Changes in Thermal Comfort Conditions Throughout the Belt-and-Road Region in Response to Nationally Committed Emission Reductions Under the Paris Agreement

  • Mingrui JIA ,
  • Jintao ZHANG ,
  • Fang WANG
Expand
  • 1.Key Laboratory of Land Surface Pattern and Simulation,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,China
    2.College of Resources and Environment,University of Chinese Academy of Sciences,Beijing 100049,China
    3.Department of Atmospheric and Oceanic Science,Fudan University,Shanghai 200438,China
JIA Mingrui (1997-), female, Nanyang City, Henan Province, Master student. Research area include climate change. E-mail: jiamr.19s@igsnrr.ac.cn
WANG Fang (1979-), female, Yangquan City, Shanxi Province, Associate professor. Research area include climate change. E-mail: wangf@igsnrr.ac.cn

Received date: 2021-10-21

  Revised date: 2022-01-07

  Online published: 2022-05-31

Supported by

the National Natural Science Foundation of China “Global and Chinese climate changes under INDC emission scenarios”(41771050);The National Key Research and Development Program of China “Research on ‘Beautiful China’ ecological construction index system, assessment method and zoning management”(2019YFC0507805)

Abstract

Based on the global climate models participating in the sixth phase of the Coupled Model Intercomparison Project phase 6 (CMIP6), we have adopted the Net Effective Temperature (NET), a comprehensive indicator of the integrative effect of temperature, humidity, and wind speed, to analyze the changes in the regional climate comfort pattern throughout the Belt-and-Road region in response to nationally committed emission reductions under the Paris Agreement. Our results indicate that, under future climate scenarios, the number of warm-uncomfortable days increased and the number of cold-uncomfortable days decreased in the region, and there was a clear spatial mismatch between the two signals. The changes in comfort days were characterized by strong spatial heterogeneity. The number of cold-uncomfortable days at mid to high altitudes decreases remarkably, which is the same as in Central and Eastern Europe, Siberia, and the Qinghai-Tibet Plateau, while the number of comfortable days increased by a moderate amount. The number of warm-uncomfortable days at low latitudes increased significantly, such as in Southeast Asia and South Asia, while the number of comfortable days decreased substantially. Further analysis combined with the population distribution shows that the population which will be exposed to warm uncomfortable weather increases sharply, while the population which will be exposed to comfortable and cold uncomfortable weather decreases. The increase in the former significantly exceeds the decrease in the latter two; hence, the overall climatic comfort throughout the Belt-and-Road region deteriorates. This adverse effect can be mitigated if the emission reduction effort is further strengthened beyond the current climate policy.

Cite this article

Mingrui JIA , Jintao ZHANG , Fang WANG . Changes in Thermal Comfort Conditions Throughout the Belt-and-Road Region in Response to Nationally Committed Emission Reductions Under the Paris Agreement[J]. Advances in Earth Science, 2022 , 37(5) : 505 -518 . DOI: 10.11867/j.issn.1001-8166.2022.024

