Advances in Earth Science ›› 2024, Vol. 39 ›› Issue (11): 1136-1155.DOI: 10.11867/j.issn.1001-8166.2024.081
Previous Articles Next Articles
Jinqiu HE1(), Haipeng LI2,3(
), Mingcai HOU1,4
Received:
2024-07-05
Revised:
2024-10-18
Online:
2024-11-10
Published:
2025-01-17
Contact:
Haipeng LI
About author:
HE Jinqiu, research area includes sedimentology. E-mail: 2022050768@stu.cdut.edu.cn
Supported by:
通讯作者:
李海鹏
作者简介:
何锦秋,主要从事沉积学研究. E-mail:2022050768@stu.cdut.edu.cn
基金资助:
CLC Number:
Jinqiu HE, Haipeng LI, Mingcai HOU. Advances in Numerical Simulation Research of Source-to-Sink Systems: Comparison and Application of Multiple Models[J]. Advances in Earth Science, 2024, 39(11): 1136-1155.
何锦秋, 李海鹏, 侯明才. 沉积源—汇系统数值模拟研究进展:多模型比较与应用[J]. 地球科学进展, 2024, 39(11): 1136-1155.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.adearth.ac.cn/EN/10.11867/j.issn.1001-8166.2024.081
Fig. 1 The model of the sediment routing systems (modified after reference [5])The sediment source-to-sink system comprises three subsystems: the erosion zone[6-15], the transport zone[16-29], and the deposition zone[30-37]. D represents sediment input, and S represents sediment deposition
研究区 | 研究内容 | 研究方法 | 研究实例 | 参考文献 |
---|---|---|---|---|
物源区 | 构造隆升 | 地质年代学方法 | 磷灰石裂变径迹约束青藏高原东南缘中甸地区上新世的快速隆升 | [ |
风化 | 同位素地球化学方法 | 东亚大陆边缘入海河流沉积物来源和源区风化特征 | [ | |
侵蚀 | 支点法 | 利用水力学公式及比例关系估算古坡度和流动速度等参数,进而估算沉积通量 | [ | |
地层沉积通量法 | 根据陆坡的迁移速率、地层沉降速率、海平面变化速率和陆坡地形来估算沉积通量 | [ | ||
宇宙成因核素测年 | 测定集水区沉积物剥蚀率的变化 | [ | ||
搬运区 | 水力学参数 | 水力学参数比例关系法 | 利用现代河流系统各水力学参数之间的线性拟合关系,通过地层记录恢复古河道规模 | [ |
搬运路径 | 地震资料分析 | 基于地震资料分析陆相湖盆物源通道特征 | [ | |
物理水槽实验 | 河流系统对上游水流量变化和沉积物供给变化等环境扰动的响应 | [ | ||
河道几何特征 | 地貌要素比例关系法 | 陆坡长度是连接物源区地貌学参数和沉积区沉积物扩散参数的关键参数 | [ | |
沉积区 | 沉积体规模 | 沉积物岩芯分析 | 陆架边缘三角洲—深水扇源—汇耦合关系及成因机制 | [ |
沉积速率 | 放射性同位素测年法 | 利用14C估计北亚得里亚海盆地地层边界表面的年龄 | [ |
Table 1 Various traditional research methods in Source-to-Sink systems
研究区 | 研究内容 | 研究方法 | 研究实例 | 参考文献 |
---|---|---|---|---|
物源区 | 构造隆升 | 地质年代学方法 | 磷灰石裂变径迹约束青藏高原东南缘中甸地区上新世的快速隆升 | [ |
风化 | 同位素地球化学方法 | 东亚大陆边缘入海河流沉积物来源和源区风化特征 | [ | |
侵蚀 | 支点法 | 利用水力学公式及比例关系估算古坡度和流动速度等参数,进而估算沉积通量 | [ | |
地层沉积通量法 | 根据陆坡的迁移速率、地层沉降速率、海平面变化速率和陆坡地形来估算沉积通量 | [ | ||
宇宙成因核素测年 | 测定集水区沉积物剥蚀率的变化 | [ | ||
搬运区 | 水力学参数 | 水力学参数比例关系法 | 利用现代河流系统各水力学参数之间的线性拟合关系,通过地层记录恢复古河道规模 | [ |
搬运路径 | 地震资料分析 | 基于地震资料分析陆相湖盆物源通道特征 | [ | |
物理水槽实验 | 河流系统对上游水流量变化和沉积物供给变化等环境扰动的响应 | [ | ||
河道几何特征 | 地貌要素比例关系法 | 陆坡长度是连接物源区地貌学参数和沉积区沉积物扩散参数的关键参数 | [ | |
沉积区 | 沉积体规模 | 沉积物岩芯分析 | 陆架边缘三角洲—深水扇源—汇耦合关系及成因机制 | [ |
沉积速率 | 放射性同位素测年法 | 利用14C估计北亚得里亚海盆地地层边界表面的年龄 | [ |
Fig. 2 Examples of Source-to-Sink numerical simulation models(a) eSCAPE[75] simulates global-scale erosion and deposition; (b) HyLands[76] models the sediment thickness generated by landslides;(c) SPACE[77] models sediment thickness;(d) Transport Length Hill slope Diffuser[78] models the migration of river outlet positions under tectonic influence;(e) Terrainbento[79] models landscape evolution;(f) Sedflux[80] models grain size distribution in sedimentary basins
模型 | 源 | 传输区 | 汇 | 空间尺度 | 时间尺度 | 正演/反演 | 是否开源 | 主要模拟过程 | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
HEC-RAS | √ | √ | 局部尺度 | 数小时—数年 | 正演 | 开源 | 河流侵蚀沉积 | [ | |
CHILD | √ | √ | √ | 流域尺度 | 数千年—数百万年 | 正演 | 开源 | 河流侵蚀沉积 | [ |
Sedflux | √ | √ | √ | 盆地尺度 | 数年—数百万年 | 正演 | 开源 | 沉积物搬运沉积 | [ |
Bayesian | √ | √ | 可变 | 可变 | 反演 | 部分开源 | 取决于具体数据 | [ | |
BQART | √ | √ | 全球尺度 | 数年—数千年 | 反演 | 开源 | 沉积物通量估算 | [ | |
eSCAPE | √ | √ | √ | 全球尺度 | 数十万年 | 正演 | 开源 | 沉积物传输 | [ |
pyBadlands | √ | √ | √ | 全球尺度 | 数百万年 | 正演 | 开源 | 景观演化、沉积物输送 | [ |
CAESAR | √ | √ | √ | 流域尺度 | 数千年 | 正演 | 开源 | 河流侵蚀与沉积 | [ |
GOLEM | √ | √ | √ | 流域尺度 | 数千年 | 正演 | 专有 | 景观演化 | [ |
CHONK 1.0 | √ | √ | √ | 全球尺度 | 数千年 | 正演 | 开源 | 沉积物侵蚀、沉积 | [ |
ZSCAPE | √ | √ | √ | 流域尺度 | 数千年 | 正演 | 专有 | 景观演化 | [ |
Table 2 Different models or software that can be used for numerical simulation of source-sink systems
模型 | 源 | 传输区 | 汇 | 空间尺度 | 时间尺度 | 正演/反演 | 是否开源 | 主要模拟过程 | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
HEC-RAS | √ | √ | 局部尺度 | 数小时—数年 | 正演 | 开源 | 河流侵蚀沉积 | [ | |
CHILD | √ | √ | √ | 流域尺度 | 数千年—数百万年 | 正演 | 开源 | 河流侵蚀沉积 | [ |
Sedflux | √ | √ | √ | 盆地尺度 | 数年—数百万年 | 正演 | 开源 | 沉积物搬运沉积 | [ |
Bayesian | √ | √ | 可变 | 可变 | 反演 | 部分开源 | 取决于具体数据 | [ | |
BQART | √ | √ | 全球尺度 | 数年—数千年 | 反演 | 开源 | 沉积物通量估算 | [ | |
eSCAPE | √ | √ | √ | 全球尺度 | 数十万年 | 正演 | 开源 | 沉积物传输 | [ |
pyBadlands | √ | √ | √ | 全球尺度 | 数百万年 | 正演 | 开源 | 景观演化、沉积物输送 | [ |
CAESAR | √ | √ | √ | 流域尺度 | 数千年 | 正演 | 开源 | 河流侵蚀与沉积 | [ |
GOLEM | √ | √ | √ | 流域尺度 | 数千年 | 正演 | 专有 | 景观演化 | [ |
CHONK 1.0 | √ | √ | √ | 全球尺度 | 数千年 | 正演 | 开源 | 沉积物侵蚀、沉积 | [ |
ZSCAPE | √ | √ | √ | 流域尺度 | 数千年 | 正演 | 专有 | 景观演化 | [ |
Fig. 3 The simulation results of the sedimentary process of the first member of the Upper Wuerhe Formation in central and sorthern Mahu sag, northwestern Junggar Basin (modified after reference [104])(a) Stratigraphic thickness;(b) Sandstone thickness;(c) Strike section of Baijiantan fan
