Please wait a minute...
img img
Adv. Search
Advances in Earth Science  2019, Vol. 34 Issue (11): 1131-1140    DOI: 10.11867/j.issn.1001-8166.2019.11.1131
    
Technical Challenges and Engineering Solutions for Gas Pipelines in Permafrost Regions: A Review
Xinze Li1,2,3(),Huijun Jin1,4,5()
1. State Key Laboratory of Frozen Soils Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
2. Colleage of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
3. Sinopec Petroleum Engineering Co. , Shandong Dongying 257026,China
4. School of Civil Engineering, Harbin Institute of Technology, Harbin 150090,China
5. International Research Center for Polar and Cold Regions Engineering (IRC-PaCRE), Polar Academy of Harbin Institute of Technology (PA-HIT), Harbin 150090, China
Download:  HTML  PDF (1284KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Oil and gas pipelines in permafrost regions differ greatly from those in temperate climate zones. People only know that these pipelines were constructed in remote areas with fragile environments. However, gas pipeline engineering, construction, operation and management will face a series of unique problems because of unforgiving environment, special hydrogeology, engineering geology, and freezing and thawing disasters. Being different from the Trans-Alaska Pipeline System, Roman Wells Oil Pipeline, China-Russia Crude Oil Pipeline from Mo’he to Daqing and Golmud-Lhasa Oil Products Pipeline, natural gas pipelines in permafrost regions face new problems and challenges in many areas including different transporting media, gas flow temperature control and environmental protection. This paper systematically reviewed issues such as chilled transporting processes, coupled hydrothermal-hydraulic-mechanical modeling of the pipe-soil system, temperature overrun in station outage scenarios, engineering constraints of stress-based design, single laying method and low reliability of monitoring system during operating stage. Initial framework solutions were proposed in the hope of identifying new approaches for gas pipeline in northern and upland permafrost regions.

Key words:  Natural gas pipeline      Permafrost      Chilled transporting processes      Coupled thermal-hydraulic-mechanical modeling      Strain-based design for gas pipelines.     
Received:  23 June 2019      Published:  31 December 2019
ZTFLH:  P642.14  
Fund: the Applied Science of Sinopec Petroleum Engineering Construction Co. LTD "Feasibility study on key technologies for Alaska natural gas pipeline construction"
Corresponding Authors:  Huijun Jin     E-mail:  slecclxz@sina.com;hjjin@lzb.ac.cn
About author:  Li Xinze (1987-), male, Karamay City, Xinjiang Uygur Autonomous Region, Ph.D student. Research areas include permafrost and cold zone engineering. E-mail:slecclxz@sina.com
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Xinze Li
Huijun Jin

Cite this article: 

Xinze Li,Huijun Jin. Technical Challenges and Engineering Solutions for Gas Pipelines in Permafrost Regions: A Review. Advances in Earth Science, 2019, 34(11): 1131-1140.

URL: 

http://www.adearth.ac.cn/EN/10.11867/j.issn.1001-8166.2019.11.1131     OR     http://www.adearth.ac.cn/EN/Y2019/V34/I11/1131

Fig.1  Pesssure and temperature graph of one arctic gas pipeline(winter scenario)
Red line stands for pressure and blue line stands for temperature
Fig.2  Pesssure and temperature graph of one arctic gas pipeline(summer scenario)
Red line stands for pressure and blue line stands for temperature
Fig.3  Pipeline operating temperature control line
Fig.4  Process flow diagram of single-unit compressor station with coolers
序号标准H2S指标控制
1欧洲标准EN 16726-2016《燃气基础设施气体质量H组》5 mg/m3
2

德国燃气和水工业协会标准

DVGW G 260-2013《气体质量》

5 mg/m3
3美国燃气协会标准AGA 4A-2009《天然气合同计量和质量条款》5.7~23 mg/m3
4俄罗斯国家标准GOST 5524-2014《工业和公共生活用可燃天然气》20 mg/m3
5美国AGA 4A报告5.72~22.88 mg/m3
6加拿大标准BNQ 3672-100:2012

≤7 mg/m3(分配)

≤23 mg/m3(输送)