References

1 IPCC. Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the IPCC[M]. Cambridge:Cambridge University Press,2021.
2 Nations United. Adoption of the Paris Agreement: FCCC/CP/2015/L.9/Rev.1[R]. Paris: United Nations Framework Convention on Climate Change, 2015.
3 Nations United. Synthesis report on the aggregate effect of the intended nationally determined contributions: FCCC/CP/2015/7[R]. Paris: United Nations Framework Convention on Climate Change, 2015.
4 CHEN Nan, LIN Xuanchen. Estimation of uncertainty based on emission reduction targets in NDC/INDCs[J]. Climate Change Research, 2021, 17(2): 223-235.
4 陈楠, 林炫辰. 基于各国NDC/INDC目标的全球减排不确定性研究[J]. 气候变化研究进展, 2021, 17(2): 223-235.
5 HAO Zhixin, LI Xiaxiang, ZHENG Jingyun, et al. Difference analysis of intended nationally determined contributions pledge and 2 ℃ target[J]. Chinese Science Bulletin, 2020, 65(10): 865-874.
5 郝志新, 李侠祥, 郑景云, 等. 国家自主减排贡献与实现2 ℃温控目标的差异性分析[J]. 科学通报, 2020, 65(10): 865-874.
6 LIU P R, RAFTERY A E. Country-based rate of emissions reductions should increase by 80% beyond nationally determined contributions to meet the 2?℃ target[J]. Communications Earth & Environment, 2021, 2: 29.
7 GüTSCHOW J, JEFFERY M L, SCHAEFFER M, et al. Extending near-term emissions scenarios to assess warming implications of Paris agreement NDCs[J]. Earth’s Future, 2018, 6(9): 1 242-1 259.
8 WANG F, TOKARSKA K B, ZHANG J T, et al. Climate warming in response to emission reductions consistent with the Paris Agreement[J]. Advances in Meteorology, 2018. DOI: 10.1155/2018/2487962 .
9 RAFTERY A E, ZIMMER A, FRIERSON D M W, et al. Less than 2 ℃ warming by 2100 unlikely[J]. Nature Climate Change, 2017, 7 (9): 637-641.
10 ROGELJ J, den ELZEN M, H?HNE N, et al. Paris Agreement climate proposals need a boost to keep warming well below 2 ℃[J]. Nature, 2016, 534(7 609): 631-639.
11 WANG Fang, ZHANG Jintao. Response of precipitation change in Central Asia to emission scenarios consistent with the Paris Agreement[J]. Acta Geographica Sinica, 2020, 75(1): 25-40.
11 王芳, 张晋韬. 《巴黎协定》排放情景下中亚地区降水变化响应[J]. 地理学报, 2020, 75(1): 25-40.
12 SUN Meishu, LI Shan. Empirical indices evaluating climate comfortableness: review and prospect[J]. Tourism Tribune, 2015, 30(12): 19-34.
12 孙美淑, 李山. 气候舒适度评价的经验模型: 回顾与展望[J]. 旅游学刊, 2015, 30(12): 19-34.
13 YAN Yechao, YUE Shuping, LIU Xuehua, et al. Advances in assessment of bioclimatic comfort conditions at home and abroad[J]. Advances in Earth Science, 2013, 28(10): 1 119-1 125.
13 闫业超, 岳书平, 刘学华, 等. 国内外气候舒适度评价研究进展[J]. 地球科学进展, 2013, 28(10): 1 119-1 125.
14 KONG Qinqin, GE Quansheng, XI Jianchao, et al. Thermal comfort and its trend in key tourism cities of China[J]. Geographical Research, 2015, 34(12): 2 238-2 246.
14 孔钦钦, 葛全胜, 席建超, 等. 中国重点旅游城市气候舒适度及其变化趋势[J]. 地理研究, 2015, 34(12): 2 238-2 246.
15 CHEN L, WEN Y Y, ZHANG L, et al. Studies of thermal comfort and space use in an urban park square in cool and cold seasons in Shanghai[J]. Building and Environment, 2015, 94: 644-653.
16 KONG Qinqin, GE Quansheng, ZHENG Jingyun. Spatio-temporal changes in extreme UTCI indices in China[J]. Geographical Research, 2017, 36(6): 1 171-1 182.
16 孔钦钦, 葛全胜, 郑景云. 中国极端通用热气候指数的时空变化[J]. 地理研究, 2017, 36(6): 1 171-1 182.
17 LI Donghuan, ZOU Liwei, ZHOU Tianjun. Changes of extreme indices over China in response to 1.5 ℃ global warming projected by a regional climate model[J]. Advances in Earth Science, 2017, 32(4): 446-457.
