地球科学进展 ›› 2022, Vol. 37 ›› Issue (8): 786 -797. doi: 10.11867/j.issn.1001-8166.2022.041

综述与评述 上一篇    下一篇

倒石堆地貌研究进展
陈国祥( ), 董治宝( ), 梁爱民, 石唯康, 刘小槺, 南维鸽, 白子怡, 池政   
  1. 陕西师范大学地理科学与旅游学院,陕西 西安 710119
  • 收稿日期:2022-04-01 修回日期:2022-06-26 出版日期:2022-08-10
  • 通讯作者: 董治宝 E-mail:gxchenlucky@163.com;zbdong@snnu.edu.cn
  • 基金资助:
    国家自然科学基金重点项目“塔里木盆地周围干燥剥蚀山地风化速率研究”(41930641);中央高校基本科研业务费专项资金“中国北方毛乌素沙地地表沉积物特征及其物源研究”(2019TS012)

Research Progress on Geomorphology of Talus Slopes

Guoxiang CHEN( ), Zhibao DONG( ), Aimin LIANG, Weikang SHI, Xiaokang LIU, Weige NAN, Ziyi BAI, Zheng CHI   

  1. School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
  • Received:2022-04-01 Revised:2022-06-26 Online:2022-08-10 Published:2022-09-13
  • Contact: Zhibao DONG E-mail:gxchenlucky@163.com;zbdong@snnu.edu.cn
  • About author:CHEN Guoxiang (1993-), male, Tianzhu County, Gansu Province, Ph.D student. Research area includes geomorphology in arid areas. E-mail: gxchenlucky@163.com
  • Supported by:
    the National Natural Science Foundation of China “Weathering rate of the dry denudated mountains surrounding the Tarim Basin”(41930641);The Fundamental Research Funds for the Central Universities “Characteristics and provenance of surface sediments in Mu Us Sandy Land in northern China”(2019TS012)

倒石堆是高山岩壁下广泛发育的岩屑堆积型坡地地貌,是理解“盆—山”地貌格局下沉积物转移的关键区域,同时也蕴含区域岩石风化速率和气候变化的丰富信息。基于国内外高山冰缘区倒石堆地貌的研究,对其发育环境、类型与形态、沉积结构及其移动与速率特征进行了梳理总结。认为掌握倒石堆地貌演化信息的关键在于准确判断其形态特征和沉积过程,而获取倒石堆沉积速率的核心则是利用先进技术获取其体积与年代等关键信息,才能确定区域高山岩壁风化速率信息并反演区域古气候变化。未来我国干燥剥蚀山地倒石堆地貌的研究工作须借助现代技术手段对其类型与分布、沉积结构与演化以及年代学等方面开展系统深入的研究,才能为确定区域山体风化速率的时空变化特征以及反演区域乃至亚洲古气候变化提供关键证据。

Talus slopes are widely developed hillslope landforms accumulated by debris at the foot of escarpments. As the key area for understanding the alpine sediment cascade in basin-mountain systems, talus slopes contain abundant information on regional rock weathering rates and climate change. Based on geomorphological research of talus slopes in alpine periglacial areas worldwide, we summarized the developmental environment, geomorphic types, morphological characteristics, and sedimentary structures and rates. The key to understanding the geomorphological evolution of talus slopes lies in accurately judging their morphological characteristics and sedimentary processes. The deposition rate of talus slopes obtained by measuring key factors such as its thickness and volume using advanced technology allows to ascertain the weathering rate of regional alpine escarpments and deduce the evidence of regional paleoclimate changes. Future research on talus slopes in the dry denudated mountains in China needs to be conducted systematically and thoroughly with modern technology in terms of their type and distribution, sedimentary structure and evolution, and chronology to provide key evidence for determining the temporal and spatial variation characteristics of regional mountain weathering rates and paleoclimate changes in Asia.