Fig. 4 The sedimentary process simulation results for the middle section of the Eocene Shahejie Formation in the Liaoxi Sag of the Bohai Bay Basin (modified after reference [106])(a)Geological time and source supply rate at the point source location;(b)Results of sedimentary facies evolution
Fig. 5 Utilizing SEDSIM to simulate the sedimentation and burial of jurassic sandstones in the Surat basin, Australia (modified after reference [111])
Fig. 6 SEDSIM simulation results of the modern shallow-water delta sedimentary system of Poyang Lake at different periods (modified after reference [113])(a) Initial sedimentary topography and sediment sources from the five major rivers;(b) Simulation at 0 a BP;(c) Simulation at 685 a BP;(d)Simulation at 950 a BP
Fig. 7 Landlab simulation of Source-to-Sink processes (modified after reference [53])(a)Initialization of the topographic model for simulating the evolutionary process of a large oceanic island undergoing active asymmetric rifting through multi-component coupling;(b)Simulation results;(c)Distribution map of sediment accumulation thickness
Fig. 8 Continental sediment cover temporal evolution (modified after reference [119])(a) Distribution of continental sedimentary centers at 65 million years ago;(b) Distribution of continental sedimentary centers at 20 million years ago;(c) Distribution of continental sedimentary centers at 0 million years ago;(d) Simulation of sediment thickness during and after the India-Asia continental collision, including the formation of the Himalayan foreland basin and the filling of the Tarim Basin and the Qaidam Basin on the northern margin of the Tibet Plateau
Fig. 10 Developmental stages of a delta (modified after reference [125])(a)Formation of the initial mouth bar;(b)Planform characteristics during the mid-growth stage;(c)Planform processes during the late growth stage
模型 | 主要特点 | 沉积源—汇系统中的应用 | 优势 | 局限性 |
---|---|---|---|---|
Dionisos | 基于过程的正向建模;模拟沉积物运输、沉积和压实;处理多种沉积物类型;考虑海平面变化和构造沉降 | 沉积物传输;地层结构建模;预测沉积物分布模式;石油地质学中的储层特征 | 高分辨率3D可视化;适用于沉积盆地的长期演化,能够较好地还原复杂的沉积环境;大尺度模拟 | 基于扩散方程导致模拟结果平均化;不擅长模拟短时间尺度的动态变化;高计算资源需求 |
SEDSIM | 3D正向地层建模;模拟碎屑沉积过程;结合海平面波动、沉降和压实;模拟浊流和三角洲系统 | 沉积物传输;地层演变;评估碎屑岩系统中的储层潜力 | 详细的过程模拟,符合实际情况;大尺度模拟;地层演变的可视化 | 方程求解复杂,模拟速度慢;不适合碳酸盐岩模拟;模拟时空尺度受限 |
Landlab | 基于组件的架构;集成各种地貌过程;基于Python的可扩展模块;适合与其他模型耦合 | 模拟景观演化;模拟沉积源—汇系统沉积物的产生、传输、沉积模式 | 开源且用户友好;高度可定制;活跃的用户社区和支持;适用于各种空间和时间尺度 | 需要编程知识;可能需要针对复杂应用程序进行额外开发;精度不如专有模型 |
goSPL | 基于过程的景观演化建模;结合沉积物生产、运输和沉积;处理隆起、侵蚀和沉积物通量 | 从源到汇的沉积物传输;研究构造和气候对沉积物供应的影响;沉积物收支计算 | 适用于全球尺度的景观演化研究;允许与地球动力学模型耦合;开源且可定制 | 需要编程知识;需要大量计算资源;局部地质现象处理可能有限 |
Delft3D | 基于过程的水动力学建模;模拟沉积物输送;2D和3D建模 | 模拟河流和三角洲中的沉积物输送;模拟沿海和河口形态变化;评估海平面对沉积的影响 | 开源;适用于短期小尺度的研究;适用于精细模拟;可模拟溶解质传输 | 不适用于大尺度模拟; 不适合碳酸盐岩模拟 |
Table 3 Comparison and scope of application of different Source-to-Sink numerical models
模型 | 主要特点 | 沉积源—汇系统中的应用 | 优势 | 局限性 |
---|---|---|---|---|
Dionisos | 基于过程的正向建模;模拟沉积物运输、沉积和压实;处理多种沉积物类型;考虑海平面变化和构造沉降 | 沉积物传输;地层结构建模;预测沉积物分布模式;石油地质学中的储层特征 | 高分辨率3D可视化;适用于沉积盆地的长期演化,能够较好地还原复杂的沉积环境;大尺度模拟 | 基于扩散方程导致模拟结果平均化;不擅长模拟短时间尺度的动态变化;高计算资源需求 |
SEDSIM | 3D正向地层建模;模拟碎屑沉积过程;结合海平面波动、沉降和压实;模拟浊流和三角洲系统 | 沉积物传输;地层演变;评估碎屑岩系统中的储层潜力 | 详细的过程模拟,符合实际情况;大尺度模拟;地层演变的可视化 | 方程求解复杂,模拟速度慢;不适合碳酸盐岩模拟;模拟时空尺度受限 |
Landlab | 基于组件的架构;集成各种地貌过程;基于Python的可扩展模块;适合与其他模型耦合 | 模拟景观演化;模拟沉积源—汇系统沉积物的产生、传输、沉积模式 | 开源且用户友好;高度可定制;活跃的用户社区和支持;适用于各种空间和时间尺度 | 需要编程知识;可能需要针对复杂应用程序进行额外开发;精度不如专有模型 |
goSPL | 基于过程的景观演化建模;结合沉积物生产、运输和沉积;处理隆起、侵蚀和沉积物通量 | 从源到汇的沉积物传输;研究构造和气候对沉积物供应的影响;沉积物收支计算 | 适用于全球尺度的景观演化研究;允许与地球动力学模型耦合;开源且可定制 | 需要编程知识;需要大量计算资源;局部地质现象处理可能有限 |
Delft3D | 基于过程的水动力学建模;模拟沉积物输送;2D和3D建模 | 模拟河流和三角洲中的沉积物输送;模拟沿海和河口形态变化;评估海平面对沉积的影响 | 开源;适用于短期小尺度的研究;适用于精细模拟;可模拟溶解质传输 | 不适用于大尺度模拟; 不适合碳酸盐岩模拟 |
113 | 黄秀, 刘可禹, 邹才能, 等. 鄱阳湖浅水三角洲沉积体系三维定量正演模拟[J]. 地球科学, 2013, 38(5): 1 005-1 013. |
114 | HOBLEY D E J, ADAMS J M, NUDURUPATI S S, et al. Creative computing with Landlab: an open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics[J]. Earth Surface Dynamics, 2017, 5(1): 21-46. |
115 | BANDARAGODA C, CASTRONOVA A, ISTANBULLUOGLU E, et al. Enabling collaborative numerical modeling in Earth sciences using knowledge infrastructure[J]. Environmental Modelling & Software, 2019, 120. DOI: 10.1016/j.envsoft.2019.03.020 . |
116 | BARNHART K R, HUTTON E W H, TUCKER G E, et al. Short communication: Landlabv2.0: a software package for Earth surface dynamics[J]. Earth Surface Dynamics, 2020, 8(2): 379-397. |
117 | PFEIFFER A, BARNHART K, CZUBA J, et al. NetworkSedimentTransporter: a Landlab component for bed material transport through river networks[J]. Journal of Open Source Software, 2020, 5(53). DOI: 10.21105/joss.02341 . |
118 | SALLES T, HUSSON L, LORCERY M, et al. Landscape dynamics and the Phanerozoic diversification of the biosphere[J]. Nature, 2023, 624: 115-121. |
119 | SALLES T, HUSSON L, REY P, et al. Hundred million years of landscape dynamics from catchment to global scale[J]. Science, 2023, 379(6 635): 918-923. |
120 | SALLES T, MALLARD C, ZAHIROVIC S. Gospl: global scalable paleo landscape evolution[J]. Journal of Open Source Software, 2020, 5(56). DOI: 10.21105/joss.02804 . |