7中国GB17820-2018《天然气》6 mg/m3
Table 1  H2S content requirement in relavent standards of some countries
技术方案缺点优点

技术方案1:

提高失效压气站上游压气站出站温度

过分提高压气站的出口温度,很容易引起冻土融化和管道融沉不增加投资

技术方案2:

在可能超低温管段选用高性能管材

增加投资保证管道继续在高输量下运行

技术方案3:

降低管道输量

1.需精确计算某压气站失效后管道的最高允许输量,计算结果受季节、失效压气站位置等因素影响,逻辑控制不好实现

2.降低管道全年输量

3.由于输量降低,其他压气站运行低负荷,当低负荷超限,引发其他压气站失效

4.离心压缩机由于进气量降低,容易引发喘振,需要采取站内打回流操作,造成能量浪费

5.燃驱压缩机在低负荷运行,污染物排放容易超标

不增加投资

技术方案4:

增设加热站,当某压气站失效停机,加热站投用

增加投资保证管道继续在高输量下运行
Table 2  Comparison table of technical scheme
序号国家规范名称
1中国《西气东输二线管道工程强震区和活动断层区段埋地管道基于应变设计导则》
2加拿大CSA Z662
3挪威DNV-OS-F101
4美国《埋地管道设计指南》、ASM E B31.8、API 1111和ABS 2001
5中国SY/T 7403-2018《油气输送管道应变设计规范》
Table 3  Code or guidance for strain-based design of pipeline
序号管线名称使用条件
1西气东输二线活动断层、强震区
2BP-Northstar管线阿拉斯加极地浅海
3Statoil-Haltenpipe管线针对悬空及不稳定海床
4Connoco Philips- Ekofisk II管线海底管线极限状态设计
5BP-Alaska管线极地浅海管线
6Shell-Malampaya管线地震及不稳定海床管线极限状态设计
7ExxonMobil-Sakhalin Island管线地震区管线
8Enbridge-Norman Wells管线多年冻土区
9BP-Badami管线阿拉斯加极地地区
10阿尔博特-Nova 输气管线不连续冻土区
11TAPS输气管线多年冻土区
Table 4  Pipeline project application on strain-based design
序号敷设方案优点缺点国内外应用
1架空敷设

1.便于检修,降低事故机率,当事故出现后消除事故费时较少

2.管道与冻土地质关系不大,管道对冻土热影响极小,能有效保护冻土环境,规避各种冻害影响

3.不会妨碍天然气地表径流,高支墩管道不妨碍野生动物迁徙

1.易受第三方破坏,外冲击作用下比较脆弱,林区失火风险高

2.造价高,桩基易受冻拔作用,若配上热桩,建设费用更高

阿拉斯加管道近57%的管段
2地面敷设

1.对冻土热影响较小

2.线路无需进行大开挖,无须铺设锚固设施

1.易受第三方破坏

2.改变地表径流,易受冲刷,对地表生态影响大

3.对多年冻土有附加间接热力作用

4.妨碍野生动物迁徙

1.俄罗斯管道

2.阿拉斯加管道穿越断层处管段

3直接埋设+保温

1.防止森林失火,对生态破坏最小,方便荒野动物迁移,不会造成地表水径流的障碍

2.施工方便

3.总体费用低

1.事故发现和排除比较复杂

2.线路在冬季开挖困难,土方挖掘工程量大

3.事故出现机率与热作用关系很大,管道的热作用对地质环境有影响,难以准确预测

4.对管材的应力应变水平要求高

1.阿拉斯加管道近一半管段

2.俄罗斯远东管道(靠近中国的部分高含冰沼泽、洼地段)