中图分类号: 

图1 倒石堆地貌示意图
Fig. 1 Sketch map of talus slope
表1 世界不同地区倒石堆地貌类型分类方案及其特征
Table 1 Geomorphological classification schemes and characteristics of talus slopes in different areas of the world
方案 分布区域 分类依据 类型 形态特征
1 10 挪威斯匹次卑尔根岛 发育程度与规模 岩屑坡 岩壁相对简单且经历了一致的后退,斜坡底部边缘分布有较大砾石
倒石锥 单体型,边缘分布有明显的粗砾石
复合型倒石堆 倒石堆顶部轮廓分明或与岩壁之间有明显的通道相连,形似沙漏型倒石堆
2 21 加拿大巴芬岛 发育程度、规模以及外部动力因素 碎屑覆盖斜坡 坡度一般在20°~35°
岩屑坡 斜坡坡度一般大于30°,除在坡顶呈凸状,整个纵剖面呈凹形
倒石锥 纵剖面为凸状、凹状或平直状,差异较大,坡度一般在25°~35°;纵剖面为3段,其中最长的为中间段,其形态为直线型或微凹形(30°~35°)
复合型倒石堆
泥流锥 较低的平均坡度(最高达33°)
冲积型倒石堆 水流除了对坡脚产生影响而呈凹状外,对整个坡面的影响较小
3 43 美国科罗拉多州 弗兰特山脉 发育动力学因素 落石型倒石堆 坡度一般在35°~45°,且纵剖面较顺直,仅在坡麓处呈凹状,很少或几乎无植被生长
美国加州内华达山脉 冲积型倒石堆 上部坡度一般在35°~38°,下部坡度往往小于28°,纵剖面呈上凹型受泥石流或覆盖植被影响而呈现条带状
美国科罗拉多州 弗兰特山脉 雪崩倒石堆 受雪崩影响,表面砾石粒径分布无规律;坡度一般小于25°,呈上凹状
瑞典塔尔法拉山谷 雪崩石舌 雪崩石舌顶部平缓,横剖面不对称,坡度小于25°至坡脚处接近水平
美国科罗拉多州 阿拉帕霍谷 倒石堆前缘堤 前缘较陡,其坡度一般在40°~50°
4 42 加拿大约翰·劳里山 岩壁形态与岩性复杂状况以及外部动力因素 岩屑坡 表面呈片状(平直),无明显横向变化
挪威斯匹次卑尔根岛 倒石锥 形似漏斗状
瑞典阿比斯库山脉 雪崩石舌 斜坡上部砾石分选较小,往坡麓方向平均粒径迅速变大;基部呈明显凹形,其分选较为明显
加拿大埃尔斯米尔岛 冲击型倒石堆 表面往往产生不规则,呈放射状的泥石流沉积模式
加拿大埃尔斯米尔岛