121 | SUO Yanhui, FU Xinjian, LI Sanzhong, et al. Review on dynamic simulation of paleo-landscape[J]. Journal of Palaeogeography, 2024, 26(1): 165-171. |
索艳慧, 付新建, 李三忠, 等. 古地貌动态模拟研究进展综述[J]. 古地理学报, 2024, 26(1): 165-171. | |
122 | HU K L, DING P X, WANG Z B, et al. A 2D/3D hydrodynamic and sediment transport model for the Yangtze Estuary, China[J]. Journal of Marine Systems, 2009, 77(1/2): 114-136. |
123 | COOPER C, EIDAM E, SEIM H, et al. Effects of sea ice on Arctic delta evolution: a modeling study of the Colville River delta, Alaska[J]. Journal of Geophysical Research: Earth Surface, 2024, 129(9). DOI: 10.1029/2024JF007742 . |
124 | WANG J, CHU A, DAI Z J, et al. Delft3D model-based estuarine suspended sediment budget with morphodynamic changes of the channel-shoal complex in a mega fluvial-tidal delta[J]. Engineering Applications of Computational Fluid Mechanics, 2024, 18(1). DOI: 10.1080/19942060.2023.2300763 . |
125 | TANG Hong, LONG Guanyu, ZHANG Zhang, et al. Sedimentary characteristics and evolution laws of a sandy braided river delta based on sediment numerical simulation[J]. Acta Sedimentologica Sinica, 2024. DOI:10.14027/j.issn.1000-0550.2024.088 . |
唐洪, 龙冠宇, 张章, 等. 基于沉积数值模拟的砂质辫状河三角洲沉积特征与演化规律研究[J].沉积学报, 2024. DOI:10.14027/j.issn.1000-0550.2024.088 . | |
126 | HUANG X, GRIFFITHS C M, LIU J. Recent development in stratigraphic forward modelling and its application in petroleum exploration[J]. Australian Journal of Earth Sciences, 2015, 62(8): 903-919. |
127 | WANG Yangjun, YIN Taiju, DENG Zhihao, et al. Terminal distributary channels in fluvial-dominated delta systems from numerical simulation of hydrodynamics[J]. Bulletin of Geological Science and Technology, 2016, 35(1): 44-52. |
王杨君, 尹太举, 邓智浩, 等. 水动力数值模拟的河控三角洲分支河道演化研究[J]. 地质科技情报, 2016, 35(1): 44-52. | |
128 | LESSER G R, ROELVINK J A, van KESTER J A T M, et al. Development and validation of a three-dimensional morphological model[J]. Coastal Engineering, 2004, 51(8): 883-915. |
129 | STEVENS A W, MORITZ H R, ELIAS E P L, et al. Monitoring and modeling dispersal of a submerged nearshore berm at the mouth of the Columbia River, USA[J]. Coastal Engineering, 2023, 181. DOI: 10.1016/j.coastaleng.2023.104285 . |
1 | TAN Mingxuan, ZHU Xiaomin, ZHANG Zili, et al. Summary of sedimentological issues and fundamental approaches in terms of ancient “Source-to-Sink” systems[J]. Natural Gas and Oil, 2020, 41(5): 1 107-1 118. |
谈明轩, 朱筱敏, 张自力, 等. 古“源—汇”系统沉积学问题及基本研究方法简述[J]. 石油与天然气地质, 2020, 41(5): 1 107-1 118. | |
2 | XIE Xinong, LIN Changsong, LI Zhong, et al. Research reviews and prospects of sedimentary basin geodynamics in China[J]. Acta Sedimentologica Sinica, 2017, 35(5): 877-887. |
解习农, 林畅松, 李忠, 等. 中国盆地动力学研究现状及展望[J]. 沉积学报, 2017, 35(5): 877-887. | |
3 | XIE Xinong, REN Jianye, LEI Chao. Reviews and prospects of depositional basin dynamics[J]. Bulletin of Geological Science and Technology, 2012, 31(5): 76-84. |
解习农, 任建业, 雷超. 盆地动力学研究综述及展望[J]. 地质科技情报, 2012, 31(5): 76-84. | |
4 | LIU Qianghu, LI Zhiyao, CHEN Hehe, et al. Key geological issues and innovation directions in deep-time Source-to-Sink system of continental rift basins[J]. Earth Science, 2023, 48(12): 4 586-4 612. |
刘强虎, 李志垚, 陈贺贺, 等. 陆相裂陷盆地深时源—汇系统关键地质问题及革新方向[J]. 地球科学, 2023, 48(12): 4 586-4 612. | |
5 | TOFELDE S, BERNHARDT A, GUERIT L, et al. Times associated with Source-to-Sink propagation of environmental signals during landscape transience[J]. Frontiers in Earth Science, 2021, 9. DOI: 10.3389/feart.2021.628315 . |
6 | GUERIT L, BARRIER L, JOLIVET M, et al. Denudation intensity and control in the Chinese Tian Shan: new constraints from mass balance on catchment-alluvial fan systems[J]. Earth Surface Processes and Landforms, 2016, 41(8): 1 088-1 106. |
7 | MASON C C, ROMANS B W. Climate-driven unsteady denudation and sediment flux in a high-relief unglaciated catchment-fan using 26Al and 10Be: Panamint Valley, California[J]. Earth and Planetary Science Letters, 2018, 492: 130-143. |
8 | JONELL T N, CLIFT P D, HOANG L V, et al. Controls on erosion patterns and sediment transport in a monsoonal, tectonically quiescent drainage, Song Gianh, central Vietnam[J]. Basin Research, 2017, 29(): 659-683. |
9 | ALIZAI A, CLIFT P D, STILL J. Indus Basin sediment provenance constrained using garnet geochemistry[J]. Journal of Asian Earth Sciences, 2016, 126: 29-57. |
10 | BARKACH J H, MILLER C J, SELEGEAN J P, et al. Comparison of watershed sediment delivery estimates of 60 Michigan Rivers using the USACE Great Lakes regional trend line and the Syvitski and Milliman global BQART equation[J]. Journal of Hydrology, 2020, 582. DOI: 10.1016/j.jhydrol.2019.124460 . |
11 | MICHAEL N A, WHITTAKER A C, CARTER A, et al. Volumetric budget and grain-size fractionation of a geological sediment routing system: Eocene Escanilla Formation, south-central Pyrenees[J]. Geological Society of America Bulletin, 2014, 126(3/4): 585-599. |
12 | HILTON R G, WEST A J. Mountains, erosion and the carboncycle[J]. Nature Reviews Earth & Environment, 2020, 1: 284-299. |