3.中俄原油管道Ⅰ线和Ⅱ线

Table 5  The advantages and disadvantages of laying methods of gas pipeline in permafrost
1 Khataniar Santanu,He Enjiang,Dou Dianwu.Transportation of GTL product in north slope of Alaska[J]. Foreign Oilfield Engineering,2004,20(8):24-28.
1 Khataniar Santanu,何恩江, 窦殿武. 阿拉斯加北坡GTL产品的输送[J]. 国外油田工程,2004,20(8):24-28.
2 Alyeska Pipeline Service Company. Project Description of the Trans Alaska Pipeline System: Summary[M]. Anchorage, Alaska, US: Alyeska Pipeline Service Company, 1971.
3 Brewer M C, Jin Huijun,Hu Wanzhi, et al.The changes of design of the Alyeska pipeline and construction modes in permafrost areas, and their reasons and the philosophy behind it[J]. Journal of Glaciology and Geocryology, 2006, 28(6):809-817.
4 Nixon J F, Burgess M. Norman wells pipeline settlement and uplift movements[J]. Canadian Geotechnical Journal, 1999, 36(1): 119-135.
5 Doblanko R M, Oswell J M, Hanna A J. Right-of-Way and pipeline monitoring in permafrost: The Norman wells pipeline experience[C]//2002 4th International Pipeline Conference. American Society of Mechanical Engineers Digital Collection, 2002: 605-614.
6 Wang Fei, Li Guoyu, Ma Wei, et al.Permafrost warming along the Mo’he-Jiagedaqi section of the China-Russia crude oil pipeline[J]. Journal of Mountain Science, 2019, 16(2): 285-295.
7 Wang Yongping,Jin Huijun,Li Guoyu,et al.Secondary geohazards alone the operating Mohe-Jagdaqi section of China-Russia crude oil pipeline in permafrost regions:A case study on a seasonal frost mound at the site MDX364[J]. Journal of Glaciology and Geocryology, 2015,37(3):731-739.
7 王永平,金会军,李国玉,等. 漠河—加格达奇段多年冻土区中俄原油管道运营以来的次生地质灾害研究——以MDX364处的季节性冻胀丘为例[J]. 冰川冻土,2015,37(3):731-739.
8 He Ruixia,Jin Huijun,Lanzhi Lü,et al.Permafrost and environment problems along the Golmud-Lhasa oil product pipeline and their mitigation[J]. Journal of Glaciology and Geocryology,2010,32(1):18-27.
8 何瑞霞,金会军,吕兰芝,等. 格尔木—拉萨成品油管道沿线冻土工程和环境问题及其防治对策[J]. 冰川冻土,2010,32(1):18-27.
9 DeGeer D, Nessim M. Arctic pipeline design considerations[C]//ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering. American Society of Mechanical Engineers Digital Collection, 2008: 583-590.
10 Jin Huijun,Yu Wenbing,Chen Youchang, et al. (Differential) frost heave and thaw settlement in the engineering design and construction of oil pipeline in permafrost regions: A review[J]. Journal of Glaciology and Geocryology, 2005, 27(3):455- 464.
10 金会军, 喻文兵, 陈友昌, 等.多年冻土区输油管道工程中的(差异性)融沉和冻胀问题[J].冰川冻土,2005, 27 (3):455-464.
11 Oswell J M.Pipelines in permafrost: Geotechnical issues and lessons[J]. Canadian Geotechnical Journal,2011,48(9): 1 412-1 431.
12 Li Junfeng,Hongqing Lü,Li Zhuxin. Experience and revelation learned from foreign pipeline construction projects in permafrost regions[J]. Petroleum Engineering Construction,2006,6(6):1-4.
12 李均峰,吕宏庆,李著信. 国外多年冻土区管道建设的经验与启示[J].石油工程建设, 2006,6(6):1-4.
13 Zhao Mingshi,Wu Ming,Dong Youzhi. Analysis of internal CO2 corrosion of oil and gas pipelines[J]. Corrosion & Protection in Petrochemical Industry,2007,24(1):33-35.
13 赵名师,吴明,董有智. 管道内CO2腐蚀分析[J]. 石油化工腐蚀与防护,2007,24(1):33-35.
14 Jurca T, Coutts R J, Nixon J F, et al. Thermal-hydraulics modeling for buried gas pipeline strain-based design[C]//The 27th International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers, 2017.
