Received date: 2020-01-16
Revised date: 2020-02-25
Online published: 2020-09-15
Supported by
the National Natural Science Foundation of China “Weathering rate of the dry denudated mountains surrounding the Tarim Basin”(41930641);“Formation of the meagadune system in China’s Badain Jaran Sand Sea”(41871008)
Martian exploration is the focus and hot topic of deep space exploration, and China implemented the first Martian exploration Program in 2020. Aeolian process is the most extensive and active landform process on the surface of Mars, and has been an important part of Martian research. Sustainable development of Martian aeolian geomorphology research requires the support of theoretical system and research methodology, and research methodology is a key issue when field observations are impossible. We analyzed the research methods of Martian aeolian geomorphology from three aspects: methodology, approach, and application of modern technology. Methodology must focus on the dialectical unity of induction and deduction, reductionism and holism. Research approach includes exploration and numerical simulation, and Mars-like aeolian geomorphology study on Earth is also a common approach. Taking full advantage of remote sensing observations and detection technologies is an important basis for the development of Martian aeolian research. Simulation experiments have been an important part of aeolian geomorphology research. Since the 1980s, the United States, Europe, and Japan have successively built Martian wind tunnels to study various aircrafts in Martian atmosphere. In the absence of field observation, wind tunnel experiment and numerical simulation play an important role in studying the evolution and formation process of aeolian landform and the Martian environment.
Key words: Martian geomorphology; Remote sensing; Numerical simulation
Zhibao Dong , Lü Ping , Chao Li . Research Methodology of Martian Aeolian Geomorphology[J]. Advances in Earth Science, 2020 , 35(8) : 771 -788 . DOI: 10.11867/j.issn.1001-8166.2020.063
1 | Dong Zhibao,Lü Ping. Aeolian geomorphology in the era of deep space exploration [J]. Advances in Earth Science, 2019, 34(10):1 001-1 014. |
1 | 董治宝, 吕萍. 深空探测时代的风沙地貌学[J]. 地球科学进展, 2019, 34(10): 1 001-1 014. |
2 | Bagnold R A. The Physics of Blown Sand and Desert Dunes[M]. New York: Springer Netherlands, 1941. |
3 | Zheng X J, Xie L, Zhou Y H. Exploration of probability distribution of velocities of saltating sand particles based on the stochastic particle-bed collisions[J]. Physics Letters A, 2005, 341(1): 107-118. |
4 | Jiujiang Z, Longxi Q, Zhenbang K. Velocity distribution of particle phase in saltating layer of wind-blown sand two-phase flows[J]. Acta Mechanica Sinica, 2001, 33: 37-45. |
5 | Jiang H, Huang N, Zhu Y. Analysis of wind-blown sand movement over transverse dunes[J]. Scientific Reports, 2014, 4: 1-11. |
6 | Wang P, Zhang J, Huang N. A theoretical model for aeolian polydisperse-sand ripples[J]. Geomorphology, 2019, 335: 28-36. |
7 | Jiang H, Dun H, Tong D, et al. Sand transportation and reverse patterns over leeward face of sand dune[J]. Geomorphology, 2017, 283: 41-47. |
8 | Lancaster N. Geomorphology of Desert Dunes[M]. New York: Routledge, 1995. |
9 | Ewing R C, Hayes A G, Lucas A. Sand dune patterns on Titan controlled by long-term climate cycles[J]. Nature Geoscience, 2014, 8(1): 15-19. |