13 | LASAGA A C, SOLER J M, GANOR J, et al. Chemical weathering rate laws and global geochemical cycles[J]. Geochimica et Cosmochimica Acta, 1994, 58(10): 2 361-2 386. |
14 | MILLIMAN J D, SYVITSKI J P M. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers[J]. The Journal of Geology, 1992, 100(5): 525-544. |
15 | RICHTER F M, ROWLEY D B, DEPAOLO D J. Sr isotope evolution of seawater: the role of tectonics[J]. Earth and Planetary Science Letters, 1992, 109(1/2): 11-23. |
16 | DIETZE E, MAUSSION F, AHLBORN M, et al. Sediment transport processes across the Tibetan Plateau inferred from robust grain-size end members in lake sediments[J]. Climate of the Past, 2014, 10(1): 91-106. |
17 | DIBIASE R A, LAMB M P. Vegetation and wildfire controls on sediment yield in bedrock landscapes[J]. Geophysical Research Letters, 2013, 40(6): 1 093-1 097. |
18 | TOFELDE S, SAVI S, WICKERT A D, et al. Alluvial channel response to environmental perturbations: fill-terrace formation and sediment-signal disruption[J]. Earth Surface Dynamics, 2019, 7(2): 609-631. |
19 | WATKINS S E, WHITTAKER A C, BELL R E, et al. Straight from the source’s mouth: controls on field-constrained sediment export across the entire active Corinth Rift, central Greece[J]. Basin Research, 2020, 32(6): 1 600-1 625. |
20 | LI Y T, CLIFT P D, BÖNING P, et al. Continuous Holocene input of river sediment to the Indus Submarine Canyon[J]. Marine Geology, 2018, 406: 159-176. |
21 | CHURCH M. Geomorphic thresholds in riverine landscapes[J]. Freshwater Biology, 2002, 47(4): 541-557. |
22 | JEROLMACK D J, PAOLA C. Shredding of environmental signals by sediment transport[J]. Geophysical Research Letters, 2010, 37(19). DOI: 10.1029/2010GL044638 . |
23 | ALLEN J P. The attachment system in adolescence[M]. New York: The Guilford Press, 2008. |
24 | ARMITAGE S J, JASIM S A, MARKS A E, et al. The southern route “out of Africa”: evidence for an early expansion of modern humans into Arabia[J]. Science, 2011, 331(6 016): 453-456. |
25 | COULTHARD T J, van de WIEL M J. Climate, tectonics or morphology: what signals can we see in drainage basin sediment yields?[J]. Earth Surface Dynamics, 2013, 1(1): 13-27. |
26 | ROMANS B W, CASTELLTORT S, COVAULT J A, et al. Environmental signal propagation in sedimentary systems across timescales[J]. Earth-Science Reviews, 2016, 153: 7-29. |
27 | HOUSSAIS M, JEROLMACK D J. Toward a unifying constitutive relation for sediment transport across environments[J]. Geomorphology, 2017, 277: 251-264. |
28 | AMOS C L, JUDGE J T. Sediment transport on the eastern Canadian continental shelf[J]. Continental Shelf Research, 1991, 11(8/9/10): 1 037-1 068. |
29 | PHILLIPS C B, JEROLMACK D J. Self-organization of river channels as a critical filter on climate signals[J]. Science, 2016, 352(6 286): 694-697. |
30 | D’ARCY M, RODA-BOLUDA D C, WHITTAKER A C. Glacial-interglacial climate changes recorded by debris flow fan deposits, Owens Valley, California[J]. Quaternary Science Reviews, 2017, 169: 288-311. |
31 | BATAILLE C P, RIDGWAY K D, COLLIVER L, et al. Early Paleogene fluvial regime shift in response to global warming: a subtropical record from the Tornillo Basin, West Texas, USA[J]. GSA Bulletin, 2019, 131(1/2): 299-317. |
32 | BROMMER M B, WELTJE G J, TRINCARDI F. Reconstruction of sediment supply from mass accumulation rates in the northern Adriatic Basin (Italy) over the past 19, 000 years[J]. Journal of Geophysical Research: Earth Surface, 2009, 114(F2). DOI: 10.1029/2008JF000987 . |
33 | RIMSTIDT J D, CHERMAK J A, SCHREIBER M E. Processes that control mineral and element abundances in shales[J]. Earth-Science Reviews, 2017, 171: 383-399. |
34 | MADOF A S, HARRIS A D, CONNELL S D. Nearshore along-strike variability: is the concept of the systems tract unhinged?[J]. Geology, 2016, 44(4): 315-318. |
35 | DRAUT A E, CLIFT P D. Differential preservation in the geologic record of intraoceanic arc sedimentary and tectonic processes[J]. Earth-Science Reviews, 2013, 116: 57-84. |
36 | PETTER A L, STEEL R J, MOHRIG D, et al. Estimation of the paleoflux of terrestrial-derived solids across ancient basin margins using the stratigraphic record[J]. Geological Society of America Bulletin, 2013, 125(3/4): 578-593. |
37 | CHEN X Y, ZHANG Z J, YUAN X J, et al. The evolution of Permian Source-to-Sink systems and tectonics implications in the NW Junggar Basin, China: evidence from detrital zircon geochronology[J]. Minerals, 2022, 12(9). DOI: 10.3390/min12091169 . |
38 | ALLEN P A. Sediment routing systems: the fate of sediment from Source to Sink[M]. Cambridge: Cambridge University Press, 2017. |
39 | ALLEN P A. From landscapes into geological history[J]. Nature, 2008, 451: 274-276. |
40 | ZHU Xiaomin, LIU Qianghu, TAN Mingxuan, et al. Comprehensive investigation of deep-time Source-to-Sink systems: case study of the Shaleitian area[J]. Acta Sedimentologica Sinica, 2023, 41(6): 1 781-1 797. |
朱筱敏, 刘强虎, 谈明轩, 等. 深时源—汇系统综合研究和沙垒田实例分析[J]. 沉积学报, 2023, 41(6): 1 781-1 797. | |
