Please wait a minute...
img img
Adv. Search
Advances in Earth Science  2017, Vol. 32 Issue (7): 696-706    DOI: 10.11867/j.issn.1001-8166.2017.07.0696
    
The Characteristic of Deep Sea Hydrothermal Ecosystem and Their Impact on the Extreme Microorganism
Zhang Liang1, 2, Qin Yunshan1
1.Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2.Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
Download:  HTML  PDF (10695KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Deep-sea is one of the most important extreme environments on the earth. Numerous and diverse extremophiles thrive in this extreme environment, presenting distinctive physiological structure, metabolic mechanism and symbiosis relations, which provide new methods to study the origin of life and extraterrestrial life. Despite extensive studies on deep-sea extremophiles from the point of view of biology, the impacts of deep-sea hydrothermal activity on the evolution of extremophiles remain largely unknown. On the basis of summarizing features of the deep-sea ziphysicochemical and geological environment, the distribution and formation mechanism of submarine hydrothermal vents were analyzed, respectively. Hydrothermal vents have great effect on the distribution and succession of communities. Our discussion focused on the extreme life forms of microorganisms surviving in the hydrothermal ecosystem and their important significance for the nutrient cycling and ecosystem evolution. However, the research of life processes in extreme environments is still in the primary stage and more work is needed on the in-situ detection technique, molecular biology and interdisciplinary research.
Key words:  Extremophiles      Deep-sea      Hydrothermal vents.      Extreme environment     
Received:  23 January 2017      Published:  20 July 2017
ZTFLH:  P735  
Fund: *Project supported by the National Natural Science Foundation of China “Tectonic differences and control factors of hydrothermal fields in the central northern and southern section of Okinawa Trough” (No.41406065); The National Key Basic Research Program of China “Hydrothermal activity and ore-forming mechanism in typical back-arc basins” (No.2013CB429700)
About author:  Zhang Liang (1985-), male, Qufu City, Shandong Province, Assistant Professor. Research areas include seafloor hydrothermal activity.E-mail:zhangliang@qdio.ac.cn
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Zhang Liang
Qin Yunshan

Cite this article: 

Zhang Liang, Qin Yunshan. The Characteristic of Deep Sea Hydrothermal Ecosystem and Their Impact on the Extreme Microorganism. Advances in Earth Science, 2017, 32(7): 696-706.

URL: 

http://www.adearth.ac.cn/EN/10.11867/j.issn.1001-8166.2017.07.0696     OR     http://www.adearth.ac.cn/EN/Y2017/V32/I7/696

[1] Tyler P. Ecosystems of the Deep Ocean[M]. Amsterdam: Elsevier Science Ltd., 2003.
[2] Lonsdale P. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers[J]. Deep Sea Research , 1977, 24(9): 857-863.
[3] Gold T. The deep, hot biosphere[J]. Proceedings of National Academy of Sciences , 1992, 89: 6 045-6 049.
[4] Reysenbach A L, Shock E. Merging genomes with geochemistry in hydrothermal ecosystems[J]. Science , 2002, 296(5 570): 1 077-1 082.
[5] Hasan N A, Grim C J, Lipp E K, et al . Deep-sea hydrothermal vent bacteria related to human pathogentic Vibrio species[J]. Proceedings of National Academy of Sciences , 2015, doi:10.1073/pnas.1503928112.
[6] Xiao Xiang, Zhang Yu. Life in extreme environments: Approaches to study life-environment co-evolutionary strategies[J]. Science in China ( Series D ), 2014, 57(5): 869-877.
. 中国科学:D辑, 2014, 44(6): 1 087-1 095.]
[7] Rothschild L J, Mancinelli R L. Life in extreme environments[J]. Nature , 2001, 409: 1 092-1 101.
[8] Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J]. Microbiological Reviews , 1995, 59(1): 143-169.
[9] Jørgensen B B, Boetius A. Feast and famine-microbial life in the deep-sea bed[J]. Nature Reviews Microbiology , 2007,5(10): 770-781.
[10] Li Xuegong, Xu Jun, Xiao Xiang. High pressure adaptation of deep-sea microorganisms and biogeochemical cycles[J]. Microbiology China , 2013, 40(1): 59-70.

[11] Nagano Y, Nagahama T. Fungal diversity in deep-sea extreme environments[J]. Fungal Ecology , 2012, 5(4): 463-471.
[12] Oyanagi R, Okamoto A, Hirano N, et al . Competitive hydration and dehydration at olivine-quartz boundary revealed by hydrothermal experiments: Implications for silica metasomatism at the crust-mantle boundary[J]. Earth and Planetary Science Letters , 2015, 425: 44-54.