倒石堆前缘堤或

雪蚀脊

坡面下部往往隆起
5 44 波兰塔特拉山 明显的物质分选,有无泥石流沟 倒石堆 坡面砾石粒径往下坡方向逐渐变大;坡面呈凸型;表面无沟壑
岩崩倒石堆 坡面砾石粒径往下坡方向无变化;有复杂的纵向剖面;表面无沟壑
岩崩冲积型倒石堆 表面有明显的泥石流形态(冲沟);发育受流水和岩崩活动影响
冲积型倒石堆 表面有小冲沟,形态更类似于扇形(表面较平)
图2 岩崩主导型倒石堆地貌类型
(a)岩屑坡;(b)倒石锥;(c)复合型倒石堆(1.顶部轮廓分明;2.顶部与基岩区域相连)
Fig. 2 Geomorphological types of talus slope dominated by rockfalls
(a) Talus sheet; (b) Talus cone; (c) Coalescing/compound talus slopes (1. Talus cone with a sheer top contour; 2. Talus cone with a funnel connected with the rockfall area)
图3 次生岩崩过程主导型倒石堆地貌类型
(a)、(b)和(c)分别为天山泥石流活动、冻土层和多年积雪斑块对倒石堆形态的影响;(d)凯恩戈姆山雪崩和泥石流活动对倒石堆形态的影响 1
Fig. 3 Geomorphological types of talus slopes dominated by the secondary rockfall process
(a), (b) and (c) represent talus slopes modified by debris-flow activity, permafrost, and perennial snow patches in Tianshan Mountains, respectively; (d) Talus slopes modified and reworked by snow avalanche and hillside debris-flow activities in Cairngorm Mountains 1
图4 倒石堆坡面基本形态特征
Fig. 4 Morphological characteristics of talus slopes
图5 倒石堆演化的一般模型(据参考文献[ 62 ]修改)
Fig. 5 Generalized model of talus slope developmentmodified after reference 62 ])
表2 不同测量方法下岩壁后退速率的差异性
Table 2 Difference of rockwall retreat rates under different measuring methods
1 ELIAS S A. Encyclopedia of Quaternary science[M]. Oxford: Elsevier, 2006.
2 SERRANO E, SANJOSÉ J J, GÓMEZ-GUTIÉRREZ Á, et al. Surface movement and cascade processes on debris cones in temperate high mountain (Picos de Europa, northern Spain)[J]. The Science of the Total Environment, 2019, 649: 1 323-1 337.
3 ITURRIZAGA L. Talus cones as key landforms for reconstructing the extent of former glaciations[J]. Quaternary International, 2012, 279/280: 217.
4 THAPA P, MARTIN Y E, JOHNSON E A. Quantification of controls on regional rockfall activity and talus deposition, Kananaskis, Canadian Rockies[J]. Geomorphology, 2017, 299: 107-123.
5 DAVISON C. Note on the movement of scree-material[J]. Quarterly Journal of the Geological Society, 1888, 44(1/2/3/4): 232-238.
6 RAPP A. Recent development of mountain slopes in kärkevagge and surroundings, northern Scandinavia[J]. Geografiska Annaler, 1960, 42(2/3): 65-200.
7 CAINE N. A model for alpine talus slope development by slush avalanching[J]. The Journal of Geology, 1969, 77(1): 92-100.
8 LUCKMAN B. Debris accumulation patterns on talus slopes in Surprise Valley, Alberta[J]. Géographie Physique et Quaternaire, 1988, 42(3): 247-278.
9 CAINE N. The texture of talus in Tasmania[J]. Journal of Sedimentary Research, 1967, 37(3): 796-803.
10 RAPP A. Talus slopes and mountain walls at Tempelfjorden, Spitsbergen[M]. Oslo: Oslo University Press, 1960.
11 SONG Changchun, CUI Zhijiu. The characteristics of talus at head of the Erdaobai River from the Changbai Mountain[J]. Journal of Mountain Research, 1992, 10(3): 155-160.
宋长春, 崔之久. 长白山二道白河源区倒石堆发育特征[J]. 山地研究, 1992, 10(3): 155-160.
12 ZHU Cheng, CUI Zhijiu. A superficial discussion of talus at the head of Urumqi River, Tian Shan[J]. Journal of Mountain Research, 1988, 6(4): 203-209.
朱诚, 崔之久. 天山乌鲁木齐河源区倒石堆浅论[J]. 山地研究, 1988, 6(4): 203-209.
13 LUCKMAN B H. Rockfalls and rockfall inventory data: some observations from surprise valley, Jasper National Park, Canada[J]. Earth Surface Processes, 1976, 1(3): 287-298.
14 SASS O. Determination of the internal structure of alpine talus deposits using different geophysical methods (Lechtaler Alps, Austria)[J]. Geomorphology, 2006, 80(1/2): 45-58.
15 JOMELLI V, FRANCOU B. Comparing the characteristics of rockfall talus and snow avalanche landforms in an Alpine environment using a new methodological approach: Massif des Ecrins, French Alps[J]. Geomorphology, 2000, 35(3/4): 181-192.