41 | SHAO Longyi, WANG Xuetian, LI Yanan, et al. Review on palaeogeographic reconstruction of deep-time Source-to-Sink systems[J]. Journal of Palaeogeography, 2019, 21(1): 67-81. |
邵龙义, 王学天, 李雅楠, 等. 深时源—汇系统古地理重建方法评述[J]. 古地理学报, 2019, 21(1): 67-81. | |
42 | SYVITSKI J P M, MILLIMAN J D. Daniel[J]. The Journal of Geology, 2007, 115(1): 1-19. |
43 | BLUM M, MARTIN J, MILLIKEN K, et al. Paleovalley systems: insights from Quaternary analogs and experiments[J]. Earth-Science Reviews, 2013, 116: 128-169. |
44 | SØMME T O, HELLAND-HANSEN W, MARTINSEN O J, et al. Relationships between morphological and sedimentological parameters in Source-to-Sink systems: a basis for predicting semi-quantitative characteristics in subsurface systems[J]. Basin Research, 2009, 21(4): 361-387. |
45 | ROMANS B W, GRAHAM S A. A deep-time perspective of land-ocean linkages in the sedimentary record[J]. Annual Review of Marine Science, 2013, 5: 69-94. |
46 | COVAULT J A, ROMANS B W, GRAHAM S A, et al. Terrestrial source to deep-sea sink sediment budgets at high and low sea levels: insights from tectonically active southern California[J]. Geology, 2011, 39(7): 619-622. |
47 | HELLAND-HANSEN W, SØMME T O, MARTINSEN O J, et al. Deciphering Earth’s natural hourglasses: perspectives on Source-to-Sink analysis[J]. Journal of Sedimentary Research, 2016, 86(9): 1 008-1 033. |
48 | ALLEN P A, ARMITAGE J J, CARTER A, et al. The Qs problem: sediment volumetric balance of proximal foreland basin systems[J]. Sedimentology, 2013, 60(1): 102-130. |
49 | ALLEN P A. Time scales of tectonic landscapes and their sediment routing systems[J]. Geological Society, London, Special Publications, 2008, 296(1): 7-28. |
50 | MEADE R H. Sources, sinks, and storage of river sediment in the Atlantic drainage of the United States[J]. The Journal of Geology, 1982, 90(3): 235-252. |
51 | MEADE R H. Transport and deposition of sediments in estuaries[M]. Colorado: Geological Society of America, 1972. |
52 | WALSH J P, WIBERG P L, AALTO R, et al. Source-to-Sink research: economy of the Earth’s surface and its strata[J]. Earth-Science Reviews, 2016, 153: 1-6. |
53 | TUCKER G E, HUTTON E W H, PIPER M D, et al. CSDMS: a community platform for numerical modeling of Earth surface processes[J]. Geoscientific Model Development, 2022, 15(4): 1 413-1 439. |
54 | TUCKER G E, SLINGERLAND R, SYVITSKI J. A community approach to modeling earthscapes[M]. Oxford: Academic Press, 2022. |
55 | XU Changgui. Controlling sand principle of source-sink coupling in time and space in continental rift basins: basic idea, conceptual systems and controlling sand models[J]. China Offshore Oil and Gas, 2013, 25(4): 1-11. |
徐长贵. 陆相断陷盆地源—汇时空耦合控砂原理: 基本思想、概念体系及控砂模式[J]. 中国海上油气, 2013, 25(4): 1-11. | |
56 | WANG Chengshan, LIN Changsong. Development status and trend of sedimentology in China in recent ten years[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(6): 1 217-1 229. |
王成善, 林畅松. 中国沉积学近十年来的发展现状与趋势[J]. 矿物岩石地球化学通报, 2021, 40(6): 1 217-1 229. | |
57 | GONG Chenglin, LIU Li, SHAO Dali, et al. Depositional patterns of the Bengal-Nicobar Fan system since the Late Mio-cene: seesaw-like stepwise changes and the source-sink model[J]. Earth Science Frontiers, 2022, 29(4): 25-41. |
龚承林, 刘力, 邵大力, 等. 晚中新世以来孟加拉—尼科巴扇跷跷板式沉积转换及其源—汇成因机制[J]. 地学前缘, 2022, 29(4): 25-41. | |
58 | LIANG W D, GARZANTI E, HU X M, et al. Tracing erosion patterns in South Tibet: balancing sediment supply to the Yarlung Tsangpo from the Himalaya versus Lhasa Block[J]. Basin Research, 2022, 34(1): 411-439. |
59 | LIU Li, ZHU Dicheng, ZHANG Liangliang, et al. To decipher the “Source-to-Sink” system using the depth profile of zircon ages[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2022, 41(6): 1 135-1 144. |
刘力, 朱弟成, 张亮亮, 等. 用锆石年龄的深度剖面来重新认识源—汇系统[J]. 矿物岩石地球化学通报, 2022, 41(6): 1 135-1 144. | |
60 | ZHANG J Y, SYLVESTER Z, COVAULT J. How do basin margins record long-term tectonic and climatic changes?[J]. Geology, 2020, 48(9): 893-897. |
61 | GONG C L, STEEL R J, WANG Y M, et al. Shelf-margin architecture variability and its role in sediment-budget partitioning into deep-water areas[J]. Earth-Science Reviews, 2016, 154: 72-101. |
62 | MARTINSEN O J, SØMME T O, THURMOND J B, et al. Source-to-Sink systems on passive margins: theory and practice with an example from the Norwegian continental margin[J]. Geological Society, London, Petroleum Geology Conference Series, 2010, 7(1): 913-920. |
63 | SUN Shu, WANG Chengshan. Deep time and sedimentology[J]. Acta Sedimentologica Sinica, 2009, 27(5): 792-810. |
孙枢, 王成善. “深时”(Deep Time)研究与沉积学[J]. 沉积学报, 2009, 27(5): 792-810. | |
64 | GU Xiaozhong, MA Liqiao. Numerical simulation of a delta depositional system and it’s applications[J].Acta Petrolei Sinica, 1993, 14(2): 1-11. |
顾晓忠, 马立桥. 三角洲沉积体系的数值模拟及其应用[J]. 石油学报, 1993,14(2): 1-11. | |
65 | WOLF L, HUISMANS R S, ROUBY D, et al. Links between faulting, topography, and sediment production during continental rifting: insights from coupled surface process, thermomechanical modeling[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(3). DOI: 10.1029/2021JB023490 . |
