Received date: 2012-06-19
Revised date: 2012-09-07
Online published: 2012-12-10
In lunar exploration, multispectral remote sensing, thermal infrared remote sensing, and passive microwave remote sensing are widely used to investigate the mineral component and physical property of lunar regolith. And lots of data is obtained by these techniques. Lunar solar irradiance, lunar surface-temperature, earthshine and internal heat flow may influence the reflectivity, thermal emissivity as well as other electromagnetic properties of the lunar regolith, which restricts the accurate interpretation of explored data. And the variations of solar irradiance and lunar surfacetemperature also threaten the safety of lunar rover and the health of astronauts in future lunar surface activity. However, the effect of thermal environment on lunar exploration activities is rarely studied, the temporal and spatial variation of the thermal environment on the lunar surface is insufficiently understood, and limited experimental researches do not allow us to evaluate the effect of different exploration methods. With the development of the lunar exploration, the experiment and detection need to be strengthened. By studying on temporal variation and spatial distribution of the surface solar radiation and the physical temperature in the different lunar topography, matching the explored data to the lunar surface thermal environment parameters , building experimental sites with similar material composition and lunar thermal environment, and carrying out systematic experimental study, the temporal and spatial change of lunar surface thermal environment parameter are comprehenced and the effect of lunar surface thermal environment on different explored methods are analyzed. All of these are important contents of the study of lunar environment in the coming years.
Key words: Moon; Thermal environment; Solar irradiance; Temperature; Exploration
Yu Wen , Li Xiongyao , Wang Shijie . Effect of Thermal Environment on Lunar Exploration: A Review[J]. Advances in Earth Science, 2012 , 27(12) : 1337 -1343 . DOI: 10.11867/j.issn.1001-8166.2012.12.1337
[1]Ouyang Ziyuan. International lunar exploration progress and chinese lunar exploration [J]. Geological Science and Technology Information, 2004, 23(4): 1-5.[欧阳自远. 月球探测的进展与中国的月球探测[J]. 地质科技情报, 2004, 23(4): 1-5.]
[2]Xiong Shengqing. A review of lunar exploration and study[J]. Remote Sensing for Land & Resources, 2009, 82(4): 1-7.[熊盛青. 月球探测与研究进展[J]. 国土资源遥感, 2009, 82(4): 1-7.]
[3]Jiang Jingshan, Wang Zhenzhan, Zhang Xiaohui, et al. China probe CE-1 unveils world first moon-globe microwave emossion map—The micrwave moon some exploration results of chang’e-1 microwave sounder[J]. Remote Sensing Technology and Application, 2009, 24(4): 409-422.[姜景山, 王振占, 张晓辉, 等. 微波月亮——人类对月球的全新视角——中国“嫦娥一号”卫星微波探测仪若干探测结果[J]. 遥感技术与应用, 2009, 24(4): 409-422.]
[4]Xu Xianghua, Liang Xingang, Ren Jianxun. Numerical analysis of thermal environment of lunar surface[J]. Journal of Astronautics, 2006, 27(2): 153-157.[徐向华, 梁新刚, 任建勋. 月球表面热环境数值分析[J]. 宇航学报, 2006, 27(2): 153-157.]
[5]Ouyang Ziyuan. Introduction to Lunar Science[M]. Beijing: China Astronautic Publishing House, 2005.[欧阳自远. 月球科学概论[M]. 北京: 中国宇航出版社, 2005.]
[6]Fröhlich C. Solar irradiance variability since 1978: Revision of the PMOD composite during solar cycle 21[J]. Space Science Reviews, 2006, 125: 53-65.
[7]Fröhlich C, Judith L. Solar radiative output and its variability: Evidence and mechanisms[J]. The Astronomy and Astrophysics Review, 2004, 12: 273-320.
[8]Heiken G H, Vaniman D T, French B M. Lunar Sourcebook: A User’s Guide to the Moon[M]. Cambridge: Cambridge University Press, 1991.
