地球科学进展 ›› 2008, Vol. 23 ›› Issue (9): 982 -989. doi: 10.11867/j.issn.1001-8166.2008.09.0982

生态学研究 上一篇    下一篇

热带人工林SAR散射组成及对遥感估测叶面积指数的影响
高帅 1,2,牛铮 1   
  1. 1.中国科学院遥感应用研究所遥感科学国家重点实验室,北京 100101;2.中国科学院研究生院,北京 100049
  • 收稿日期:2008-04-18 修回日期:2008-08-20 出版日期:2008-09-10
  • 通讯作者: 高帅 E-mail:gaoshuai@live.com
  • 基金资助:

    国家重点基础研究发展计划项目“基于多模式、多时空分辨率遥感信息融合的理论与方法”(编号:2007CB714406);中国科学院知识创新工程重要方向项目(编号:KZCX2-YW-313);遥感科学国家重点实验室科研资助基金项目(编号:KQ060006)资助.

The Composition of Tropical Plantation Forest Microwave Backscattering and Its Impact on Estimating Leaf Area Index

Gao Shuai 1,2,Niu Zheng 1   

  1. 1.State Key Laboratory of Remote Sensing Science, Jointly Sponsored by the Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, Beijing 100101,China;2.Graduate school of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2008-04-18 Revised:2008-08-20 Online:2008-09-10 Published:2008-09-10

基于RADARSAT SAR数据,利用MIMICS(Michigan Microwave Canopy Scattering)模型模拟森林组分(冠层、树干层、地表)雷达后向散射,模拟研究表明在稀疏的人工林地区,地表层与森林冠层的直接散射是影响森林总的后向散射中最重要的两个因素。在同样的地表条件与森林环境假设下,阔叶林的模拟结果与影像的一致性要优于针叶林,针叶林由于受到地形起伏的影响,难以利用模型模拟森林的散射情况。同时,研究发现,利用森林郁闭度可以定量的表示森林冠层直接散射与总散射的相关关系,因而在一定的条件下得到冠层直接散射。最后,对该方法进行了简单的验证。

The study simulated microwave backscattering from all components of forests using MIMICS(Michigan Microwave Canopy Scattering)Model and RADARSAT SAR data, including crown ,trunk and soil layer. The study concluded that, in sparse plantation forest area, the backscattering from direct crown and direct soil are both the most significant factors, and in the same premise, the consistence between the simulated data and the measured data of broadleaf forest was much better than that of conifer forest. For conifer forest, it was largely influenced by rugged terrain and it was difficult to simulate its microwave backscattering. Meanwhile, It was found that by using the forest closure parameter, the relationship between total and direct crown layer forest microwave backscattering could be determined and direct crown layer microwave backscattering could be quantitatively obtained. In the end, the paper validated the method.

中图分类号: 

[1] Jing M,Chen P M R,Stith T,et al. Leaf area index of boreal forests:Theory,techniques,and measurements[J]. Journal of Geographical Research,1997,10229:429-443.

[2] Fang Xiuqin,Zhang Wanchang. The application of remotely sensed data to the estimation of the leaf area index[J]. Remote Sensing for Land & Sources,2003,573:58-62.[方秀琴,张万昌. 叶面积指数(LAI)的遥感定量方法综述[J]. 国土资源遥感,2003,573:58-62.]

[3] Jing M,Chen J C. Retrieving leaf area index of boreal conifer forests using landsat TM images[J]. Remote Sensing of Environment,1997,55:153-162.

[4] Chen J M,Pavlic G,Brown L,et al. Validation of Canada-wide leaf area index maps using ground measurements and high and moderate resolution satellite imagery[J]. Remote Sensing of Environment,2002,80:165-184.

[5] Wu Weibin,Hong Tiansheng,Wang Xiping,et al. Advance in ground-based LAI measurement methods[J]. Journal of Huazhong Agricultural University,2007,262:270-275.[吴伟斌,洪添胜,王锡平,. 叶面积指数地面测量方法的研究进展[J]. 华中农业大学学报,2007,262:270-275.]

[6] Paloscia S. An empirical approach to estimating leaf area index from multifrequency SAR data[J]. International Journal of Remote Sensing,1998,192:359-364.

[7] Inouea TK Y,Maenob H,Uratsukab S,et al. Season-long daily measurements of multifrequencyKa, Ku, X, C, and L and full-polarization backscatter signatures over paddy rice field and their relationship with biological variables[J]. Remote Sensing of Environment,2002,81:194-204.

[8] Laura Dente,Giuseppe Satalino,Mattia G,et al. Assimilation of leaf area index derived from ASAR and MERIS data into CERES-Wheat model to map wheat yield[J]. Remote Sensing of Environment,2008,112:1 395-1 407.

