, Special Publications, 1995, 87(1): 387-396.
66 DOUVILLE E, CHARLOU J L, OELKERS E H, et al. The rainbow vent fluids (36°14'N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids[J]. Chemical Geology, 2002, 184(1/2): 37-48.
67 KING D W. Role of carbonate speciation on the oxidation rate of Fe(II) in aquatic systems[J]. Environmental Science & Technology, 1998, 32(19): 2 997-3 003.
68 MILLERO F J, SOTOLONGO S, IZAGUIRRE M. The oxidation kinetics of Fe(II) in seawater[J]. Geochimica et Cosmochimica Acta, 1987, 51(4): 793-801.
69 MASSOTH G J, BAKER E T, FEELY R A, et al. Manganese and iron in hydrothermal plumes resulting from the 1996 Gorda Ridge Event[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1998, 45(12): 2 683-2 712.
70 GARTMAN A, FINDLAY A J. Impacts of hydrothermal plume processes on oceanic metal cycles and transport[J]. Nature Geoscience, 2020, 13(6): 396-402.
71 YÜCEL M, SEVGEN S, le BRIS N. Soluble, colloidal, and particulate iron across the hydrothermal vent mixing zones in broken spur and rainbow, mid-Atlantic ridge[J]. Frontiers in Microbiology, 2021, 12: 631885.
72 LOUGH A J M, HOMOKY W B, CONNELLY D P, et al. Soluble iron conservation and colloidal iron dynamics in a hydrothermal plume[J]. Chemical Geology, 2019, 511: 225-237.
73 BUTLER I B, ARCHER C, VANCE D, et al. Fe isotope fractionation on FeS formation in ambient aqueous solution[J]. Earth and Planetary Science Letters, 2005, 236(1/2): 430-442.
74 POLYAKOV V B, CLAYTON R N, HORITA J, et al. Equilibrium iron isotope fractionation factors of minerals: reevaluation from the data of nuclear inelastic resonant X-ray scattering and Mössbauer spectroscopy[J]. Geochimica et Cosmochimica Acta, 2007, 71(15): 3 833-3 846.
75 WU L L, DRUSCHEL G, FINDLAY A, et al. Experimental determination of iron isotope fractionations among Feaq2+-FeSaq-Mackinawite at low temperatures: implications for the rock record[J]. Geochimica et Cosmochimica Acta, 2012, 89: 46-61.
76 BULLEN T D, WHITE A F, CHILDS C W, et al. Demonstration of significant abiotic iron isotope fractionation in nature[J]. Geology, 2001, 29(8): 699.
77 SCHAUBLE E A, ROSSMAN G R, TAYLOR H P. Theoretical estimates of equilibrium Fe-isotope fractionations from vibrational spectroscopy[J]. Geochimica et Cosmochimica Acta, 2001, 65(15): 2 487-2 497.
78 JOHNSON C M, SKULAN J L, BEARD B L, et al. Isotopic fractionation between Fe(III) and Fe(II) in aqueous solutions[J]. Earth and Planetary Science Letters, 2002, 195(1/2): 141-153.
79 WELCH S A, BEARD B L, JOHNSON C M, et al. Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III)[J]. Geochimica et Cosmochimica Acta, 2003, 67(22): 4 231-4 250.
80 BALCI N, BULLEN T D, WITTE-LIEN K, et al. Iron isotope fractionation during microbially stimulated Fe(II) oxidation and Fe(III) precipitation[J]. Geochimica et Cosmochimica Acta, 2006, 70(3): 622-639.
81 KAPPLER A, JOHNSON C M, CROSBY H A, et al. Evidence for equilibrium iron isotope fractionation by nitrate-reducing iron(II)-oxidizing bacteria[J]. Geochimica et Cosmochimica Acta, 2010, 74(10): 2 826-2 842.
82 SKULAN J L, BEARD B L, JOHNSON C M. Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(III) and hematite[J]. Geochimica et Cosmochimica Acta, 2002, 66(17): 2 995-3 015.
83 LI Jin, ZHU Xiangkun, TANG Suohan. Equilibrium fractionation of Fe isotopes during Fe(Ⅲ) hydrolysis[J]. Acta Petrologica et Mineralogica, 2012, 31(6): 891-896.
