Zircon Fission-Track Thermochronology (ZFT): Advances and Applications
Received date: 2010-07-16
Revised date: 2010-09-29
Online published: 2011-02-10
The Fission-track technique is a unique low-temperature thermochronology for assessment of time-temperature dependent evolution in various geological settings. Because of a higher closure temperature and partial annealing zone than apatite fission-track, zircon fission-track has a featured geological significance and application. Since the last decade of the 20th century, there has been a great number annealing research performed on zircon fission-track, including annealing properties, track measurement, annealing models, and annealing knowledge from samples of outcrops and boreholes. An investigation of zircon fission track has been made firstly in general covering various analytical procedures, measurement standards, experiment annealing models, coupled with a comparison between closure temperature and partial annealing zone obtained from different methods. Some major applications of zircon fission-track are summarized then, concerning analysis of sediment provenance and thermal history of the basin, cooling and exhumation of the orogen, and faulting thermal adjustment. It is pointed out that the combination of fission-track and (U-Th)/He is the future research trend.
Jiao Ruohong, Xu Changhai, Zhang Xiangtao, Que Xiaoming . Zircon Fission-Track Thermochronology (ZFT): Advances and Applications[J]. Advances in Earth Science, 2011 , 26(2) : 171 -182 . DOI: 10.11867/j.issn.1001-8166.2011.02.0171
[1]Hurford A J, Green P F. A users′ guide to fission track dating calibration[J].Earth and Planetary Science Letters,1982, 59(2): 343-354.
[2]Hurford A J, Green P F. The zeta age calibration of fissiontrack dating[J].Chemical Geology,1983,41:285-317.
[3]Laslett G M, Green P F, Duddy I R,et al. Thermal annealing of fission tracks in apatite 2. A quantitative analysis[J].Chemical Geology: Isotope Geoscience Section,1987, 65(1): 1-13.
[4]Crowley K D, Cameron M, Schaefer R l. Experimental studies of annealing of etched fission tracks in fluorapatite[J].Geochimica et Cosmochimica Acta,1991,55(5): 1 449-1 465.
[5]Laslett G M, Galbraith R F. Statistical modelling of thermal annealing of fission tracks in apatite[J]. Geochimica et Cosmochimica Acta,1996, 60(24): 5 117-5 131.
[6]Galbraith R F, Laslett G M. Statistical modelling of thermal annealing of fission tracks in zircon[J]. Chemical Geology,1997, 140(1/2): 123-135.
[7]Yamada R, Tagami T, Nishimura S,et al. Annealing kinetics of fission tracks in zircon: An experimental study[J].Chemical Geology,1995, 122(1/4): 249-258.
[8]Carlson W D, Donelick R A, Ketcham R A. Variability of apatite fissiontrack annealing kinetics I. Experimental results[J].American Mineralogist,1999, 84(9): 1 213-1 223.
[9]Donelick R A, Ketcham R A, Carlson W D. Variability of apatite fissiontrack annealing kinetics II. Crystallographic orientation effects[J].American Mineralogist,1999, 84(9): 1 224-1 234.
[10]Ketcham R A, Donelick R A, Carlson W D. Variability of apatite fissiontrack annealing kinetics III. Extrapolation to geological time scales[J].American Mineralogist,1999, 84(9): 1 235-1 255.
[11]Wagner G A, van den Haute P. Fission Track Dating[M].Dordrecht: Kluwer Academic Publisher, 1992.
[12]Gallagher K, Brown R, Johnson C. Fission track analysis and its applications to geological problems[J].Annual Review of Earth and Planetary Sciences,1998, 26(1): 519-572.
[13]Gleadow A J W, Belton D X, Kohn B P,et al. Fission track dating of phosphate minerals and the thermochronology of apatite[J].Reviews in Mineralogy and Geochemistry,2002, 48(1): 579-630.
[14]Donelick R A, O′Sullivan P B, Ketcham R A. Apatite fissiontrack analysis[J].Reviews in Mineralogy and Geochemistry,2005, 58(1): 49-94.
