Research Progress of the Chemosynthetic Symbioses in the Deep-Sea Hydrothermal Vent
Received date: 2013-03-04
Revised date: 2013-06-09
Online published: 2013-07-10
The discovery of the chemosynthetic symbioses between marine invertebrates and bacteria revolutionized our understanding of the energy sources that fuel primary productivity in the deep sea. Chemosynthetic host were classified within four major group including Ciliophora,Mollusca,Annelida and Arthropoda; Symbiotic invertebrates with anatomical adaptations of chemosynthetic associations are usually characterized by rudimentary or absent digestive system. Effective behavioural and physiological strategies are also used by animals to supply their symbionts with both reductants and oxidants. All the symbionts are Gram negative bacteria, and clustered in two different branches related to symbiont type in the phylogenetic tree based on the 16S rRNA gene sequences, distinct differences in morphology were also observed between the two groups. The transmission and evolution strategy utilized by symbionts have been inferred from phylogenetic evidence. Interaction between the symbiotic system and environment will finally influence the evolution of ecosystem. Some hot spots were mentioned including the research of ‘moics’ and metabolic pathways for both the symbionts and their hosts.
Key words: Deep-sea hydrothermal vent; Chemosynthesis; Host; Bacterial symbionts.
Huang Dingyong , Liu Xinming , Lin Rongcheng . Research Progress of the Chemosynthetic Symbioses in the Deep-Sea Hydrothermal Vent[J]. Advances in Earth Science, 2013 , 28(7) : 794 -801 . DOI: 10.11867/j.issn.1001-8166.2013.07.0794
[1] Cavanaugh C M, McKiness Z, Newton I L G,et al. Marine chemosynthetic symbioses[J].The Prokaryotes, 2006, 1: 475-507.
[2] De Bary A. Die Erscheinung der Symbiose: Vortrag[M].Germany: Verlag von Karl Trübner J, 1879.
[3] Dubilier N, Bergin C, Lott C. Symbiotic diversity in marine animals: The art of harnessing chemosynthesis[J].Nature Reviews Microbiology, 2008, 6: 725-740.
[4] Cavanaugh C M. Microbial symbiosis: Patterns of diversity in the marine environment[J].American Zoologist,1994, 34: 79-89.
[5] Corliss J B, Dymond J, Gordon L I,et al. Submarine thermal springs on the Galapagos Rift[J].Science, 1979, 203: 1 073-1 083.
[6] Laubier L. Ecosystemes benthiques profonds et chimiosynthese bacterienne: Sources hydrothermales et suintements[C]∥Intervention Sous-Marine ISM 90. France:Toulon, 1990: 3-5.
[7] Lonsdale P. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers[J].Deep-Sea Research, 1977, 24: 857-863.
[8] Southward A, Southward E C, Brattegard T,et al. Further experiments on the value of dissolved organic matter as food for Siboglinum fiordicum (Pogonophora)[J].Journal of the Marine Biological Association of the United Kingdom, 1979, 59: 133-148.
[9] Felbeck H. Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia Pachyptila Jones (Vestimentifera)[J].Science, 1981, 213: 336.
[10] Childress J J, Fisher C, Brooks J,et al. A methanotrophic marine molluscan (bivalvia, mytilidae) symbiosis: Mussels fueled by gas[J].Science, 1986, 233: 1 306.
[11] Cavanaugh C, Levering P, Maki J,et al. Symbiosis of methylotrophic bacteria and deep-sea mussels[J].Nature, 1987, 325: 346-348.
[12] Petersen J M, Zielinski F U, Pape T,et al. Hydrogen is an energy source for hydrothermal vent symbioses[J].Nature, 2011, 476: 176-180.
[13] Wang Chunsheng, Yang Junyi, Zhang Dongsheng,et al. A review on deep-sea hydrothermal vent communities[J].Journal of Xiamen University (Natural Science), 2006,45(Suppl.2): 141-149.[王春生, 杨俊毅, 张东声, 等. 深海热液生物群落研究综述[J]. 厦门大学学报:自然科学版, 2006,45(增刊2): 141-149.]
[14] Huang Dingyong, Lin Rongcheng, Niu Wentao,et al. Summary of deep sea hydrothermal activity and hydrothermal vent communities[J].Journal of Central South University (Science and Technology), 2011, 42(Suppl.2): 196-203.[黄丁勇, 林荣澄, 牛文涛, 等. 深海热液活动及热液生物群落研究概述[J]. 中南大学学报:自然科学版, 2011, 42(增刊2):196-203.]
[15] Wang Liling, Lin Jingxing, Hu Jianfang. Recent progress in deep-sea hydrothermal vent communities[J].Advances in Earth Science, 2008,23(6): 604-612.[王丽玲, 林景星, 胡建芳. 深海热液喷口生物群落研究进展[J]. 地球科学进展, 2008, 23(6): 604-612.]
[16] Kouris A, Kim Juniper S, Frebourg G,et al. Protozoan-bacterial symbiosis in a deep-sea hydrothermal vent folliculinid ciliate (Folliculinopsis sp.) from the Juan de Fuca Ridge[J].Marine Ecology, 2007, 28: 63-71.