[13] Haase K M, Petersen S, Koschinsky A, et al . Fluid compositions and mineralogy of precipiates from Mid Atlantic Ridge hydrothermal vents at 4°48'S[J]. PANGAEA ,2009,doi:10.1594/ PANGAEA. 727454.
[14] Fang J, Bazylinski D A. Deep Sea Geomicrobiology[M]. Washington DC: High-Pressure Microbiology ASM Press, 2008.
[15] Beaulieu S E, Baker E T, German C R, et al . Where are the undiscovered hydrothermal vents on oceanic spreading ridges?[J]. Deep-Sea ResearchⅡ : Topical Studies in Oceanography , 2015,doi:10.1016/j.dsr 2.2015.05.001i.
[16] Bird P. An updated digital model of plate boundaries[J]. Geochemistry Geophysics Geosystems , 2003, 4(3): 1 027, doi:10.1029/2001GC000252.
[17] Kelley D S, Baross J A, Delaney J R, et al. Volcanoes, fluids, and life at a mid-ocean ridge spreading centers[J]. Annual Review Earth & Planet Science , 2002, 30: 385-491.
[18] Kelley D S, Delaney J R, Lilley M D, et al . Unusual sulfide structures and venting style in the newly discovered Mothra Hydrothermal Field, Endeavour Segment of the Juan de Fuca Ridge[J]. Eos Transaction American Geophysical Union , 1997, 78: 46.
[19] Humphris S E, Herzig P M, Miller D J, et al . The internal structure of an active sea-floor massive sulphide deposit[J]. Nature , 1995, 377(6 551): 713-716.
[20] Christiansen B, Wolff G. The oceanography, biogeochemistry and ecology of two NE Atlantic seamounts: The OASIS project[J]. Deep-Sea Research Part II : Topical Studies in Oceanography , 2009, 56(25): 2 579-2 581.
[21] Shao Ke, Chen Jianping, Ren Mengyi. Evaluation methodology and indicator system of polymetallic sulfide mineral resources in the Indian Ocean[J]. Advances in Earth Science ,2015, 30(7): 812-822.
. 地球科学进展, 2015, 30(7): 812-822.]
[22] Yanagawa K, Nunoura T, McAllister S M, et al . The first microbiological contamination assessment by deep-sea drilling and coring by the D/V Chikyu at the Iheya North hydrothermal field in the Mid-Okinawa Trough (IODP Expedition 331)[J]. Frontiers in Microbiology , 2013, 4: 1-10.
[23] Hasterok D, Chapman D S, Davis E E. Ocean heat flow: Implications for global heat loss[J]. Earth Planetary Science Letters , 2011, 311(3/4): 386-395.
[24] Takai K, Oida H, Suzuki Y, et al . Spatial distribution of marine crenarchaeota group I in the vicinity of deep-sea hydrothermal systems[J]. Applied and Environmental Microbiology , 2004, 70(4): 2 404-2 413.
[25] Thornburg C T, Zabriskie T M, McPhail K L. Deep-sea hydrothermal vent: Potential hot spots for natural products discovery?[J]. Journal of Natural Products , 2010, 73: 489-499.
[26] Martin W, Baross J, Kelley D, et al . Hydrothermal vents and the origin of life[J]. Nature Reviews Microbiology , 2008, 6: 805-814.
[27] Baker E T, German C R, Elderfield H. Hydrothermal plumes over spreading-center axes: Global distributions and geological inferences[M]∥Hamphris S E, Zierenbeng R A, Mulineaux L S, et al , eds. Seafloor Hydnthermal Systems: Pjusical, Chemical, Biological, and Geological Interactions.2003.
[28] Beaulieu S E, Baker E T, German C R, et al . An authoritative global database for active submarine hydrothermal vent fields[J]. Geochemistry Geophysics Geosystems , 2013, 14(11): 4 892-4 905.
[29] Connelly D P, Copley J T, Murton B J, et al . Hydrothermal vent fields and chemosynthetic biota on the world’s deepest seafloor spreading centre[J]. Nature Communications , 2012,(3): 620.
[30] Luan Xiwu. Distribution and tectonic environments of the hydrothermal fields[J]. Advances in Earth Science , 2004, 19(6):931-938.
. 地球科学进展, 2004, 19(6): 931-938.]
[31] Beaulieu S E, Baker E T, German C R. Where are the undiscovered hydrothermal vents on oceanic spreading ridges?[J]. Deep-Sea Research Part II : Topical Studies in Oceanography , 2015, 121: 202-212.