[9] Ulaby F T,Sarabandi Kamal,Mcdonlad K,et al. Craig Michigan microwave canopy scattering model[J]. International Journal of Remote Sensing,1990,17:1 223-1 253.

[10] Mostafa A,Karam R H L. A microwave scattering model for layered vegetation[J]. IEEE Transactions on Geoscience and Remote Sensing,1992,304:767-784.

[11] Sun G,Simonett D S,Strahler A H. A radar backscatter model for discontinuous coniferous forests[J]. IEEE Transactions on Geoscience and Remote Sensing,1991,294:639-650.

[12] Qi Jiaguo,Wang Cuizhen. A microwave/optical synergistic model and its applications in tropical forest canopies[J]. Chinese Journal of Radio Science,2004,194:409-417.[齐家国,王翠珍. 微波/光学植被散射模型及其在热带森林中的应用[J]. 电波科学学报,2004,194:409-417.]

[13] Ren Hai,Peng Shaolin. Comparison of methods of estimation leaf area index in Dinghushan forests[J]. Acta Ecologica Sinica,2007,173:220-223.[任海,彭少麟. 鼎湖山森林群落的几种叶面积指数测定方法的比较[J]. 生态学报,2007,173:220-223.]

[14] Wang C. Quantitative Estimation of Forest Biophysical Attributes with Synergistic Use of Optical and Micro Remotely Sensed Data in Tropical Forests[M]. Michigan: Michigan State University,2004.

[15] Wang Chenli,Niu Zheng,Guo Zhixing,et al. A study on forest biophysical parameter impact on radar signature and extraction of forest stock volume by means of RADARSAT-SAR[J]. Remote Sensing for Land & Sources,2005,642:24-28.[王臣立,牛铮,郭治兴,.Radarsat SAR的森林生物物理参数信号响应及其蓄积量估测[J]. 国土资源遥感,2005,642:24-28.]

[16] Wang Chenli,Guo Zhixing,Niu Zheng,et al. Study on forest biophysics parameter impact on RADAR signature[J]. Ecology and Environment,2006,151:115-119.[王臣立,郭治兴,牛铮,.热带人工林生物物理参数及生物量对RADARSAT SAR信号响应研究[J]. 生态环境,2006,151:115-119.]

[17] Ulaby T,Allen C T,Eger G. Relating the microwave backscattering coefficient to leaf area index[J]. Remote Sensing of Environment,1984,14:113-133.

[18] Liu Wei. Study on Soil Moisture Inversion and Application with Polarization Radar in Vegetated Area[D]. Beijing:Institute of Remote Sensing Applications,Chinese Academy of Sciences.2005.[刘伟.植被覆盖地表极化雷达土壤水分反演与应用研究[D].北京:中国科学院遥感所,2005.]

[1] 黄磊, 李震, 周建民, 田帮森. SAR监测冰川变化研究进展[J]. 地球科学进展, 2014, 29(9): 985-994.
[2] 曾也鲁,李静,柳钦火. 全球LAI地面验证方法及验证数据综述[J]. 地球科学进展, 2012, 27(2): 165-174.
[3] 柴琳娜,屈永华,张立新,梁顺林,王锦地. 基于自回归神经网络的时间序列叶面积指数估算[J]. 地球科学进展, 2009, 24(7): 756-768.
[4] 凌飞龙,李增元,陈尔学,何祺胜. 青海云杉林叶面积指数半球摄影测量方法研究[J]. 地球科学进展, 2009, 24(7): 803-809.
[5] 徐春亮,陈彦,贾明权,刘增灿,卢海平,童玲. 典型地物后向散射特性的测量与分析[J]. 地球科学进展, 2009, 24(7): 810-816.
[6] 高贵,张军,周蝶飞,蒋咏梅,李德仁. 合成孔径雷达对地观测应用中目标感兴趣区域的自动获取[J]. 地球科学进展, 2008, 23(1): 39-46.
[7] 鄂栋臣,张胜凯,周春霞. 中国极地大地测量学十年回顾:1996—2006年[J]. 地球科学进展, 2007, 22(8): 784-790.
[8] 李岩,彭少麟,廖其芳,廖圣东. RADARSATSNBSAR数据在大面积水稻估产中的应用研究[J]. 地球科学进展, 2003, 18(1): 109-115.
[9] 董庆,郭华东,王长林. 多波段多极化合成孔径雷达的海洋学应用[J]. 地球科学进展, 2001, 16(1): 93-97.
[10] 刘国祥,丁晓利,陈永奇,李志林,郑大伟. 极具潜力的空间对地观测新技术——合成孔径雷达干涉[J]. 地球科学进展, 2000, 15(6): 734-740.
[11] 王静瑶,吴 云. 现代地壳运动与地震监测预报研究的现状和发展趋势[J]. 地球科学进展, 2000, 15(1): 84-89.
阅读次数
全文


摘要