[17] Fiala-Medioni A. Mise en évidence par microscopie électronique à transmission de l’abondance de bactéries symbiotiques dans la branchie de Mollusques bivalves de sources hydrothermales profondes[J].Comptes rendus des séances de l’Académie des sciences Série 3, Sciences de la vie,1984, 298: 487-492.
[18] Thurber A R, Jones W J, Schnabel K. Dancing for food in the deep sea: Bacterial farming by a new species of Yeti crab[J].PLoS One, 2011, 6(11): e26243.
[19] Bright M, Giere O. Microbial symbiosis in Annelida[J].Symbiosis,2005, 38: 1-45.
[20] Boss K, Turner R. The giant white clam from the Galapagos Rift, Calyptogena magnifica species novum[J].Malacologia,1980, 20: 161-194.
[21] Johnson S B, Young C R, Jones W J,et al. Migration, isolation, and speciation of hydrothermal vent limpets (Gastropoda; Lepetodrilidae) across the Blanco Transform Fault[J].The Biological Bulletin, 2006, 210: 140-157.
[22] Katz S, Cavanaugh C M, Bright M. Symbiosis of epi-and endocuticular bacteria withHelicoradomenia spp.(Mollusca, Aplacophora, Solenogastres) from deep-sea hydrothermal vents[J].Marine Ecology Progress Series, 2006, 320: 89-99.
[23] Reid R G B, Bernard F R. Gutless bivalves[J].Science, 1980, 208: 609-610.
[24] Roeselers G, Newton I L G. On the evolutionary ecology of symbioses between chemosynthetic bacteria and bivalves[J].Applied Microbiology and Biotechnology,2012,94(1): 1-10.
[25] Taylor J D, Glover E A. Lucinidae (Bivalvia)-the most diverse group of chemosymbiotic molluscs[J].Zoological Journal of the Linnean Society, 2006, 148: 421-438.
[26] Dufour S C. Gill anatomy and the evolution of symbiosis in the bivalve family Thyasiridae[J].The Biological Bulletin, 2005, 208: 200-212.
[27] Childress J J, Fisher C R, Favuzzi J A,et al. Sulfide and carbon dioxide uptake by the hydrothermal vent clam, Calyptogena magnifica, and its chemoautotrophic symbionts[J].Physiological zoology, 1991,64: 1 444-1 470.
[28] Southward E C. The morphology of bacterial symbioses in the gills of mussels of the genera Adipicola and Idas (Bivalvia: Mytilidae)[J].Journal of Shellfish Research, 2008, 27: 139-146.
[29] Urakawa H, Dubilier N, Fujiwara Y,et al. Hydrothermal vent gastropods from the same family (Provannidae) harbour ε-and γ-proteobacterial endosymbionts[J].Environmental Microbiology, 2005, 7: 750-754.
[30] Bates A E. Feeding strategy, morphological specialisation and presence of bacterial episymbionts in lepetodrilid gastropods from hydrothermal vents[J].Marine Ecology Progress Series, 2007, 347: 87-99.
[31] Goffredi S K, Warén A, Orphan V J,et al. Novel forms of structural integration between microbes and a hydrothermal vent gastropod from the Indian Ocean[J].Applied and Environmental Microbiology, 2004, 70: 3 082-3 090.
[32] Halanych K M. Molecular phylogeny of siboglinid annelids (aka pogonophorans): A review[J].Hydrobiologia, 2005, 535: 297-307.
[33] Kubota N, Kanemori M, Sasayama Y,et al. Identification of endosymbionts in Oligobrachia mashikoi (Siboglinidae, Annelida)[J].Microbes and Environments, 2007, 22: 136-144.
[34] Schmidt C, Le Bris N, Gaill F. Interactions of deep-sea vent invertebrates with their environment: The case of Rimicaris exoculata[J].Journal of Shellfish Research, 2008, 27: 79-90.
[35] Goffredi S, Jones W, Erhlich H,et al. Epibiotic bacteria associated with the recently discovered Yeti crab,Kiwa hirsuta[J].Environmental Microbiology,2008, 10: 2 623-2 634.
[36] Flores J F, Fisher C R, Carney S L,et al. Sulfide binding is mediated by zinc ions discovered in the crystal structure of a hydrothermal vent tubeworm hemoglobin[J].Proceedings of the National Academy of Sciences of the United States of America, 2005, 102: 2 713-2 718.
[37] Zal F, Leize E, Lallier F H,et al. S-Sulfohemoglobin and disulfide exchange: The mechanisms of sulfide binding byRiftia pachyptila hemoglobins[J].Proceedings of the National Academy of Sciences,1998, 95: 8 997-9 002.
[38] Cordes E E, Arthur M A, Shea K,et al. Modeling the mutualistic interactions between tubeworms and microbial consortia[J].PLoS Biology, 2005, 3(3): e77.