[9]Guo Ruitao. Introduction to the Earth[M]. Beijing: Beijing Normal University Press, 1988.[郭瑞涛. 地球概论[M]. 北京: 北京师范大学出版社, 1988.]
[10]Duke M B, Eckart P. The Lunar Base Handbook[M]. New York: McGraw-Hill, 1999.
[11]Cremers C J, Birkebak R C, White J E. Lunar surface temperatures from Apollo 12[J]. Earth, Moon, and Planets, 1971, 3: 346-351.
[12]Pugh M J, Bastin J A. Infrared observations of the moon and their interpretation[J]. Earth, Moon, and Planets, 1972, 5: 16-30.
[13]Racca G D. Moon surface thermal characteristics for moon orbiting spacecraft thermal analysis[J]. Planetary and Space Science, 1995, 43(6): 835-842.
[14]Jones W P, Watkins J R, Calvert T A. Temperatures and thermophysical properties of the lunar outermost layer[J]. Earth, Moon, and Planets, 1975, 13(4): 475-494.
[15]Watson K, Murray B C, Brown H. The behavior of volatiles on the lunar surface[J]. Journal of Geophysical Research, 1961, 66(9): 3 033-3 045.
[16]Dalton C, Hohman E. Conceptual design of a lunar colony[M]. Washington: NASA/ASEE Engineering Systems Design Institute, 1972.
[17]Li Yun, Wang Zhenzhan, Jiang Jingshan. Simulations on the influence of lunar surface temperature profiles on CE-1 lunar microwave sounder brightness temperature[J]. Science China(Series D), 2009, 39(8): 1 045-1 058.[李芸, 王振占, 姜景山. 月表温度剖面对于“嫦娥一号”卫星微波探测仪探测亮温影响的模拟研究[J]. 中国科学:D辑, 2009, 39(8): 1 045-1 058.]
[18]Li Xiongyao, Wang Shijie, Cheng Anyun. A review of lunar-surface temperature model[J].Advances in Earth Science, 2007, 22(5): 480-485.[李雄耀, 王世杰, 程安云. 月球表面温度物理模型研究现状[J]. 地球科学进展, 2007, 22(5): 480-485.]
[19]Wesselink A J. Heat conductivity and nature of the lunar surface material[J]. Bulletin of the Astronomical Institutes of the Netherlands, 1948, 10: 351-363.
[20]Jaeger J C. The surface temperature of the moon[J]. Australian Journal of Physics, 1953, 6: 10-21.
[21]Calvert T A, George C. Themal and Dielectric Properties of A Homogeneous Moon Based on Microwave and Infrared Temperature Observations[M]. Washington: National Aeronautics and Space Asministration, 1969.
[22]Racca G D. Moon surface thermal characteristics for moon orbiting spacecraft thermal analysis[J]. Planetary and Space Science, 1995, 43(6): 835-842.
[23]Vasavada A R, Paige D A, Wood S E. Near-surface temperatures on mercury and the moon and the stability of polar ice deposits[J]. Icarus, 1999, 141: 179-193.
[24]Hale A S, Hapke B. A time-dependent model of radiative and conductive thermal energy transport in planetary regoliths with applications to the moon and mercury[J]. Icarus, 2002, 156: 318-334.
[25]Langseth M G, Keihm S J, Peters K. Revised lunar heat-flow values[C]∥Lunar Science Conference 7th.New York: Pergamon Press,Inc., 1976, 3 (A77-34651 15-91): 3 143-3 171.
[26]Baldwin J E. Thermal radiation from the moon and the heat flow through the lunar surface[J]. Monthly Notices of the Royal Astronomical Society, 1961, 122: 513-522.
[27]Schloerb F P, Muhleman D O, Berge G L. Lunar heat flow and regolith structure inferred from interferometric observations at a wavelength of 49.3 cm[J]. Icarus, 1976, 29(3): 329-341.