[15]Tagami T, O′Sullivan P B. Fundamentals of fissiontrack thermochronology[J].Reviews in Mineralogy and Geochemistry,2005, 58(1): 19-47.
[16]Tagami T. Zircon fissiontrack thermochronology and applications to fault studies[J].Reviews in Mineralogy and Geochemistry,2005, 58(1): 95-122.
[17]Tagami T, Ito H, Nishimura S. Thermal annealing characteristics of spontaneous fission tracks in zircon [J].Chemical Geology: Isotope Geoscience Section,1990,80(2): 159-169.
[18]Hasebe N, Tagami T, Nishimura S. Towards zircon fission-track thermochronology: Reference framework for confined track length measurements[J].Chemical Geology,1994, 112(1/2): 169-178.
[19]Yamada R,Tagami T, Nishimura S. Assessment of overetching factor for confined fission-track length measurement in zircon[J].Chemical Geology,1993, 104(1/4): 251-259.[ZK)]
[20]Yamada R,Tagami T, Nishimura S. Confined fission-track length measurement of zircon: Assessment of factors affecting the paleotemperature estimate[J].Chemical Geology,1995, 119 (1/4): 293-306.
[21]Yamada R, Murakami M, Tagami T. Statistical modelling of annealing kinetics of fission tracks in zircon: Reassessment of laboratory experiments[J].Chemical Geology,2007, 236 (1/2): 75-91.
[22]Garver J I. Etching zircon age standards for fissiontrack analysis[J].Radiation Measurements,2003,37(1): 47-53.
[23]Hurford A J. Standardization of fission track dating calibration: Recommendation by the fission track working group of the I.U.G.S. subcommission on geochronology[J].Chemical Geology: Isotope Geoscience Section,1990, 80 (2): 171-178.
[24]Svojtka M, Kosler M. Fissiontrack dating of zircon by laser ablation ICPMS[J].Geochimica et Cosmochimica Acta,2002,66: A756.
[25]Kosler J, Sylvester P J. Present trends and the future of zircon in geochronology: Laser ablation ICPMS[J].Reviews in Mineralogy and Geochemistry,2003, 53(1): 243-275.
[26]Hasebe N, Barbarand J, Jarvis K,et al. Apatite fissiontrack chronometry using laser ablation ICPMS[J].Chemical Geology, 2004, 207(3/4): 135-145.
[27]Hasebe N, Carter A, Hurford A J,et al. The effect of chemical etching on LA-ICP-MS analysis in determining uranium concentration for fissiontrack chronometry[J].Geological Society, London, Special Publications,2009, 324(1): 37-46.
[28]Bernet M,Garver J I. Fission-track analysis of detrital zircon[J].Reviews in Mineralogy and Geochemistry,2005, 58(1): 205-237.
[29]Kasuya M, Naeser C W. The effect of [alpha]-damage on fission-track annealing in zircon[J]. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements,1988, 14(4): 477-480.
[30]Zaun P E, Wagner G A. Fission-track stability in zircons under geological conditions[J].Nuclear Tracks and Radiation Measurements,1985, 10(3): 303307.[ZK)]
[31]Gleadow A J W, Hurford A J, Quaife R D. Fission track dating of zircon: Improved etching techniques[J]. Earth and Planetary Science Letters,1976, 33(2): 273-276.
[32]Yamada R, Yoshioka T, Watanabe K,et al. Comparison of experimental techniques to increase the number of measurable confined fission tracks in zircon[J].Chemical Geology,1998, 149(1/2): 99-107.
[33]Tagami T, Galbraith R F, Yamada R,et al. Revised annealing kinetics of fission tracks in zircon and geological implications[C]∥Van Den Haute P, De Corte F, eds. Advances in FissionTrack Geochronology. Dordrecht: Kluwer Academic Publishers, 1998: 99-112.
[34]Murakami M, Yamada R, Tagami T. Short-term annealing characteristics of spontaneous fission tracks in zircon: A qualitative description[J].Chemical Geology,2006,227(3/4): 214-222.