[39] Doeller J E, Kraus D W, Colacino J M,et al. Gill hemoglobin may deliver sulfide to bacterial symbionts of Solemya velum (Bivalvia, Mollusca)[J].The Biological Bulletin,1988, 175: 388-396.
[40] Dufour S C, Felbeck H. Sulphide mining by the superextensile foot of symbiotic thyasirid bivalves[J].Nature, 2003, 426: 65-67.
[41] Johnson K S, Childress J J, Beehler C L,et al. Biogeochemistry of hydrothermal vent mussel communities: The deep-sea analogue to the intertidal zone[J].Deep-Sea Research Part I,1994, 41: 993-1 011.
[42] Ott J, Novak R, Schiemer F,et al. Tackling the sulfide gradient: A novel strategy involving marine nematodes and chemoautotrophic ectosymbionts[J].Marine Ecology, 2008, 12: 261-279.
[43] Cavanaugh C M. Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats[J].Nature, 1983,302:58-61.
[44] Dubilier N, Windoffer R, Giere O. Ultrastructure and stable carbon isotope composition of the hydrothermal vent musselsBathymodiolus brevior andB. sp. affinisbrevior from the North Fiji Basin, western Pacific[J].Marine Ecology Progress Series, 1998, 165: 187-193.
[45] Hentschel U, Cary S C, Felbeck H. Nitrate respiration in chemoautotrophic symbionts of the bivalve Lucinoma aequizonata[J].Marine Ecology Progress Series,1993, 94: 35-35.
[46] Cavanaugh C M, Levering P R, Maki J S,et al. Symbiosis of methylotrophic bacteria and deep-sea mussels[J].Nature,1987,325:346-348.
[47] Nussbaumer A D, Fisher C R, Bright M. Horizontal endosymbiont transmission in hydrothermal vent tubeworms[J].Nature, 2006, 441: 345-348.
[48] Distel D L, Lee H, Cavanaugh C M. Intracellular coexistence of methano-and thioautotrophic bacteria in a hydrothermal vent mussel[J].Proceedings of the National Academy of Sciences,1995, 92: 9 598-9 602.
[49] McKiness Z, Cavanaugh C. The ubiquitous mussel: Bathymodiolus aff. brevior symbiosis at the Central Indian Ridge hydrothermal vents[J].Marine Ecology Progress Series, 2005, 295: 183-190.
[50] Duperron S, Bergin C, Zielinski F,et al. A dual symbiosis shared by two mussel species, Bathymodiolus azoricus and Bathymodiolus puteoserpentis (Bivalvia: Mytilidae), from hydrothermal vents along the northern Mid-Atlantic Ridge[J].Environmental Microbiology, 2006, 8: 1 441-1 447.
[51] Moran N A. Tracing the evolution of gene loss in obligate bacterial symbionts[J].Current Opinion in Microbiology, 2003, 6: 512-518.
[52] Harmer T L, Rotjan R D, Nussbaumer A D,et al. Free-living tube worm endosymbionts found at deep-sea vents[J].Applied and Environmental Microbiology, 2008, 74: 3 895-3 898.
[53] McFall-Ngai M J. The development of cooperative associations between animals and bacteria: Establishing détente among domains[J].American Zoologist,1998, 38: 593-608.
[54] Trask J L, Van Dover C L. Site-specific and ontogenetic variations in nutrition of mussels (Bathymodiolus sp.) from the Lucky Strike hydrothermal vent field, Mid-Atlantic Ridge[J].Limnology and Oceanography, 1999,44(2): 334-343.
[55] Humes A G, Lutz R A. Aphotopontius acanthinus, new species (Copepoda: Siphonostomatoida), from deep-sea hydrothermal vents on the East Pacific Rise[J].Journal of Crustacean Biology, 1994,14(2): 337-345.
[56] Van Dover C L. The Ecology of Deep-Sea Hydrothermal Vents[M]. Princeton: Princeton University Press, 2000.
[57] Sarrazin J, Juniper S K. Biological characteristics of a hydrothermal edifice mosaic community[J].Marine Ecology Progress Series, 1999, 185: 1-19.
[58] Schrenk M O, Huber J A, Edwards K J. Microbial provinces in the subseafloor[J].Annual Review of Marine Science, 2010, 2: 279-304.
[59] Smith C. Chemosynthesis in the deep-sea: Life without the sun[J]. Biogeosciences Discussions, 2012, 9: 17 037.
[60] German C, Von Damm K. Hydrothermal Processes[M]. London: Elsevier, 2006.
[61] Yang T, Lyons S, Aguilar C,et al. Microbial communities and chemosynthesis in Yellowstone Lake sublacustrine hydrothermal vent waters[J].Frontiers in Microbiology, 2011,2:130,doi:10.3389/fmicb.72011.00130.
[62] Sievert S M, Vetriani C. Chemoautotrophy at deep-sea vents: Past, present, and future[J].Oceanography,2012,25(1):218-233.
[63] Pante E, Corbari L, Thubaut J,et al. Exploration of the deep-sea fauna of Papua New Guinea[J].Oceanography, 2012: 25(3):214.
/
〈 |
|
〉 |