17 李东欢, 邹立维, 周天军. 全球1.5 ℃温升背景下中国极端事件变化的区域模式预估[J]. 地球科学进展, 2017, 32(4): 446-457.
18 HU Ting, SUN Ying, ZHANG Xuebin. Temperature and precipitation projection at 1.5 and 2℃ increase in global mean temperature[J]. Chinese Science Bulletin, 2017, 62(26): 3 098-3 111.
18 胡婷, 孙颖, 张学斌. 全球1.5和2℃温升时的气温和降水变化预估[J]. 科学通报, 2017, 62(26): 3 098-3 111.
19 CHEN Xiaochen, XU Ying, YAO Yao. Changes in climate extremes over China in a 2 ℃, 3 ℃, and 4 ℃ warmer world[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(6): 1 123-1 135.
19 陈晓晨, 徐影, 姚遥. 不同升温阈值下中国地区极端气候事件变化预估[J]. 大气科学, 2015, 39(6): 1 123-1 135.
20 GAO X J, WU J, SHI Y, et al. Future changes in thermal comfort conditions over China based on multi-RegCM4 simulations[J]. Atmospheric and Oceanic Science Letters, 2018, 11(4): 291-299.
21 JIN Anqi, ZHANG Ang, ZHAO Xinyi. Estimation of climate comfort in Eastern China in the context of climate change[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55(5): 887-898.
21 金安琪, 张昂, 赵昕奕. 气候变化情景下中国东部地区未来气候舒适度变化预测[J]. 北京大学学报(自然科学版), 2019, 55(5): 887-898.
22 ZHOU Jianqin, HUANG Wei, ZHU Yong, et al. Climate comfort distribution, change and projection in Yunnan Province[J]. Climate Change Research, 2018, 14(2): 144-154.
22 周建琴, 黄玮, 朱勇, 等. 云南气候舒适度分布和变化特征及未来变化趋势预估[J]. 气候变化研究进展, 2018, 14(2): 144-154.
23 WU Jia, GAO Xuejie, HAN Zhenyu, et al. Analysis of the change of comfort index over Yunnan Province based on effective temperature[J]. Advances in Earth Science, 2017, 32(2): 174-186.
23 吴佳, 高学杰, 韩振宇, 等. 基于有效温度指数的云南舒适度变化分析[J]. 地球科学进展, 2017, 32(2): 174-186.
24 GE Yong, LI Qiangzi, LING Feng, et al. Risk assessment and response strategies for extreme climate events in key nodes of the Belt and Road[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(2): 170-178.
24 葛咏, 李强子, 凌峰, 等. “一带一路”关键节点区域极端气候风险评价及应对策略[J]. 中国科学院院刊, 2021, 36(2): 170-178.
25 WANG Huijun, TANG Guoli, CHEN Haishan, et al. The Belt and Road region climate change: facts, impacts and possible risks[J]. Transactions of Atmospheric Sciences, 2020, 43(1): 1-9.
25 王会军, 唐国利, 陈海山, 等. “一带一路”区域气候变化事实、影响及可能风险[J]. 大气科学学报, 2020, 43(1): 1-9.
26 WU Shaohong, LIU Lulu, LIU Yanhua, et al. Geographical patterns and environmental change risks in terrestrial areas of the Belt and Road[J]. Acta Geographica Sinica, 2018, 73(7): 1 214-1 225.
26 吴绍洪, 刘路路, 刘燕华, 等. “一带一路”陆域地理格局与环境变化风险[J]. 地理学报, 2018, 73(7): 1 214-1 225.
27 WANG Fang, ZHANG Jintao, GE Quansheng, et al. Projected changes in risk of heat waves throughout Belt and Road region in the 21st century[J]. Chinese Science Bulletin, 2021, 66(23): 3 045-3 058.
27 王芳, 张晋韬, 葛全胜, 等. “一带一路”沿线区域21世纪极端高温热浪风险预估[J]. 科学通报, 2021, 66(23): 3 045-3 058.
28 ZHUANG Yuanhuang, ZHANG Jingyong, LIANG Jian. Projected temperature and precipitation changes over major land regions of the Belt and Road initiative under the 1.5 ℃ and 2 ℃ climate targets by the CMIP6 multi-model ensemble[J]. Climatic and Environmental Research, 2021, 26(4): 374-390.
28 庄园煌, 张井勇, 梁健. 1.5 ℃与2 ℃温升目标下“一带一路”主要陆域气温和降水变化的CMIP6多模式预估[J]. 气候与环境研究, 2021, 26(4): 374-390.
29 ZHOU Botao, XU Ying, HAN Zhenyu, et al. CMIP5 projected changes in mean and extreme climate in the Belt and Road region[J]. Transactions of Atmospheric Sciences, 2020, 43(1): 255-264.
29 周波涛, 徐影, 韩振宇, 等. “一带一路”区域未来气候变化预估[J]. 大气科学学报, 2020, 43(1): 255-264.
30 ZHAO Y M, QIAN C, ZHANG W J, et al. Extreme temperature indices in Eurasia in a CMIP6 multi-model ensemble: evaluation and projection[J]. International Journal of Climatology, 2021, 41(11): 5 368-5 385.