66 | GÉRARD B, ROUBY D, HUISMANS R S, et al. Impact of inherited foreland relief on retro-foreland basin architecture[J]. Journal of Geophysical Research: Solid Earth, 2023, 128(3). DOI:10.1029/2022JB024967 . |
67 | ZOU Bo, WANG Guozhi, DENG Jianghong. Evidence for apatite fission track of Pliocene rapid uplift of Zhongdian region on southeastern margin of Tibetan Plateau,China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2014, 41(2): 227-236. |
邹波, 王国芝, 邓江红. 青藏高原东南缘中甸地区上新世快速隆升的磷灰石裂变径迹证据[J]. 成都理工大学学报(自然科学版), 2014, 41(2): 227-236. | |
68 | YANG Shouye, WANG Zhongbo. Rare earth element compositions of the sediments from the major tributaries and the main stream of the Changjiang River[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(1): 31-39. |
杨守业, 王中波. 长江主要支流与干流沉积物的REE组成[J]. 矿物岩石地球化学通报, 2011, 30(1): 31-39. | |
69 | SHARMA S, BHATTACHARYA J P, RICHARDS B. Source-to-sink sediment budget analysis of the Cretaceous ferron sandstone, Utah, U.S.A., using the fulcrum approach[J]. Journal of Sedimentary Research, 2017, 87(6): 594-608. |
70 | ZHU Hongtao, YANG Xianghua, ZHOU Xinhuai, et al. Sediment transport pathway characteristics of continental lacustrine basins based on 3-D seismic data: an example from Dongying Formation of western slope of Bozhong sag[J]. Earth Science, 2013, 38(1): 121-129. |
朱红涛, 杨香华, 周心怀, 等. 基于地震资料的陆相湖盆物源通道特征分析: 以渤中凹陷西斜坡东营组为例[J]. 地球科学, 2013, 38(1): 121-129. | |
71 | TANG Wu, XIE Xiaojun, XIONG Lianqiao, et al. Coupling relationship and genetic mechanisms of shelf-edge delta and deep-water fan Source-to-Sink: a case study in Paleogene Zhuhai Formation in south subsag of Baiyun Sag, Pearl River Mouth Basin, China[J]. Petroleum Exploration and Development, 2024, 51(3): 513-525. |
唐武, 谢晓军, 熊连桥, 等. 陆架边缘三角洲—深水扇源汇耦合关系及成因机制[J]. 石油勘探与开发, 2024, 51(3): 513-525. | |
72 | YANG S Y, JUNG H S, LIM D I, et al. A review on the provenance discrimination of sediments in the Yellow Sea[J]. Earth-Science Reviews, 2003, 63(1/2): 93-120. |
73 | MANDAL S K, KAPANNUSCH R, SCHERLER D, et al. Cosmogenic nuclide tracking of sediment recycling from a frontal siwalik range in the northwestern Himalaya[J]. Journal of Geophysical Research: Earth Surface, 2023, 128(12). DOI: 10.1029/2023JF007164 . |
74 | ZHU Hongtao, XU Changgui, ZHU Xiaomin, et al. Advances of the Source-to-Sink units and coupling model research in continental basin[J]. Journal of Earth Science, 2017, 42(11): 1 851-1 870. |
朱红涛, 徐长贵, 朱筱敏, 等. 陆相盆地源—汇系统要素耦合研究进展[J]. 地球科学, 2017, 42(11): 1 851-1 870. | |
75 | SALLES T. eSCAPE: regional to global scale landscape evolution model v2.0[J]. Geoscientific Model Development, 2019, 12(9): 4 165-4 184. |
76 | CAMPFORTS B, SHOBE C M, STEER P, et al. HyLands 1.0: a hybrid landscape evolution model to simulate the impact of landslides and landslide-derived sediment on landscape evolution[J]. Geoscientific Model Development, 2020, 13(9): 3 863-3 886. |
77 | CHEN H, WANG X Y, LU H Y, et al. Anthropogenic impacts on Holocene fluvial dynamics in the Chinese Loess Plateau, an evaluation based on landscape evolution modeling[J]. Geomorphology, 2021, 392. DOI: 10.1016/j.geomorph.2021.107935 . |
78 | GARCIA-ESTÈVE C, CANIVEN Y, CATTIN R, et al. Morphotectonic evolution of an alluvial fan: results of a joint analog and numerical modeling approach[J]. Geosciences, 2021, 11(10). DOI: 10.3390/geosciences11100412 . |
79 | BARNHART K R, GLADE R C, SHOBE C M, et al. Terrainbento 1.0: a Python package for multi-model analysis in long-term drainage basin evolution[J]. Geoscientific Model Development, 2019, 12(4): 1 267-1 297. |
80 | HUTTON E W H, SYVITSKI J P M. Sedflux 2.0: an advanced process-response model that generates three-dimensional stratigraphy[J]. Computers & Geosciences, 2008, 34(10): 1 319-1 337. |
81 | LIN Chengyan, CHEN Bingyi, REN Lihua, et al. A review of depositional numerical simulation and a case study[J]. Acta Geologica Sinica, 2023, 97(8): 2 756-2 773. |
林承焰, 陈柄屹, 任丽华, 等. 沉积数值模拟研究现状及实例[J]. 地质学报, 2023, 97(8): 2 756-2 773. | |
82 | HARRIS A D, COVAULT J A, BAUMGARDNER S, et al. Numerical modeling of icehouse and greenhouse sea-level changes on a continental margin: sea-level modulation of deltaic avulsion processes[J]. Marine and Petroleum Geology, 2020, 111: 807-814. |
83 | HAWIE N, DESCHAMPS R, GRANJEON D, et al. Multi-scale constraints of sediment source to sink systems in frontier basins: a forward stratigraphic modelling case study of the Levant region[J]. Basin Research, 2017, 29(): 418-445. |
84 | CSATO I, GRANJEON D, CATUNEANU O, et al. A three-dimensional stratigraphic model for the Messinian crisis in the Pannonian Basin, eastern Hungary[J]. Basin Research, 2013, 25(2): 121-148. |
85 | TAMIRU H, DINKA M O. Application of ANN and HEC-RAS model for flood inundation mapping in lower Baro Akobo River Basin, Ethiopia[J]. Journal of Hydrology: Regional Studies, 2021, 36. DOI: 10.1016/j.ejrh.2021.100855 . |