[35]Rahn M K, Brandon M T, Batt G E, et al. A zero-damage model for fissiontrack annealing in zircon[J]. American Mineralogist,2004,89(4): 473-484.
[36]Guedes S, Hadler N J C, Iunes P J, et al. Kinetic model for the annealing of fission tracks in zircon [J].Radiation Measurements,2005, 40(2/6): 517-521.
[37]Hasebe N, Mori S, Tagami T,et al. Geological partial annealing zone of zircon fissiontrack system: Additional constrains from the deep drilling MITI-Nishikubiki and MITI-Mishima[J].Chemical Geology,2003,199(1/2): 45-52.
[38]Brix M R, Stöckhert B, Seidel E,et al. Thermobarometric data from a fossil zircon partial annealing zone in high pressure-low temperature rocks of eastern and central Crete, Greece[J].Tectonophysics, 2002, 349(1/4): 309-326.
[39]Ehlers T A, Chaudhri T, Kumar S, et al. Computational tools for lowtemperature thermochronometer interpretation[J].Reviews in Mineralogy and Geochemistry,2005, 58 (1): 589-622.
[40]Bernet M. A fieldbased estimate of the zircon fissiontrack closure temperature[J].Chemical Geology, 2009, 259(3/4): 181-189.
[41]Tagami T, Carter A, Hurford A J. Natural longterm annealing of the zircon fission-track system in Vienna Basin deep borehole samples: Constraints upon the partial annealing zone and closure temperature[J]. Chemical Geology,1996,130(1/2): 147-157.
[42]Harrison T M, Armstrong R L, Naeser C W,et al. Geochronology and thermal history of the Coast Plutonic Complex, near Prince Rupert, British Columbia[J].Canadian Journal of Earth Sciences,1979, 16(3): 400-410.
[43]Hurford A J. Cooling and uplift patterns in the Lepontine Alps South Central Switzerland and an age of vertical movement on the Insubric fault line[J].Contributions to Mineralogy and Petrology,1986, 92(4): 413-427.
[44]Foster D A, Kohn B P, Gleadow A J W. Sphene and Zircon Fission Track Closure Temperatures Revisited: Empirical Calibrations from 40Ar/39Ar Diffusion Studies of K-Feldspar and Biotite[M]. Ghent: University of Ghent, 1996.
[45]Brandon M T, RodenTice M K, Garver J I. Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic mountains, northwest Washington state[J].Geological Society of America Bulletin,1998, 110(8): 985-1 009.
[46]Armstrong P A. Thermochronometers in Sedimentary basins[J].Reviews in Mineralogy and Geochemistry,2005,58(1): 499-525.
[47]Gleadow A J W, Duddy I R. A natural longterm track annealing experiment for apatite[J].Nuclear Tracks,1981, 5(1/2): 169-174.
[48]Vermeesch P, Avigad D, McWilliams M O. 500 m.y. of thermal history elucidated by multi-method detrital thermochronology of north Gondwana Cambrian sandstone (Eilat area, Israel)[J].Geological Society of America Bulletin, 2009, 121(7/8): 1 204-1 216.
[49]Garver J I, Reiners P W, Walker L J, et al. Implications for timing of andean uplift from thermal resetting of radiationdamaged zircon in the Cordillera Huayhuash, Northern Peru[J].The Journal of Geology,2005, 113(2): 117-138.
[50]Hurford A J, Carter A. The role of fission track dating in discrimination of provenance[J].Geological Society, London, Special Publications,1991, 57(1): 67-78.
[51]Carter A. Present status and future avenues of source region discrimination and characterization using fission track analysis[J].Sedimentary Geology,1999, 124(1/4): 31-45.
[52]Bernet M, Van Der Beek P, Pik R,et al. Miocene to recent exhumation of the central Himalaya determined from combined detrital zircon fissiontrack and U/Pb analysis of Siwalik sediments, western Nepal[J].Basin Research,2006, 18(4): 393-412.