15 Luo Dongliang, Jin Huijun, He Ruixia, et al. Characteristics of water‐heat exchanges and inconsistent surface temperature changes at an elevational permafrost site on the Qinghai‐Tibet Plateau[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(18): 10 057-10 075.
16 Luo Dongliang, Jin Huijun, Jin Xiaoying, et al. Elevation‐dependent thermal regime and dynamics of frozen ground in the Bayan Har Mountains,northeastern Qinghai-Tibet Plateau, southwest China[J]. Permafrost and Periglacial Processes, 2018, 29(4): 257-270.
17 Zhang Zhongqiong, Wu Qingbai, Liu Yongzhi, et al. Characteristics of water and heat changes in near-surface layers under influence of engineering interface[J]. Applied Thermal Engineering, 2017, 125: 986-994.
18 Li Guoyu,Ma Wei,Zhou Zhiwei,et al. The limit state of pipeline based on stain design on cold regions[J]. Journal of Glaciology and Geocryology,2016,38(4):1 099-1 105.
18 李国玉,马巍,周志伟,等. 寒区输油管道基于应变设计的极限状态研究[J]. 冰川冻土,2016,38(4):1 099-1 105.
19 Ma Xiaofang,Xie Wenjiang. The prospect of transfer pipeline based on strain design in China[J]. Welded Pipe and Tube,2010,33(4):62-65.
19 马小芳,谢文江. 输送管线基于应变的设计方法在我国的前景与展望[J]. 焊管,2010,33(4):62-65.
20 Hall W J, Nyman D J, Johnson E R, et al. Performance of the Trans-Alaska pipeline in the november 3, 2002 denali fault earthquake[M]//Advancing Mitigation Technologies and Disaster Response for Lifeline Systems, 2003: 522-534.
21 Zhao Li,Jiang Huayi,Deng Ling.Natural gas pipeline special design and construction in permafrost[J].Inner Mongolia Petrochemical Industry,2008,(20):18-21.
21 赵莉,蒋华义,邓灵. 阿拉斯加地区天然气管线的特殊设计和建设[J]. 内蒙古石油化工,2008,(20):18-21.
22 Li Guoyu,Ma Wei,Wang Xueli,et al.Frost hazards and mitigative measures following operation of Mohe-Daqing line of China-Russia cude oil pipeline[J]. Rock and Soil Mechanics,2015,36(10):2 964-2 972.
22 李国玉,马巍,王学力,等. 中俄原油管道漠大线运营后面临一些冻害问题及防治措施建议[J]. 岩土力学,2015,36(10):2 964-2 972.
23 Lu Jianguo,Zhang Mingyi,Zhang Xiyin,et al.Review of the coupled hydro-thermo-mechanical interaion of frozen soil[J]. Journal of Glaciology and Geocryology,2017,39(1):102-111.
23 路建国,张明义,张熙胤,等. 冻土水热力耦合研究现状及进展[J].冰川冻土,2017, 39(1):102-111.
24 Zhou Zhiwei, Ma Wei, Zhang Shujuan.Effect of freeze-thaw cycles in mechanical behaviors of frozen loess[J]. Cold Regions Science and Technology, 2018, 146: 9-18.
25 Huang Long,Sheng Yu,Hu Xiaoying,et al.Intercations between the pipeline and soils in permafrost:A review[J]. Journal of Glaciology and Geocryology,2017,39(1):112-122.
25 黄龙,盛煜,胡晓莹,等. 冻土区管土相互作用研究综述[J]. 冰川冻土,2017,39(1):112-122.
26 Brewer M C, Jin Huijun, Hu Wanzhi, et al. The change of design of the Alyeska Pipeline and construction modes in permafrost areas, and their reasons and the philosophy behind it[J]. Journal of Glaciology and Geocryology, 2006, 28(6): 809-817.
26 Brewer M C,金会军,胡万志,等. 阿拉斯加输油管的设计和施工方式方案变更过程及其背后的原因和哲学思想[J]. 冰川冻土, 2006, 28(6): 809-817.
27 Liu Yali,Wang Junfeng,Wu Qingbai.The linear engineering impact on the eco-environment in permafrost regions:Research status and prospect[J]. Journal of Glaciology and Geocryology,2018,40(4):728-737.
27 刘亚丽,王俊峰,吴青柏. 多年冻土区线性工程的生态环境影响研究现状与展望[J]. 冰川冻土,2018,40(4): 728-737.
28 Luo Dongliang, Jin Huijun, Marchenko S S, et al. Difference between near-surface air, land surface and ground surface temperatures and their influences on the frozen ground on the Qinghai-Tibet Plateau[J]. Geoderma, 2018, 312: 74-85.