[32] Van Dover C L. The Ecology of Deep-Sea Hydrothermal Vents[M]. Princeton, New Jersey:Princeton University Press,2000.
[33] Koschinsky A, Garbe-Schönberg D, Sander S, et al . Hydrothermal venting at pressure- temperature conditions above the critical point of seawater, 5°S on the Mid-Atlantic Ridge[J]. Geology , 2008, 36(8): 615-618.
[34] Tivey M K. Hydrothermal vent systems[J]. Oceanus , 1991, 34(4): 68-74.
[35] Edmond J M, Von Damm K L, Mcduff R E, et al . Chemistry of hot spring on the East Pacific Rise and their effluent dispersal[J]. Nature , 1982, 297: 187-191.
[36] Wei Manman, Chen Xinhua, Zhou Hongbo. Research process of microbial community in deep-sea hydrothermal vents[J]. Marine Science , 2012, 36(6): 113-121.
. 海洋科学, 2012, 36(6): 113-121.]
[37] Luan Xiwu, Qin Yunshan.Survey methods of modern hydrothermal activity[J]. Progress in Geophysics , 2002, 17(4): 592-597.
. 地球物理学进展, 2002, 17(4): 592-597.]
[38] Luan Xiwu, Zhao Yiyang, Qin Yunshan. A study on shape of hydrothermal plume[J]. Journal of Tropical Oceanography , 2002, 21(2): 91-97.
. 热带海洋学报, 2002, 21(2): 91-97.]
[39] Luan Xiwu. The shape of hydrothermal plume and observation of the submerged buoy[C]∥The 26 th Annual Meeting of China Geophysical Society. Ningbo, 2010.
∥中国地球物理学会第二十六届年会.宁波,2010.]
[40] Luan Xiwu, Zhao Yiyang, Qin Yunshan, et al . Heat flux estimates from hydrothermal system to the ocean[J]. Acta Oceanologica Sinica , 2002, 24(6): 59-66.
. 海洋学报, 2002, 24(6): 59-66.]
[41] Zhai Shikui, Wang Xingtao, Yu Zenghui, et al . Heat and mass flux estimation of modern seafloor hydrothermal activity[J]. Acta Oceanologica Sinica , 2005, 27(2): 115-121.
. 海洋学报, 2005, 27(2): 115-121.]
[42] Stein C A, Stein S. Constraints on hydrothermalheat flux through the oceanic lithospheric from global heat flow[J]. Journal of Geophysical Research , 1994, 99: 3 081-3 095.
[43] Rona P A,Hannington M D, Raman C V, et al. Active and relict sea-floor hydrothermal mineralization at the TAG hydrothermal field, Mid-Atlantic Ridge[J]. Economic Geology , 1993, 88: 1 989-2 017.
[44] Sylvan J B, Toner B M, Edwards K J. Life and death of deep-sea vents: Bacterial diversity and ecosystem succession on inactive hydrothermal sulfides[J]. MBio , 2012, 3(1): 1-10.
[45] Karl D M. The Microbiology of Deep-Sea Hydrothermal vents[M].Florida: CRC Press, 1995.
[46] Jin Xianglong. The development of research in marine geophysics and acoustic technology for submarineexploration[J]. Progress in Geophysics , 2007, 22(4): 1 243-1 249.
. 地球物理学进展, 2007, 22(4): 1 243-1 249.]
[47] Inagaki F, Takai K, Komatsu T, et al . Archaeology of Archaea:Geomicrobiological record of Pleistocene thermal events concealed in a deep-sea subseafloor environment[J]. Extremophiles , 2001, 5(6): 385-392.
[48] Ma Junying, Zhai Shikui. Biological communities of the hydrothermal area on the Iheya Bideg of Okinawa Trough[J]. Marine Science , 1996, 20(2): 30-34.
.海洋科学, 1996, 20(2): 30-34.]
[49] Tunnicliffe V, Fowler C M. Influence of sea-floor spreading on the global hydrothermal vent fauna[J]. Nature , 1996, 379(6 565): 531-533.
[50] Boetius A. Lost city life[J]. Science , 2005, 307: 1 420-1 422.
[51] Desbruyères D, Segonzac M, Bright M. Handbook of deep-sea hydrothermal vent fauna second completely revised edition[J]. Denisia , 2006,18:433-455.
[52] Wang Liling, Lin Jingxing, Hu Jianfang. Recent progress in deep-sea hydrothermal vent communities[J]. Advances in Earth Science , 2008, 23(6): 604-612.