31 DONG T Y, DONG W J, GUO Y, et al. Future temperature changes over the critical Belt and Road region based on CMIP5 models[J]. Advances in Climate Change Research, 2018, 9(1): 57-65.
32 HAN T T, CHEN H P, HAO X, et al. Projected changes in temperature and precipitation extremes over the Silk Road Economic Belt regions by the Coupled Model Intercomparison Project phase 5 multi-model ensembles[J]. International Journal of Climatology, 2018, 38(11): 4 077-4 091.
33 ZHOU Tianjun, ZOU Liwei, CHEN Xiaolong. Commentary on the Coupled Model Intercomparison Project phase 6(CMIP6)[J]. Climate Change Research, 2019, 15(5): 445-456.
33 周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 2019, 15(5): 445-456.
34 EYRING V, BONY S, MEEHL G A, et al. Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization[J]. Geoscientific Model Development, 2016, 9(5): 1 937-1 958.
35 LANGE S. Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0)[J]. Geoscientific Model Development, 2019, 12(7): 3 055-3 070.
36 ZHANG Lixia, CHEN Xiaolong, XIN Xiaoge. Short commentary on CMIP6 scenario model intercomparison project (ScenarioMIP)[J]. Climate Change Research, 2019, 15(5): 519-525.
36 张丽霞, 陈晓龙, 辛晓歌. CMIP6情景模式比较计划(ScenarioMIP)概况与评述[J]. 气候变化研究进展, 2019, 15(5): 519-525.
37 O’NEILL B C, TEBALDI C, van VUUREN D P, et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6[J]. Geoscientific Model Development, 2016, 9(9): 3 461-3 482.
38 CUCCHI M, WEEDON G P, AMICI A, et al. WFDE5: bias-adjusted ERA5 reanalysis data for impact studies[J]. Earth System Science Data, 2020, 12(3): 2 097-2 120.
39 ZHANG J T, WANG F, TOKARSKA K B, et al. Multiple possibilities for future precipitation changes in Asia under the Paris Agreement[J]. International Journal of Climatology, 2020, 40(11): 4 888-4 902.
40 United Nations Environment Programme. Emissions gap report 2019[M]. Nairobi, Kenya: United Nations Environment Programme, 2019.
41 VAUTARD R, GOBIET A, SOBOLOWSKI S, et al. The European climate under a 2 ℃ global warming[J]. Environmental Research Letters, 2014, 9(3): 034006.
42 KING A D, KAROLY D J, HENLEY B J. Australian climate extremes at 1.5?℃ and 2?℃ of global warming[J]. Nature Climate Change, 2017, 7(6): 412-416.
43 HOUGHTEN F C, YAGLOU C P. Determining lines of equal comfort[J]. Transactions of the American Society of Heating and Ventilating Engineers, 1923, 29: 165-176.
44 YU Dandan, LI Shan. Scale of human thermal sensation using seasonal anchor method: a Chinese case study[J]. Journal of Natural Resources, 2019, 34(8): 1 633-1 653.
44 蔚丹丹, 李山. 气候舒适度的体感分级:季节锚点法与中国案例[J]. 自然资源学报, 2019, 34(8): 1 633-1 653.
45 JING C, TAO H, JIANG T, et al. Population, urbanization and economic scenarios over the Belt and Road region under the shared socioeconomic pathways[J]. Journal of Geographical Sciences, 2020, 30(1): 68-84.
46 JIANG Tong, WANG Yanjun, SU Buda, et al. Perspectives of human activities in global climate change: evolution of socio-economic scenarios[J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2020, 12(1): 68-80, I0020, I0021.
46 姜彤, 王艳君, 苏布达, 等. 全球气候变化中的人类活动视角: 社会经济情景的演变[J]. 南京信息工程大学学报(自然科学版), 2020, 12(1): 68-80, I0020, I0021.
47 SAEED F, SCHLEUSSNER C F, ASHFAQ M. Deadly heat stress to become commonplace across south Asia already at 1.5 ℃ of global warming[J]. Geophysical Research Letters, 2021, 48(7): e2020GL091191.
Outlines

/