16 PÉREZ F L. Surficial talus movement in an Andean Paramo of Venezuela[J]. Geografiska Annaler: Series A, Physical Geography, 1985, 67(3/4): 221-237.
17 WHITEHOUSE I E, MCSAVENEY M J. Diachronous talus surfaces in the southern Alps, New Zealand, and their implications to talus accumulation[J]. Arctic and Alpine Research, 1983, 15(1): 53-64.
18 MOORE J R, SANDERS J W, DIETRICH W E, et al. Influence of rock mass strength on the erosion rate of alpine cliffs[J]. Earth Surface Processes and Landforms, 2009, 34(10): 1 339-1 352.
19 WASSON R J. Stratified debris slope deposits in the Hindu Kush, Pakistan[J]. Zeitschrift fur Geomorphologie, 1979, 23: 301-320.
20 CHANDLER R J. The inclination of talus, Arctic talus terraces, and other slopes composed of granular materials[J]. The Journal of Geology, 1973, 81(1): 1-14.
21 CHURCH M, STOCK R F, RYDER J M. Contemporary sedimentary environments on Baffin Island, N. W. T., Canada: debris slope accumulations[J]. Arctic and Alpine Research, 1979, 11(4): 371-401.
22 PIERSON T C. Classification and hydrological characteristics of scree slope deposits in the northern Craigieburn Range, New Zealand[J]. Journal of Hydrology (New Zealand), 1982, 21(1): 34-60.
23 ÅKERMAN H J. Notes on talus morphology and processes in Spitsbergen[J]. Geografiska Annaler: Series A, Physical Geography, 1984, 66(4): 267-284.
24 SAUCHYN D J. Particle size and shape variation on alpine debris fans, Canadian Rocky Mountains[J]. Physical Geography, 1986, 7(3): 191-217.
25 ANDRLE R, ABRAHAMS A D. Fractal techniques and the surface roughness of talus slopes[J]. Earth Surface Processes and Landforms, 1989, 14(3): 197-209.
26 HINCHLIFFE S, BALLANTYNE C K, WALDEN J. The structure and sedimentology of relict talus, Trotternish, northern Skye, Scotland[J]. Earth Surface Processes and Landforms, 1998, 23(6): 545-560.
27 CURRY A M, Structure BLACK R., sedimentology and evolution of rockfall talus, Du Mynydd, Wales south [J]. Proceedings of the Geologists’ Association, 2003, 114(1): 49-64.
28 SASS O, KRAUTBLATTER M. Debris flow-dominated and rockfall-dominated talus slopes: genetic models derived from GPR measurements[J]. Geomorphology, 2007, 86(1/2): 176-192.
29 MARION J, FILION L, HÉTU B. The Holocene development of a debris slope in subarctic Québec, Canada[J]. The Holocene, 1995, 5(4): 409-419.
30 HARRISON S, WINCHESTER V. Age and nature of paraglacial debris cones along the margins of the San Rafael Glacier, Chilean Patagonia[J]. The Holocene, 1997, 7(4): 481-487.
31 CURRY A M, MORRIS C J. Lateglacial and Holocene talus slope development and rockwall retreat on Mynydd Du, UK[J]. Geomorphology, 2004, 58(1/2/3/4): 85-106.
32 SENDERAK K, KONDRACKA M, GĄDEK B. Processes controlling the development of talus slopes in SW Spitsbergen: the role of deglaciation and periglacial conditions[J]. Land Degradation & Development, 2021, 32(1): 208-223.
33 BOELHOUWERS J C. Relict periglacial slope deposits in the Hex River Mountains, South Africa: observations and palaeoenvironmental implications[J]. Geomorphology, 1999, 30(3): 245-258.
34 KROMER R A, HUTCHINSON D J, LATO M J, et al. Identifying rock slope failure precursors using LiDAR for transportation corridor hazard management[J]. Engineering Geology, 2015, 195: 93-103.
35 SALA Z, HUTCHINSON D J, HARRAP R. Simulation of fragmental rockfalls detected using terrestrial laser scans from rock slopes in south-central British Columbia, Canada[J]. Natural Hazards and Earth System Sciences, 2019, 19(11): 2 385-2 404.