29 Koui Kim,Wei Zhou,Huang S L.Frost heave predictions of buried chilled gas pipelines with the effect of permafrost[J]. Cold Regions Science and Technology,2008,53(1):382-396.
30 Hongqing Lü,Pu Xiaobo,Xue Hongjiang. Study on engineering technology for pipelines in permafrost[J]. Journal of Logistical Engineering University,2010,26(2):25-28.
30 吕宏庆,蒲小波,薛洪江. 多年冻土区管道的设计技术研究[J]. 后勤工程学院学报,2010,26(2):25-28.
31 Liu Bing, Liu Xuejie, Zhang Hong. Strain-based design criteria of pipelines[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(6): 884-888.
32 Zhou J, Horsley D, Rothwell B. Application of strain-based design for pipelines in permafrost areas[C]//2006 International Pipeline Conference. American Society of Mechanical Engineers Digital Collection, 2006: 899-907.
33 Jin Huijun, Brewer M C. Experiences and lessons learned in the engineering design and construction in the Alaska Arctic[J]. Journal of Glaciology and Geocryology, 2005, 27(1):140- 145.
33 金会军,Brewer M C. 阿拉斯加北极地区的工程设计和施工经验及教训[J]. 冰川冻土,2005,27(1):140-145.
34 Konuk I. Arctic pipeline design challenges and current practices: Ice scour[C]//ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2009: 155-162.
35 He Ruixia, Jin Huijun.Permafrost and cold-region environmental problems of the oil product pipeline from Golmud to Lhasa on the Qinghai-Tibet Plateau and their mitigation[J]. Cold Regions Science and Technology,2010,64(3): 279-288.
36 Wang Yongping,Jin Huijun,Hao Jiaqian, et al. Pipe-laying technology in a subarctic permafrost region—A case study for the China-Russia crude oil pipeline from Mo'he to Daqing, Northern Northeast China[C]//Proceedings of the 68th Canadian Geotechnical Conference and 7th Canadian Permafrost Conference. Quebec, Canada, 2015.
37 Dong Peng,Zheng Dahai,Huang Jianzhong, et al. Monitoring on the temperature field around buried pipeline of Mohe-Daqing crude oil pipeline in the permafrost region[J]. Oil & Gas Storage and Transportation,2018,37(5):533-540.
37 董鹏,郑大海,黄建忠,等. 漠大多年冻土区埋地输油管道周围温度场监测[J].油气储运,2018,37(5):533-540.
38 Wang Fei, Li Guoyu, Ma Wei, et al.Permafrost thawing along the China-Russia Crude Oil Pipeline and countermeasures: A case study in Jiagedaqi, Northeast China[J]. Cold Regions Science and Technology,2018, 155: 308-313.
39 Fu Yuanhui,Ma Guiyang,Du Mingjun,et al. Research on freeze-thaw hazards and protective measures of buried hot oil pipeline in permafrost regions[J]. Contemporary Chemical Industry,2017,46(3):493-495.
39 富元晖,马贵阳,杜明俊,等. 冻土区埋地热油管道冻融危害及防护措施研究[J]. 当代化工,2017,46(3):493-495.
40 Wang Yongping, Jin Huijun, Li Guoyu. Investigation of the freeze-thaw states of foundation soils in permafrost areas along the China-Russia Crude Oil Pipeline (CRCOP) route using the ground penetrating radar[J]. Cold Regions Science and Technology, 2016, 126: 10-21.
41 Yu Wenbing, Han Fenglei, Liu Weibo, et al. Geohazards and thermal regime analysis of oil pipeline along the Qinghai-Tibet Plateau Engineering Corridor[J]. Natural Hazards, 2016,83(1): 193-209.
42 Li Guoyu, Ma Wei, Wang Xueli, et al. Frost hazards and mitigative measures following operation of Mohe-Daqing line of China-Russia crude oil pipeline[J]. Rock and Soil Mechanics, 2015, 36(10): 2 963-2 973.
No Suggested Reading articles found!