86 | TUCKER G, LANCASTER S, GASPARINI N, et al. The Channel-Hillslope Integrated Landscape Development model (CHILD)[M]. Boston, MA: Springer US, 2001. |
87 | LI H P, PLINK-BJÖRKLUND P. Applying information theory and Bayesian inference to paleoenvironmental interpretation[J]. Geophysical Research Letters, 2019, 46(24): 14 477-14 485. |
88 | SALLES T, DING X S, BROCARD G. pyBadlands: a framework to simulate sediment transport, landscape dynamics and basin stratigraphic evolution through space and time[J]. PLoS ONE, 2018, 13(4). DOI: 10.1371/journal.pone.019555 . |
89 | COULTHARD T J, MACKLIN M G, KIRKBY M J. A cellular model of Holocene upland river basin and alluvial fan evolution[J]. Earth Surface Processes and Landforms, 2002, 27(3): 269-288. |
90 | TUCKER G E, SLINGERLAND R L. Erosional dynamics, flexural isostasy, and long-lived escarpments: a numerical modeling study[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B6): 12 229-12 243. |
91 | GAILLETON B, MALATESTA L C, CORDONNIER G, et al. CHONK 1.0: landscape evolution framework: cellular automata meets graph theory[J]. Geoscientific Model Development, 2024, 17(1): 71-90. |
92 | DENSMORE A L, ELLIS M A, ANDERSON R S. Landsliding and the evolution of normal-fault-bounded mountains[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B7): 15 203-15 219. |
93 | WANG Xuetian, SHAO Longyi, KENNETH A E, et al. Using BQART model to reconstruct paleo-relief in deep time based on quantitative paleogeography: a case study from the Late Permian central Emeishan Large Igneous Province[J]. Acta Sedimentologica Sinica, 2022, 40(6): 1 461-1 480. |
王学天, 邵龙义, Kenneth A E, 等. 基于定量古地理的BQART模型深时古地势重建方法: 以晚二叠世峨眉山大火成岩省内带为例[J]. 沉积学报, 2022, 40(6): 1 461-1 480. | |
94 | GARCIA-CASTELLANOS D, JIMÉNEZ-MUNT I. Topographic evolution and climate aridification during continental collision: insights from computer simulations[J]. PLoS ONE, 2015, 10(8). DOI: 10.1371/journal.pone.0132252 . |
95 | HANCOCK G, WILLGOOSE G. Use of a landscape simulator in the validation of the SIBERIA catchment evolution model: declining equilibrium landforms[J]. Water Resources Research, 2001, 37(7): 1 981-1 992. |
96 | HARBAUGH J W. Numerical experiments in stratigraphy: recent advances in stratigraphic and sedimentologic computer simulations[M]. Tulsa, Okla: SEPM (Society for Sedimentary Geology), 1999. |
97 | GRANJEON D. 3D forward modelling of the impact of sediment transport and base level cycles on continental margins and incised valleys[J]. International Association of Sedimentologists, 2014, 46: 453-472. |
98 | HARRIS A D, BAUMGARDNER S E, SUN T, et al. A poor relationship between sea level and deep-water sand delivery[J]. Sedimentary Geology, 2018, 370: 42-51. |
99 | HARRIS A D, COVAULT J A, MADOF A S, et al. Three-dimensional numerical modeling of eustatic control on continental-margin sand distribution[J]. Journal of Sedimentary Research, 2016, 86(12): 1 434-1 443. |
100 | LIU Yanfeng, DUAN Taizhong, HUANG Yuan, et al. Deep learning-based geological modeling driven by sedimentary process simulation[J]. Natural Gas and Oil, 2023(1): 226-237. |
刘彦锋, 段太忠, 黄渊, 等. 沉积过程模拟驱动下的深度学习地质建模方法[J]. 石油与天然气地质, 2023(1): 226-237. | |
101 | GVIRTZMAN Z, CSATO I, GRANJEON D. Constraining sediment transport to deep marine basins through submarine channels: the Levant margin in the Late Cenozoic[J]. Marine Geology, 2014, 347: 12-26. |
102 | BUSSON J, JOSEPH P, MULDER T, et al. High-resolution stratigraphic forward modeling of a Quaternary carbonate margin: controls and dynamic of the progradation[J]. Sedimentary Geology, 2019, 379: 77-96. |
130 | ALOSAIRI Y, ALSULAIMAN N. Hydro-environmental processes governing the formation of hypoxic parcels in an inverse estuarine water body: model validation and discussion[J]. Marine Pollution Bulletin, 2019, 144: 92-104. |
131 | TROOST T A, DESCLAUX T, LESLIE H A, et al. Do microplastics affect marine ecosystem productivity?[J]. Marine Pollution Bulletin, 2018, 135: 17-29. |
132 | BERGEN K J, JOHNSON P A, de HOOP M V, et al. Machine learning for data-driven discovery in solid Earth geoscience[J]. Science, 2019, 363(6 433). DOI: 10.1126/science.aau0323 . |
133 | XU Changgui, DU Xiaofeng, XU Wei, et al. New advances of the “Source-to-Sink” system research in sedimentary basin[J]. Oil & Gas Geology, 2017, 38(1): 1-11. |
徐长贵, 杜晓峰, 徐伟, 等. 沉积盆地“源—汇”系统研究新进展[J]. 石油与天然气地质, 2017, 38(1): 1-11. | |
103 | HAWIE N, COVAULT J A, SYLVESTER Z. Grain-size and discharge controls on submarine-fan depositional patterns from forward stratigraphic models[J]. Frontiers in Earth Science, 2019, 7. DOI: 10.3389/feart.2019.00334 . |
104 | ZHANG Zhijie, ZHOU Chuanmin, YUAN Xuanjun, et al. Source-to-Sink system and palaeogeographic reconstruction of Permian in the Junggar Basin, northwestern China[J]. Acta Geologica Sinica, 2023, 97(9): 3 006-3 023. |
张志杰, 周川闽, 袁选俊, 等. 准噶尔盆地二叠系源—汇系统与古地理重建[J]. 地质学报, 2023, 97(9): 3 006-3 023. | |
105 | BRUNEAU B, CHAUVEAU B, BAUDIN F, et al. 3D stratigraphic forward numerical modelling approach for prediction of organic-rich deposits and their heterogeneities[J]. Marine and Petroleum Geology, 2017, 82: 1-20. |