36 ALBJÄR G, REHN J, STRÖMQUIST L. Notes on talus formation in different climates[J]. Geografiska Annaler: Series A, Physical Geography, 1979, 61(3/4): 179-185.
37 DUNBAR C O, RODGERS J. Principles of stratigraphy[M]. London: Cambridge University Press, 1957.
38 MILLS H H. Post-eruption erosion and deposition in the 1980 crater of Mount St Helens, Washington, determined from digital maps[J]. Earth Surface Processes and Landforms, 1992, 17(8): 739-754.
39 PODOBNIKAR T, SZÉKELY B. Towards the automated geomorphometric extraction of talus slopes in Martian landscapes[J]. Planetary and Space Science, 2015, 105: 148-158.
40 GĄDEK B, GRABIEC M, KĘDZIA S, et al. Reflection of climate changes in the structure and morphodynamics of talus slopes (the Tatra Mountains, Poland)[J]. Geomorphology, 2016, 263: 39-49.
41 DEPETRIS P J, PASQUINI A I, LECOMTE K L. Weathering and the riverine denudation of continents[M]. Dordrecht: Springer, 2014.
42 RIXHON G, DEMOULIN A. Evolution of slopes in a cold climate[M]// Shroder J F. Treatise on geomorphology. San Diego: Academic Press, 2013: 392-415.
43 WHITE S E. Alpine mass movement forms (noncatastrophic): classification, description, and significance[J]. Arctic and Alpine Research, 1981, 13(2): 127-137.
44 LEMPA M, KACZKA R, RĄCZKOWSKA Z. Morphological and morphometrical analyses reveal the avalanche influence over the talus cones in the Rybi Potok Valley, Tatra Mountains[J]. Studia Geomorphologica Carpatho-Balcanica, 2015, XLIX(1): 15-33.
45 KENNER R. Mass wasting processes affecting the surface of an alpine talus slope: annual sediment budgets 2009-2018 at Flüelapass, eastern Swiss Alps[J]. Land Degradation & Development, 2020, 31(4): 451-462.
46 MESSENZEHL K, MEYER H, OTTO J C, et al. Regional-scale controls on the spatial activity of rockfalls (Turtmann Valley, Swiss Alps)—a multivariate modeling approach[J]. Geomorphology, 2017, 287: 29-45.
47 PÉREZ F L. Talus fabric, clast morphology, and botanical indicators of slope processes on the Chaos Crags (California Cascades), USA[J]. Géographie Physique et Quaternaire, 1998, 52(1): 47-68.
48 WARD W H. The stability of natural slopes[J]. The Geographical Journal, 1945, 105(5/6): 170-191.
49 FRANCOU B, MANTÉ C. Analysis of the segmentation in the profile of alpine talus slopes[J]. Permafrost and Periglacial Processes, 1990, 1(1): 53-60.
50 van STEIJN H, BOELHOUWERS J, HARRIS S, et al. Recent research on the nature, origin and climatic relations of blocky and stratified slope deposits[J]. Progress in Physical Geography: Earth and Environment, 2002, 26(4): 551-575.
51 WEGNER K, HAAS F, HECKMANN T, et al. Assessing the effect of lithological setting, block characteristics and slope topography on the runout length of rockfalls in the Alps and on the island of La Réunion[J]. Natural Hazards and Earth System Sciences, 2021, 21(3): 1 159-1 177.
52 WANG I T, LEE C Y. Influence of slope shape and surface roughness on the moving paths of a single rockfall[J]. World Academy of Science, Engineering and Technology, 2010, 65: 1 021-1 027.
53 BALLANTYNE C K, HARRIS C. The periglaciation of great Britain[M]. Cambridge: Cambridge University Press, 1994.
54 OTTO J C, SASS O. Comparing geophysical methods for talus slope investigations in the Turtmann valley (Swiss Alps)[J]. Geomorphology, 2006, 76(3/4): 257-272.
55 LØNNE I, LAURITSEN T. The architecture of a modern push-moraine at svalbard as inferred from ground-penetrating radar measurements[J]. Arctic and Alpine Research, 1996, 28(4): 488-495.