10 | Zimbelman J R, Tsoar H. Learning about planets through studying wind-related processes on Earth[J]. Journal of Geophysical Research: Planets, 2018, 123(5): 1 003-1 006. |
11 | Ouyang Ziyuan, Zou Yongliao. Introduction to Mars Science [M]. Shanghai: Shanghai Science and Technology Education Press, 2015. |
11 | 欧阳自远, 邹永廖. 火星科学概论[M]. 上海: 上海科技教育出版社, 2015. |
12 | Capen C F, Martin L J. Survey of martial yellow storms[J]. Bulletin of the American Astronomical Society, 1972, 4: 374. |
13 | Mclaughlin B D. Volcanism and aeolian deposition on Mars[J]. Geological Society of America Bulletin, 1954, 65(7): 715. |
14 | Ryan J A. Notes on the Martian yellow clouds[J]. Journal of Geophysical Research, 1964, 69(18): 3 759-3 770. |
15 | Sagan C, Pollack J B. Windblown dust on Mars[J]. Nature, 1969, 223(5 208): 791-794. |
16 | Cutts J A, Soderblom L A, Sharp R P, et al. The surface of Mars 3. Light and dark markings[J]. Journal of Geophysical Research, 1971, 76(2): 343-356. |
17 | Sagan C, Veverka J, Fox P, et al. Variable features on Mars: Preliminary mariner 9 television results[J]. Icarus, 1972, 17(2): 346-372. |
18 | Cutts J A. Wind erosion in the Martian polar regions[J]. Journal of Geophysical Research, 1973, 78(20): 4 211-4 221. |
19 | Cutts J A, Smith R S U. Eolian deposits and dunes on Mars[J]. Journal of Geophysical Research, 1973, 78(20): 4 139-4 154. |
20 | Soderblom L A, Kreidler T J, Masursky H. Latitudinal distribution of a debris mantle on the Martian surface[J]. Journal of Geophysical Research, 1973, 78(20): 4 117-4 122. |
21 | Greeley R, Iversen J D. Wind as a Geological Process: On Earth, Mars, Venus and Titan[M]. New York: Cambridge University Press, 1985. |
22 | Hayes A G. Dunes across the Solar System[J]. Science, 2018, 360(6 392): 960-961. |
23 | Bristow C S, Bailey S D, Lancaster N. The sedimentary structure of linear sand dunes[J]. Nature, 2000, 406(6 791): 56-59. |
24 | Connerney J E P, Acu?a M H, Ness N F, et al. Tectonic implications of Mars crustal magnetism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(42): 14 970-14 975. |
25 | Zuber M T, Solomon S C, Phillips R J, et al. Internal structure and early thermal evolution of Mars from Mars global surveyor topography and gravity[J]. Science, 2000, 287(5 459): 1 788-1 793. |
26 | Neumann G A. Crustal structure of Mars from gravity and topography[J]. Journal of Geophysical Research, 2004, 109(E8): 11 113. |
27 | Zhang Yongsheng, Lang Weidong. Present situation and development of subsonic low density wind tunnel [J]. Spacecraft Environmental Engineering, 2013, 30(6): 675-680. |
27 | 张永升, 郎卫东. 亚声速低密度风洞的现状和发展[J]. 航天器环境工程, 2013, 30(6): 675-680. |
28 | Anyoji M, Nose K, Ida S, et al. Development of a low-density wind tunnel for simulating martian atmospheric flight[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2011, 9: 21-27. |
29 | Merrison J P, Bechtold H, Gunnlaugsson H, et al. An environmental simulation wind tunnel for studying Aeolian transport on mars[J]. Planetary and Space Science, 2008, 56(3/4): 426-437. |
30 | Zhan Peiguo. Review of mars wind tunnel and aeolian process experiments[J]. Environmental Science & Technology, 2014, 37(120): 206-209. |
30 | 战培国. 国外火星风洞及火星环境风工程研究[J]. 环境科学与技术, 2014, 37(120): 206-209. |