[53]Dunkl I, Di Giulio A, Kuhlemann J. Combination of singlegrain fissiontrack chronology and morphological analysis of detrital zircon crystals in provenance studies: Sources of the macigno formation (Apennines, Italy) [J].Journal of Sedimentary Research,2001, 71(4): 516-525.
[54]Roddick J C, Bevier M L. UPb dating of granites with inherited zircon: Conventional and ion microprobe results from two Paleozoic plutons,Canadian appalachians[J].Chemical Geology, 1995, 119(1/4): 307-329.
[55]Garver J I, Kamp P J J. Integration of zircon color and zircon fissiontrack zonation patterns in orogenic belts: Application to the Southern Alps, New Zealand[J\.Tectonophysics,2002, 349(1/4): 203-219.
[56]Zhang Pei, Zhou Zuyi.Geological applications of detrital thermochronology[J].Advances in Earth Science, 2008,23 (11): 1 130-1 140.[张沛, 周祖翼. 碎屑矿物热年代学研究进展[J].地球科学进展, 2008, 23 (11): 1 130-1 140]
[57]Zeitler P K, Johnson N M, Briggs N D,et al. Uplift History of the NW Himalaya as Recorded by FissionTrack Ages on Detrital Siwalik Zircons[M].Beijing: Geological Publishing House, 1986.
[58]Bernet M, Brandon M T, Garver J I,et al. Fundamentals of detrital zircon fission-track analysis for provenance and exhumation studies with examples from the European Alps[J].Geological Society of America Special Papers, 2004,378: 25-36.
[59]Ruiz G M H, Seward D, Winkler W. Detrital thermochronology—A new perspective on hinterland tectonics, an example from the Andean Amazon Basin, Ecuador[J].Basin Research,2004, 16(3): 413-430.
[60]Bernet M, Zattin M, Garver J I,et al. Steadystate exhumation of the European Alps[J].Geology,2001,29(1): 35-38.
[61]Willett S D, Brandon M T. On steady states in mountain belts[J].Geology,2002,30(2): 175-178.
[62]Garver J I, Brandon M T, RodenTice M,et al. Exhumation history of orogenic highlands determined by detrital fissiontrack thermochronology[J].Geological Society, London, Special Publications,1999,154(1): 283-304.
[63]Bernet M, Brandon M, Garver J,et al. Exhuming the Alps through time: Clues from detrital zircon fission-track thermochronology [J].Basin Research,2009, 21(6): 781-798.
[64]England P, Molnar P. Surface uplift, uplift of rocks, and exhumation of rocks[J].Geology,1990,18(12):1 173-1 177.
[65]Reiners P W, Brandon M T. Using thermochronology to understand orogenic erosion[J].Annual Review of Earth and Planetary Sciences,2006, 34: 419-466.
[66]Fitzgerald P G, Sorkhabi R B, Redfield T F,et al. Uplift and denudation of the central Alaska Range: A case study in the use of apatite fission track thermochronology to determine absolute uplift parameters[J]. Journal of Geophysical Research,1995, 100(B10): 20 175-20 191.
[67]Spotila J A. Applications of lowtemperature thermochronometry to quantification of recent exhumation in mountain belts[J].Reviews in Mineralogy and Geochemistry,2005,58 (1): 449-466.
[68]Reiners P W. Thermochronologic approaches to paleotopography[J].Reviews in Mineralogy and Geochemistry, 2007, 66(1): 243-267.
[69]Gleadow A J W, Brown R W. Fissiontrack thermochronology and the long-term denudational response to tectonics[C]∥Summerfield M A, ed. Geomorphology and Global Tectonics. Chichester: John Wiley & Sons, 2000:57-75.
[70]Kohn B P, Gleadow A J W, Brown R W,et al. Visualizing Thermotectonic and denudation histories using apatite fission track thermochronology[J].Reviews in Mineralogy and Geochemistry,2005, 58(1): 527-565.
[71]Reiners P W. Zircon (UTh)/He thermochronometry[J].Reviews in Mineralogy and Geochemistry,2005,58(1):151-179.