56 BERTHLING I, ETZELMÜLLER B, Isaksen K, et al. Rock glaciers on Prins Karls Forland. II: GPR soundings and the development of internal structures[J]. Permafrost and Periglacial Processes, 2000, 11(4): 357-369.
57 SENDERAK K, KONDRACKA M, GĄDEK B. Talus slope evolution under the influence of glaciers with the example of slopes near the Hans Glacier, SW Spitsbergen, Norway[J]. Geomorphology, 2017, 285: 225-234.
58 HANVEY P M, LEWIS C A. Sedimentology and genesis of slope deposits at Sonskyn, Eastern Cape Drakensberg, South Africa[J]. Permafrost and Periglacial Processes, 1991, 2(1): 31-38.
59 PAPPALARDO M. Observations on stratified slope deposits, gesso valley, Italian maritime Alps[J]. Permafrost and Periglacial Processes, 1999, 10(1): 107-111.
60 BOELHOUWERS J, HOLNESS S, SUMNER P. The maritime Subantarctic: a distinct periglacial environment[J]. Geomorphology, 2003, 52(1/2): 39-55.
61 LIU Gengnian, CUI Zhijiu, GE Daokai, et al. Sedimentary and climatic significance of the stratified slope deposits in the early period of last glaciation at Kunlunshan Pass[J]. Acta Geographica Sinica, 1997, 52(4): 331-338.
刘耕年, 崔之久, 葛道凯, 等. 昆仑山垭口小南川末次冰期早期成层坡积的沉积特征和气候意义[J]. 地理学报, 1997, 52(4): 331-338.
62 SANDERS D. Sedimentary facies and progradational style of a Pleistocene talus-slope succession, Northern Calcareous Alps, Austria[J]. Sedimentary Geology, 2010, 228(3/4): 271-283.
63 COLTORTI M, DRAMIS F, PAMBIANCHI G. Stratified slope-waste deposits in the Esino River basin, Umbria-Marche Apennines, central Italy[J]. Polarforschung, 1983, 53(2): 59-66.
64 GOVERS G, POESEN J. Field experiments on the transport of rock fragments by animal trampling on scree slopes[J]. Geomorphology, 1998, 23(2/3/4): 193-203.
65 SCHUMM S A. Rates of surficial rock creep on hillslopes in western Colorado[J]. Science, 1967, 155(3 762): 560-562.
66 ABRAHAMS A D, PARSONS A J, COOKE R U, et al. Stone movement on hillslopes in the Mojave Desert, California: a 16-year record[J]. Earth Surface Processes and Landforms, 1984, 9(4): 365-370.
67 WILLIAMS M A J. Surface rock creep on sandstone slopes in the northern Territory of Australia[J]. Australian Geographer, 1974, 12(5): 419-424.
68 PÉREZ F L. Talus movement in the high equatorial Andes: a synthesis of ten years of data[J]. Permafrost and Periglacial Processes, 1993, 4(3): 199-215.
69 BONNEAU D A, HUTCHINSON D J. The use of terrestrial laser scanning for the characterization of a cliff-talus system in the Thompson River Valley, British Columbia, Canada[J]. Geomorphology, 2019, 327: 598-609.
70 COPONS R, VILAPLANA J M, LINARES R. Rockfall travel distance analysis by using empirical models (Solà d’Andorra la Vella, Central Pyrenees)[J]. Natural Hazards and Earth System Sciences, 2009, 9(6): 2 107-2 118.
71 HAAS F, HECKMANN T, WICHMANN V, et al. Runout analysis of a large rockfall in the Dolomites/Italian Alps using LIDAR derived particle sizes and shapes[J]. Earth Surface Processes and Landforms, 2012, 37(13): 1 444-1 455.
72 STRUNDEN J, EHLERS T A, BREHM D, et al. Spatial and temporal variations in rockfall determined from TLS measurements in a deglaciated valley, Switzerland[J]. Journal of Geophysical Research: Earth Surface, 2015, 120(7): 1 251-1 273.
73 WHITE S E. Debris Falls at the front of Arapaho rock glacier, Colorado front range, USA[J]. Geografiska Annaler: Series A, Physical Geography, 1971, 53(2): 86-91.