31 | Merrison J, Aye K, Holstein-Rathlou C, et al. Advances in a European Planetary Simulation Wind Tunnel Facility[C]//European Planetary Science Congress, 2012. |
32 | Chamberlin R. The Altitude Wind Tunnel (AWT) — A Unique Facility for Propulsion System and Adverse Weather Testing[C]//23rd Aerospace Sciences Meeting, 1985: 12. |
33 | Gierasch P, Goody R. An approximate calculation of radiative heating and radiative equilibrium in the Martian atmosphere[J]. Planetary and Space Science, 1967, 15(10): 1 465-1 477. |
34 | Leovy C, Mintz Y. Numerical simulation of the atmospheric circulation and climate of Mars[J]. Journal of the Atmospheric Sciences, 1969, 26(6): 1 167-1 190. |
35 | Rafkin S C R, Haberle R M, Michaels T I. The Mars regional atmospheric modeling system: Model description and selected simulations[J]. Icarus, 2001, 151(2): 228-256. |
36 | Yang Ruiyan, Yan Feifei, Huang Dinghua, et al. Evolvement of Mars atmospheric circulation mode[J]. Geological Science and Technology Information, 27(1): 31-34. |
36 | 杨瑞琰, 闫霏霏, 黄定华, 等. 火星大气环流模型研究进展[J]. 地质科技情报, 2008, 27(1): 31-34. |
37 | Almeida M P, Parteli E J R, Andrade J S, et al. Giant saltation on Mars[J]. Proceedings of the National Academy of Sciences, 2008, 105(17): 6 222. |
38 | Fu Lintao. Numerical Studies on the Evolution of Wind-blown Sand on Mars[D]. Lanzhou: Lanzhou University, 2015. |
38 | 傅林涛. 火星风沙流发展演化的数值研究[D]. 兰州:兰州大学, 2015. |
39 | Landry W, Werner B T. Computer simulations of self-organized wind ripple patterns [J]. Physica D: Nonlinear Phenomena, 1994, 77(1/3): 238-260. |
40 | Pelletier J D. Controls on the height and spacing of eolian ripples and transverse dunes: A numerical modeling investigation[J]. Geomorphology, 2009, 105(3): 322-333. |
41 | Werner B. Eolian dunes: Computer simulations and attractor interpretation[J]. Geology, 1995, 23(23): 1 107. |
42 | Jackson P S, Hunt J C R. Turbulent wind flow over a low hill[J]. Quarterly Journal of the Royal Meteorological Society, 1975, 101(430): 929-955. |
43 | Parteli E J R, Durán O, Bourke M C, et al. Origins of barchan dune asymmetry: Insights from numerical simulations[J]. Aeolian Research, 2014, 12: 121-133. |
44 | Gomez F. Mars analogues[M]// Gargaud W, Irvine W M, Amils R, et al. Encyclopedia of Astrobiology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. |
45 | Bamsey M, Berinstain A, Auclair S, et al. Four-month Moon and Mars crew water utilization study conducted at the Flashline Mars Arctic Research Station, Devon Island, Nunavut[J]. Advances in Space Research, 2009, 43(8): 1 256-1 274. |
46 | Howard A D, Moore J, Rice J W. Field Trip and Workshop on the Martian Highlands and Mojave Desert Analogs: Las Vegas, Nevada, and Barstow, California, October 20-27, 2001[R]. Houston: Lunar and Planetary Institute, 2001. |
47 | Calkin P E, Rutford R H. The sand dunes of victoria valley, Antarctica[J]. Geographical Review, 1974, 64(2): 189. |
48 | Bourke M C, Ewing R C, Finnegan D, et al. Sand dune movement in the Victoria Valley, Antarctica[J]. Geomorphology, 2009, 109(3): 148-160. |
49 | Xiao L, Wang J, Dang Y, et al. A new terrestrial analogue site for Mars research: The Qaidam Basin, Tibetan Plateau (NW China)[J]. Earth-Science Reviews, 2017, 164: 84-101. |
50 | Dong Zhibao. Tibetan Plateau Altas of Aeolian Geomorphology [M]. Xi'an: Xi'an Map Publishing House, 2017. |
50 | 董治宝. 青藏高原风沙地貌图集[M]. 西安: 西安地图出版社, 2017. |
/
〈 |
|
〉 |