. 地球科学进展, 2008, 23(6): 604-612.]
[53] Van Dover C L, Humphris S E, Fornari D, et al . Biogeography and ecological setting of Indian Ocean hydrothermal vents[J]. Science , 2001, 294(5 543): 818-823.
[54] Laubier L, Desbruyères D. Les oasis du fond des oceans[J]. La Recherche , 1984, 15: 1 506-1 517.
[55] López-García P,López-López A,Moreira D, et al .Diversity of free-living prokaryotes from a deep-sea site at the Antarctic Polar Front[J]. Fems Microbiology Ecology ,2001,36 (2/3):193-202.
[56] Childress J J, Fisher C R. The biology of hydrothermal vent animals: Physiology, biochemistry and auotrophic symbioses[J]. Oceanography and Marine Biology , 1992, 30: 337-441.
[57] Marcus J, Tunnicliffe V, Butterfield D A. Post-eruption succession of macrofaunal communities at diffuse flow hydrothermal vents on Axial Volcano, Juan de Fuca Ridge, Northeast Pacific[J]. Deep-Sea Research Part II : Topical Studies in Oceanography , 2009, 56(19): 1 586-1 598.
[58] Lutz R A, Kennish M J. Ecology of deep-sea hydrothermal vent communities: A review[J]. Reviews of Geophysics , 1993, 31(3): 211-242.
[59] Tsurumi M, Tunnicliffe V. Characteristics of a hydrothermal vent assemblage on a volcanically active segment of Juan de Fuca Ridge, northeast Pacific[J]. Canadian Journal of Fisheries and Aquatic Sciences , 2001, 58(3): 530-542.
[60] Takai K, Nakmura K. Archaeal diversity and community development in deep-sea hydrothermal vents[J]. Current Opinion in Microbiology , 2011, 14: 282-291.
[61] Nagano Y, Nagahama T. Fungal diversity in deep-sea extreme environments[J]. Fungal Ecology , 2012, 5(4): 463-471.
[62] Danovaro R, Dell’Anno A, Corinaldesi C, et al . Major viral impact on the functioning of benthic deep-sea ecosystems[J]. Nature , 2008, 454(7 208):1 084-1 087.
[63] Xi Feng, Zheng Tianling, Jiao Nianzhi, et al . A preliminary analysis of mechanism of deep sea microorganisms diversity[J]. Advances in Earth Science , 2004, 19(1): 38-46.
. 地球科学进展, 2004, 19(1): 38-46.]
[64] Gupta G N, Srivastava S, Khare S K, et al . Extremophiles: An overview of microorganism from extreme environment[J]. International Journal of Agriculture , Environment and Biotechnology , 2014, 7(2): 371-380.
[65] Moriya K, Horikoshi K. Isolation of a benzene-tolerant bacterium and its hydrocarbon degradation[J]. Journal of Fermentation & Bioengineering , 1993, 76(93): 168-173.
[66] Dang Hongyue, Song Linsheng, Li Tiegang, et al . Progress in the studies of subseafloor deep biosphere microorganisms[J]. Advances in Earth Science , 2005, 20(12): 1 306-1 313.
. 地球科学进展, 2005, 20(12): 1 306-1 313.]
[67] Corinaldesi C. New perspectives in benthic deep-sea microbial ecology[J]. Frontiers in Marine Science , 2015, 2: 1-12,doi:10.3389/fmars.2015.00017.
[68] Birrien J L, Zeng X, Jebbar M, et al . Pyrococcus yayanosii sp. Nov., an obligate piezophilic hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent[J]. International Journal of Systematic & Evolutionary Microbiology , 2011, 61(12): 2 827-2 881.
[69] Schrenk M O, Kelley D S, Delaney J R, et al . Incidence and diversity of microorganisms within the walls of an active deep-sea sulfide chimney[J]. Applied and Environmental Microbiology , 2003, 69(6): 3 580-3 592.
[70] Burgaud G, Hué N T, Arzur D A, et al . Effects of hydrostatic pressure on yeasts isolated from deep-sea hydrothermal vents[J]. Research in Microbiology , 2015, 166(9): 700-709.
[71] Sun Xiaoxia, Sun Song. Research progress of deep sea chemosyntheric ecosystems[J]. Advances in Earth Science , 2010, 25(5): 552-560.
. 地球科学进展, 2010, 25(5): 552-560.]
[72] Anantharaman K, Duhaime M B, Breier J A, et al . Sulfur oxidation genes in diverse deep-sea viruses[J]. Science , 2014, 344(6 185):757-760.