李津, 朱祥坤, 唐索寒. Fe(Ⅲ)水解过程中的Fe同位素分馏研究[J]. 岩石矿物学杂志, 2012, 31(6): 891-896.
84 WU L L, BEARD B L, RODEN E E, et al. Stable iron isotope fractionation between aqueous Fe(II) and Hydrous ferric oxide[J]. Environmental Science & Technology, 2011, 45(5): 1 847-1 852.
85 DIDERIKSEN K, BAKER J A, STIPP S L S. Equilibrium Fe isotope fractionation between inorganic aqueous Fe(III) and the siderophore complex, Fe(III)-desferrioxamine B[J]. Earth and Planetary Science Letters, 2008, 269(1/2): 280-290.
86 MORGAN J L L, WASYLENKI L E, NUESTER J, et al. Fe isotope fractionation during equilibration of Fe-organic complexes[J]. Environmental Science & Technology, 2010, 44(16): 6 095-6 101.
87 BEARD B L, JOHNSON C M, COX L, et al. Iron isotope biosignatures[J]. Science, 1999, 285(5 435): 1 889-1 892.
88 DAUPHAS N, JOHN S G, ROUXEL O. Iron isotope systematics[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 415-510.
89 LAUDERDALE J M, BRAAKMAN R, FORGET G, et al. Microbial feedbacks optimize ocean iron availability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(9): 4 842-4 849.
90 XU Hengchao, PENG Xiaotong. Biogenic sulfides in the Earth system: type, formation mechanism and relationship with the origin of life[J]. Advances in Earth Science, 2013, 28(2): 262-268.
许恒超, 彭晓彤. 地球系统中生物成因硫化物矿物: 类型、形成机制及其与生命起源的关系[J]. 地球科学进展, 2013, 28(2): 262-268.
91 BRANTLEY S L, LIERMANN L J, GUYNN R L, et al. Fe isotopic fractionation during mineral dissolution with and without bacteria[J]. Geochimica et Cosmochimica Acta, 2004, 68(15): 3 189-3 204.
92 WANG W H, LOUGH A, LOHAN M C, et al. Behavior of iron isotopes in hydrothermal systems: Beebe and Von Damm vent fields on the Mid-Cayman ultraslow-spreading ridge[J]. Earth and Planetary Science Letters, 2021, 575: 117200.
93 SEDWICK P N, SOHST B M, USSHER S J, et al. A zonal picture of the water column distribution of dissolved iron(II) during the US GEOTRACES North Atlantic transect cruise (GEOTRACES GA03)[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 116: 166-175.
[1] 贾佳源, 贺娟, 韦兵兵, 贾国东, 李丽. 海洋藻类生物标志物单体氢同位素与表层海水盐度关系研究进展与启示[J]. 地球科学进展, 2022, 37(4): 392-406.
[2] 洪义国. 硝酸盐氮氧稳定同位素分馏过程记录的海洋氮循环研究进展[J]. 地球科学进展, 2013, 28(7): 751-764.
[3] 潘安阳, 杨群慧, 周怀阳, 王虎, 季福武. 深海溶解态锰和铁的原位分析技术研究进展[J]. 地球科学进展, 2013, 28(4): 420-428.
[4] 陈中笑,赵琦. 全球碳循环研究中的δ 13C方法及其进展[J]. 地球科学进展, 2011, 26(11): 1225-1233.
[5] 陈志刚,黄奕普,刘广山,蔡毅华,卢阳阳,刘润. 磷酸盐氧同位素组成的测定方法及分馏机理研究进展[J]. 地球科学进展, 2010, 25(10): 1040-1050.
[6] 汪齐连,刘丛强,赵志琦,B.Chetelat,丁虎. 长江流域河水和悬浮物的锂同位素地球化学研究[J]. 地球科学进展, 2008, 23(9): 952-958.
[7] 段毅,马兰华. 生物标志化合物碳同位素地球化学研究的几个相关问题[J]. 地球科学进展, 1996, 11(4): 356-361.
阅读次数
全文


摘要