The Fission-track technique is a unique low-temperature thermochronology for assessment of time-temperature dependent evolution in various geological settings. Because of a higher closure temperature and partial annealing zone than apatite fission-track, zircon fission-track has a featured geological significance and application. Since the last decade of the 20th century, there has been a great number annealing research performed on zircon fission-track, including annealing properties, track measurement, annealing models, and annealing knowledge from samples of outcrops and boreholes. An investigation of zircon fission track has been made firstly in general covering various analytical procedures, measurement standards, experiment annealing models, coupled with a comparison between closure temperature and partial annealing zone obtained from different methods. Some major applications of zircon fission-track are summarized then, concerning analysis of sediment provenance and thermal history of the basin, cooling and exhumation of the orogen, and faulting thermal adjustment. It is pointed out that the combination of fission-track and (U-Th)/He is the future research trend.