[73] Jiao Nianzhi, Li Chao, Wang Xiaoxue. Response and feedback of marine carbon sink to climate change[J]. Advances in Earth Science , 2016, 31(7): 668-681.
. 地球科学进展, 2016, 31(7): 668-681.]
[74] Cavanaugh C M, Gardiner S L, Jones M L, et al . Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: Possible chemoautotrophic symbionts[J]. Science , 1981, 213: 340-342.
[75] Nagahama T, Hamamoto M, Nakase T, et al . Rhodotorula benthica sp nov . and Rhodotorula calyptogenae sp nov., novel yeast species from animals collected from the deep-sea floor, and Rhodotorula lysiniphila sp nov., which is related phylogenetically[J]. International Journal of Systematic & Evolutionary Microbiology , 2003, 53: 897-903.
[76] Van Dover C L, Fry B. Microorganisms as food resources at deep-sea hydrothermal vents[J]. Limnology and Oceanography , 1994, 39(1): 51-57.
[77] Roberto D, Antonio D, Cinzia C, et al . Virus-mediated archaeal hecatomb in the deep seafloor[J]. Science Advances , 2016, 2(10): e1600492.
[78] Whitman W B, Coleman D C, Wiebe W J. Prokaryotes: The unseen majority[J]. Proceedings of the National Academy of Sciences , 1998, 95(12): 6 578-6 583.
[79] Berdy J. Bioactive microbial metabolites[J]. The Journal of antibiotics , 2005, 58(1): 1-26.
[80] Butler M S. Natural products to drugs: Natural product-derived compounds in clinical trials[J]. Natural Product Reports , 2008, 25(3): 475-516.
[81] Ren X Q, Sha Z L. Probathylepadidae, a new family of Scalpelliformes (Thoracica: Cirripedia: Crustacea), for Probathylepas faxian gen . nov., sp. nov., from a hydrothermal vent in the Okinawa Trough[J]. Zootaxa , 2015, 4 033(1): 144-150.
[1] Wu Jianghua,Zhao Pengxiang,Nigel Roulet,Jonathan Seaquist,Peng Changhui. Spatial scaling links the information across scales:A Review of Methodologies Used in Regional Eco-hydrological Modeling[J]. Advances in Earth Science, 2008, 23(2): 129 -141 .
[2] Jian Zhimin,Jin Haiyan. Ocean Carbon Cycle and Tropical Forcing of Climate Evolution[J]. Advances in Earth Science, 2008, 23(3): 221 -227 .
[3] Hu Yaowu,Michael P. Richards,Liu Wu,Wang Changsui. Application of Bone Chemistry Analysis to the Studies of Hominin Dietary Evolution[J]. Advances in Earth Science, 2008, 23(3): 228 -235 .
[4] Zhou Ping,Shi Junfa. Review on Seismic Methods for Mineral Exploration[J]. Advances in Earth Science, 2008, 23(2): 120 -128 .
[5] Zhang Qiang,Wang Sheng. On Land Surface Processes and Its Experimental Study in Chinese Loess Plateau
[J]. Advances in Earth Science, 2008, 23(2): 167 -173 .
[6] Duan Jing,Mao Jietai. Progress in Researches on Interaction between Aerosol and Cloud[J]. Advances in Earth Science, 2008, 23(3): 252 -261 .
[7] He Baogen,Wang Chu,Zhou Naisheng,Xu Shiyuan. An Investigation of Water Depth and Current Velocity Process in Periodic Inundation Area of East Chongming Tidal Flat, Yangtze Estuary[J]. Advances in Earth Science, 2008, 23(3): 276 -283 .
[8] Chen Cuihua,Ni Shijun,He Binbin,Zhang Chengjiang. Potential Ecological Risk Analysis of Heavy Metals Contamination Based on GIS Methods in Sediments of Dexing, Jiangxi Province, China[J]. Advances in Earth Science, 2008, 23(3): 312 -322 .
[9] Xiong Shengqing,Yu Changchun,Wang Weiping,FanZhengguo,Wang Naidong,Wan Jianhua. Large Scale Aero Geophysical Survey with Helicopter and Its Application to Deep Ore Prospecting[J]. Advances in Earth Science, 2008, 23(3): 270 -275 .
[10] Ren Juan,Xiao Honglang,Li Jinxiu,Zhao Liangju,Lu Mingfeng,Cheng Guodong. Coordinated Large-scale Environmental Observatories Plan and Relative Studies[J]. Advances in Earth Science, 2008, 23(3): 327 -330 .