[72]Braun J. Quantifying the effect of recent relief changes on ageelevation relationships[J].Earth and Planetary Science Letters,2002, 200(3/4):331-343.
[73]Spikings R A, Winkler W, Seward D,et al. Alongstrike variations in the thermal and tectonic response of the continental Ecuadorian Andes to the collision with heterogeneous oceanic crust[J].Earth and Planetary Science Letters,2001, 186(1): 57-73.
[74]Willett S D, Fisher D, Fuller C,et al. Erosion rates and orogenicwedge kinematics in Taiwan inferred from fission-track thermochronometry[J].Geology,2003, 31(11): 945-948.
[75]Blythe A E, Burbank D W, Carter A,et al. PlioQuaternary exhumation history of the central Nepalese Himalaya: 1. Apatite and zircon fission track and apatite[U-Th]/He analyses[J].Tectonics,2007,26(3):TC3002,doi:10.1029/2006TC001990.
[76]Ding Ruxin, Zhou Zuyi, Wang Wei. Modeling exhumation rates of orogenic belts with low-temperature thermochronological data[J].Advances in Earth Science,2007, 22(5): 447-455.[丁汝鑫, 周祖翼, 王玮.利用低温热年代学数据计算造山带剥露速率[J]. 地球科学进展, 2007, 22(5): 447-455.]
[77]Yamada K, Tagami T. Postcollisional exhumation history of the Tanzawa tonalite complex, inferred from (U-Th)/He thermochronology and fission track analysis[J].Journal of Geophysical Research,2008, 113(B3): B03402, doi:10.1029/2007-JB005368.
[78]Zhou Zuyi, Xu Changhai, Reiners P W,et al. Late CretaceousCenozoic exhumation history of Tiantangzhai region of Dabieshan Orogen: Constraints from (U-Th)/He and fission track analysis[J].Chinese Science Bulletin,2003,48(11): 1 151-1 156.[周祖翼, 许长海, Reiners P W,等. 大别山天堂寨地区晚白垩世以来剥露历史的(U-Th)/He和裂变径迹分析证据 [J]. 科学通报,2003, 48(6): 598-602.]
[79]Stockli D F. Application of low-temperature thermochronometry to extensional Tectonic settings[J].Reviews in Mineralogy and Geochemistry,2005, 58(1): 411-448.
[80]Seward D, Vanderhaeghe O, Siebenaller L,et al. Cenozoic tectonic evolution of Naxos island through a multi-faceted approach of fissiontrack analysis[J].Geological Society, London, Special Publications,2009, 321(1): 179-196.
[81]Brichau S, Ring U, Ketcham R A,et al.Constraining the longterm evolution of the slip rate for a major extensional fault system in the central Aegean, Greece, using thermochronology[J].Earth and Planetary Science Letters,2006, 241(1/2): 293-306.
[82]Armstrong P A, Ehlers T A, Chapman D S,et al. Exhumation of the central Wasatch mountains, Utah: 1. Patterns and timing of exhumation deduced from low-temperature thermochronology data[J].Journal of Geophysical Research,2003, 108(B3):2 172, doi: 10.1029/2001JB001708.
[83]Tippett J M, Kamp P J J. Fission track analysis of the late cenozoic vertical kinematics of continental pacific crust, south island, New Zealand[J].Journal of Geophysical Research,1993, 98(B9): 16 119-16 148.
[84]Murakami M, Tagami T, Hasebe N. Ancient thermal anomaly of an active fault system: Zircon fission-track evidence from Nojima GSJ 750 m borehole samples[J].Geophysical Research Letters,2002, 29(23): 2 123.
[85]Tagami T, Murakami M. Probing fault zone heterogeneity on the Nojima fault: Constraints from zircon fissiontrack analysis of borehole samples[J].Tectonophysics,2007, 443(3/4): 139-152.
[86]Gallagher K. Evolving temperature histories from apatite fission-track data[J].Earth and Planetary Science Letters,1995,136(3/4): 421-435.
/
〈 |
|
〉 |