106 | YIN X D, HUANG W H, LU S F, et al. The connectivity of reservoir sand bodies in the Liaoxi Sag, Bohai Bay Basin: insights from three-dimensional stratigraphic forward modeling[J]. Marine and Petroleum Geology, 2016, 77: 1 081-1 094. |
107 | GRIFFITHS C M, DYT C, PARASCHIVOIU E, et al. Sedsim in hydrocarbon exploration[M]. Boston, MA: Springer, 2001. |
108 | HUANG X, DYT C, GRIFFITHS C, et al. Numerical forward modelling of ‘fluxoturbidite’ flume experiments using Sedsim[J]. Marine and Petroleum Geology, 2012, 35(1): 190-200. |
109 | SALLES T, MARCHÈS E, DYT C, et al. Simulation of the interactions between gravity processes and contour currents on the Algarve Margin (South Portugal) using the stratigraphic forward model Sedsim[J]. Sedimentary Geology, 2010, 229(3): 95-109. |
110 | YANG Qian, FENG Xiuli, LI Mengshuai. Numerical simulation and analysis of the turbidity current deposit in Yingqiong continental slope in the northern South China Sea[J]. Acta Geologica Sinica, 2022, 96(4): 1 412-1 420. |
杨茜, 冯秀丽, 李梦帅. 南海北部莺琼陆坡浊流沉积数值模拟分析[J]. 地质学报, 2022, 96(4): 1 412-1 420. | |
111 | RAVESTEIN J J, GRIFFITHS C M, DYT C P, et al. Multi-scale stratigraphic forward modelling of the Surat Basin for geological storage of CO2 [J]. Terra Nova, 2015, 27(5): 346-355. |
112 | LIU Jianliang, LIU Keyu. Estimating stratal completeness of carbonate deposition via process-based stratigraphic forward modeling[J]. Science China: Earth Sciences, 2020, 51(1): 150-158. |
刘建良, 刘可禹. 碳酸盐岩地层完整性分析及其影响因素定量评价:来自地层正演模拟的启示[J]. 中国科学: 地球科学, 2020, 51(1): 150-158. | |
113 | HUANG Xiu, LIU Keyu, ZOU Caineng, et al. Forward stratigraphic modelling of the depositional process and evolution of shallow water deltas in the Poyang Lake, southern China[J]. Earth Science, 2013, 38(5): 1 005-1 013. |
[1] | Hanying XU, Cunbo HAN, Yaoming MA, Yunshuai ZHANG. Review on Numerical Simulation of Atmospheric Boundary Layer over the Tibetan Plateau [J]. Advances in Earth Science, 2024, 39(9): 915-929. |
[2] | Yawei FAN, Heqiang DU, Shengfei YANG, Changzhen YAN, Xiufan LIU, Xinlei LIU. Research Progress, Problems and Prospects of Numerical Modelling and Data Assimilation of Sand and Dust Aerosols [J]. Advances in Earth Science, 2024, 39(8): 813-822. |
[3] | Shujing SHEN, Yueqin SHI, Weiguo LIU, Shaofeng HUA, Jing SUN. Development and Application of the Warm Cloud Seeding Models in Weather Modification [J]. Advances in Earth Science, 2024, 39(7): 671-684. |
[4] | Ying GUO, Wenjie FENG, Shaohua LI, Shuhong YAN. Sedimentary Architecture Between Compound Middle Bars and Side Bars: Insights from a Numerical Model of Sandy Braided Rivers [J]. Advances in Earth Science, 2024, 39(4): 405-418. |
[5] | Hu LI, Xiaoduo PAN. An Overview of Research Methods on Water Vapor Transport and Sources in the Tibetan Plateau [J]. Advances in Earth Science, 2022, 37(10): 1025-1036. |
[6] | Xinze LI, Huijun JIN, Qingbai WU, Yanjing WEI, Zhi WEN. Numerical Analysis of Temperature Field Around Buried Gas Pipeline in Arctic Permafrost Regions [J]. Advances in Earth Science, 2021, 36(1): 69-82. |
[7] | Zhibao Dong, Lü Ping, Chao Li. Research Methodology of Martian Aeolian Geomorphology [J]. Advances in Earth Science, 2020, 35(8): 771-788. |
[8] | Qiong Li,Jiaojiao Wang,Baotian Pan. Numerical Simulation of the Influence of Tectonics and Precipitation on the Evolution of Alluvial Fans at the Northern Foot of Qilian Mountains [J]. Advances in Earth Science, 2020, 35(6): 607-617. |
[9] | Rong Wang, Qiang Zhang, Ping Yue, Qian Huang. Summary and Prospects of Numerical Simulation Research of the Atmospheric Boundary Layer [J]. Advances in Earth Science, 2020, 35(4): 331-349. |
[10] | Yalong Li, Xiangui Liu, Zhiming Hu, Xianggang Duan, Jie Zhang, Hongming Zhan. Summary of Numerical Models for Predicting Productivity of Shale Gas Horizontal Wells [J]. Advances in Earth Science, 2020, 35(4): 350-362. |
[11] | Bingdi Wang, Qingquan Li, Xinyong Shen, Lili Dong, Fang Wang, Tao Wang, Xinzhong Liang. Climatological Characteristics of the East Asian Winter Monsoon Simulated by CWRF Regional Climate Model [J]. Advances in Earth Science, 2020, 35(3): 319-330. |
[12] | Li Gao,Jing Chen,Jiawen Zheng,Quanliang Chen. Progress in Researches on Ensemble Forecasting of Extreme Weather Based on Numerical Models [J]. Advances in Earth Science, 2019, 34(7): 706-716. |
[13] | Jianhong Wang,Meng Zhang,Shuyuan Ren,Xing Wang,Chunsheng Miao. Simulation Study on the Impact of Taihang Mountain Slopes on Downhill Front Cyclone Rainstorm [J]. Advances in Earth Science, 2019, 34(7): 717-730. |
[14] | Chen Zhang,Qing Wang,Jianmin Zhao. Numerical Simulation of Transportation of Marine Microplastics A Review [J]. Advances in Earth Science, 2019, 34(1): 72-83. |
[15] | Shihong Wang, Yiding Zhao, Xunqiang Yin, Fangli Qiao. Current Status of Global Ocean Reanalysis Datasets [J]. Advances in Earth Science, 2018, 33(8): 794-807. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||