[28]Yoshida S, Tanaka S, Hagermann A, et al. Derivation of a globally averaged lunar heat flow from the local heat flow values and thorium distribution at the surface[C]∥Expected improvement by the LUNAR-A mission, Lunar and Planetary Science Conference 32th. 2001: 1 571-1 572.
[29]Conel J E, Morton J B. Interpretation of lunar heat flow data[J]. The Moon, 1975, 14: 263-289.
[30]Saito Y, Hikida H, Yokota Y, et al. Reanalysis of the lunar heat flow[C]∥ ISAS Lunar Planetary Symposium 36th. 2003: 157-160.
[31]Grott M, Knollenberg J, Krause C. The apollo lunar heat flow experiment revisited: A critical reassessment of the in-situ thermal conductivity determination[C]∥European Planetary Science Congress. 2010: 11-12.
[32]Goode P R, Qiu J, Yurchyshyn V, et al. Earthshine observations of the Earth’s reflectance[J]. Geophysical Research Letters, 2001, 28(9): 1 671-1 674.
[33]Pardo J R, Serabyn E, Wiedner M C. Broadband submillimeter measurements of the full moon center brightness temperature and application to a lunar eclipse[J]. Icarus, 2005, 178: 19-26.
[34]Moroz L, Schade U, Wsch R. Reflectance spectra of olivine orthopyroxene bearing assemblages at decreased temperatures: Implications for remote sensing of asteroids[J]. Icarus, 2000, 147(1): 79-93.
[35]Hinrichs J L, Lucey P G. Temperature dependent near infrared spectral properties of minerals, meteorites, and lunar soil[J]. Icarus, 2002, 155(1): 169-180.
[36]Zeng Chaoyang, Zhang Xiaoyong. Effect of temperature on the laser radar[J]. Sichuan Ordnance Journal, 2010, 31(4): 1-3.[曾朝阳, 张晓永. 温度变化对激光雷达的影响[J]. 四川兵工学报, 2010, 31(4): 1-3.]
[37]Ihle E C, Ritsher J B, Kanas N. Positive psychological outcomes of spaceflight: An empirical study[J]. Aviation, Space, and Environmental Medicine, 2006, 77(2): 93-101.
[38]Kanas N, Ritsher J. Leadership issues with multiculturalcrews on the internationalspace station: Lessonslearned from shuttle/mir[J]. Acta Astronautica , 2005, 56(9/12): 932-936.
[39]Ritsher J B, Ihle E C, Kanas N. Positive psychological effects of space missions[J]. Acta Astronautica, 2005, 57(2/8): 630-633.
[40]Ritsher J B. Cultural factors and the international space station[J]. Aviation, Space, and Environmental Medicine, 2005, 76(6 Suppl.): B135-144.
[41]Lan Ailan, Zhang Shengwei. Study on the thickness of lunar soil with microwave radiometer[J]. Remote Sensing Technology and Appl ication, 2004, 19(3):154-158.[蓝爱兰,张升伟.利用微波辐射计对月壤厚度进行研究[J].遥感技术与应用, 2004,19(3):154-158.]
[42]Fa Wenzhe, Jin Yaqiu. Inversion of lunar regolith layer thickness using optical data and microwave emission simulation[J]. Chinese Journal of Radio Science, 2006, 21(3): 347-356.[法文哲, 金亚秋. 光学观测与微波辐射模拟对月壤厚度的反演[J].电波科学学报,2006, 21(3): 347-356.]
[43]Fa Wenzhe, Jin Yaqiu. Inversion of lunar regolith layer thickness using microwave radiance sim ulation of three layer model and clementine UV-VIS data[J]. Chinese Journal of Space Science, 2007, 27(1):55-65.[法文哲,金亚秋. 三层月壤模型的多通道微波辐射模拟与月壤厚度的反演[J]. 空间科学学报,2007, 27(1):55-65.]
/
〈 |
|
〉 |