74 GARDNER J S. Accretion rates on some debris slopes in the Mt. Rae area, Canadian Rocky Mountains[J]. Earth Surface Processes and Landforms, 1983, 8(4): 347-355.
75 FAHEY B D, LEFEBURE T H. The freeze-thaw weathering regime at a section of the Niagara escarpment on the Bruce Peninsula, Southern Ontario, Canada[J]. Earth Surface Processes and Landforms, 1988, 13(4): 293-304.
76 ANDRÉ M F. Holocene rockwall retreat in svalbard: a triple-rate evolution[J]. Earth Surface Processes and Landforms, 1997, 22(5): 423-440.
77 SÖDERMAN G. Slope processes in cold environments of northern Finland[J]. Fennia-International Journal of Geography, 1980, 158(2): 83-152.
78 LUCKMAN B H, FISKE C J. Estimating long-term rockfall accretion rates by lichenometry[M]// Slaymaker H. Steepland geomorphology. London: Wiley, 1995: 233-255.
79 MCCARROLL D, SHAKESBY R A, MATTHEWS J A. Spatial and temporal patterns of late Holocene rockfall activity on a Norwegian talus slope: a lichenometric and simulation-modeling approach[J]. Arctic and Alpine Research, 1998, 30(1): 51-60.
80 MOYA J, COROMINAS J, ARCAS J P, et al. Tree-ring based assessment of rockfall frequency on talus slopes at Solà d’Andorra, Eastern Pyrenees[J]. Geomorphology, 2010, 118(3/4): 393-408.
81 COSSART E, FORT M. Sediment release and storage in early deglaciated areas: towards an application of the exhaustion model from the case of Massif des Écrins (French Alps) since the Little Ice Age[J]. Norsk Geografisk Tidsskrift-Norwegian Journal of Geography, 2008, 62(2): 115-131.
82 SCHROTT L, HUFSCHMIDT G, HANKAMMER M, et al. Spatial distribution of sediment storage types and quantification of valley fill deposits in an alpine basin, Reintal, Bavarian Alps, Germany[J]. Geomorphology, 2003, 55(1/2/3/4): 45-63.
83 SLAYMAKER H O, MAPHERSON H J. Mountain geomorphology[M]. Vancouver: Tantalus Press, 2004.
84 SOUCHEZ R. Rate of frost-shattering and slope development in dolomitic limestones, southwestern Ellesmere Island (Arctic Canada)[J]. Quaternaria, 1971, 14: 21-22.
85 SASS O, WOLLNY K. Investigations regarding Alpine talus slopes using Ground-Penetrating Radar (GPR) in the Bavarian Alps, Germany[J]. Earth Surface Processes and Landforms, 2001, 26(10): 1 071-1 086.
86 POSER A. Die Periglazial-Erscheinungen in der Umgebung der Gletscher des Zemmgrundes (Zillentaler Alpen)[J]. Gottinger Geographische Abhandlungen, 1954, 15: 125-180.
87 KOTARBA A, KASZOWSKI L, KRZEMIEŃ K. High-mountain denudational system of the Polish Tatra Mountains[J], Geographical Studies Special Issue, 1987, (3) :1-105.
88 MACAR P, PISSART A. Processus periglaciaires etudies sur le Terrain[M]. Liege: Universite Liege, 1972.
89 MATSUOKA N, SAKAI H. Rockfall activity from an alpine cliff during thawing periods[J]. Geomorphology, 1999, 28(3/4): 309-328.
90 REN Jing, LIU Yuping, DU Gu, et al. Applications of in situ cosmogenic nuclides in Earth sciences[J]. Rock and Mineral Analysis, 2012, 31(4): 576-581.
任静, 刘宇平, 杜谷, 等. 原地生成宇宙成因核素在地学研究中的应用[J]. 岩矿测试, 2012, 31(4): 576-581.
91 LAI Zhongping, YANG Anna, CONG Lu, et al. A review on the dating techniques for mountain hazards-induced sediments[J]. Earth Science Frontiers, 2021, 28(2): 1-18.
赖忠平, 杨安娜, 丛禄, 等. 山地灾害沉积物的测年综述[J]. 地学前缘, 2021, 28(2): 1-18.
[1] 黄来明, 邵明安, 贾小旭, 张甘霖. 土壤风化速率测定方法及其影响因素研究进展[J]. 地球科学进展, 2016, 31(10): 1021-1031.
[2] 续海金,马昌前. 地壳风化速率研究综述[J]. 地球科学进展, 2002, 17(5): 670-678.
[3] 李春雷,陈 骏,季峻峰. 青藏高原的隆起与海洋锶同位素组成的演化[J]. 地球科学进展, 1999, 14(6): 582-588.
[4] 马英军,刘丛强. 生态系统营养离子循环及水化学演化的锶同位素示踪[J]. 地球科学进展, 1999, 14(4): 377-383.
[5] 刘文彬. 陕甘宁盆地泥质岩氧化物的比值及其古气候意义[J]. 地球科学进展, 1993, 8(6): 57-62.
阅读次数
全文


摘要