Please wait a minute...
img img
高级检索
地球科学进展  2010, Vol. 25 Issue (4): 353-362    DOI: 10.11867/j.issn.1001-8166.2010.04.0353
综述与评述     
基于卫星高度计的全球大洋潮汐模式的准确度评估
汪一航1,2,3,4,方国洪1,3,4,魏泽勋3,王永刚3,王新怡3
1.中国科学院海洋研究所,山东  青岛  266071; 2.宁波大学,浙江  宁波  315211; 3.国家海洋局第一海洋研究所,山东  青岛  266061; 4.中国科学院研究生院,北京  100039
Accuracy Assessment of Global Ocean Tide Models Base on Satellite Altimetry
Wang Yihang1,2,3,4,Fang Guohong1,3,4, Wei Zexun3,Wang Yonggang3,Wang Xinyi3
1.Institute of Oceanology, CAS,Qingdao  266071, China; 2.Ningbo University, Ningbo  315211, China;
3.First Institute of Oceanography,SOA,Qingdao  266061,China; 4.Graduate University of CAS,Beijing  100039,China
 全文: PDF(1744 KB)  
摘要:

依据152个深海验潮站与大洋岛屿地面验潮站观测得到的8个主要分潮(M2、S2、K1、O1、N2、K2、P1及Q1)调和常数,对现有7个全球大洋潮汐模式的准确度进行了检验,结果显示各模式在深海大洋区域均达到了比较高的准确度:M2分潮的潮高均方根偏差在1.0~1.3 cm之间|8个分潮的和方根偏差在2.1~2.3 cm之间,与早期的模式相比,准确度又有了进一步提高。还依据中国近海18个岛屿的调和常数对其中的5个大洋潮汐模式的准确度进行了检验,结果表明,M2分潮均方根偏差在4.4~10 cm,明显高于大洋的均方根偏差。其中日本国家天文台的潮汐模式NAO99在中国近海的结果相对较准确。

关键词: 大洋潮汐模式准确度评估卫星高度计验潮站资料    
Abstract:

Tidal harmonics of 8 principal constituents (M2, S2, K1, O1, N2, K2, P1 and Q1)derived from ground observations at 152 tidal gauge stations are used to assess the accuracy of 7 global ocean tidal models. It is shown that for the deep ocean area these models have high accuracy. The root-mean-square values of tidal height differences (RMSd) are within the range from 1.0 to1.3 cm for M2, and the rootsumsquare values of the RMSd of these 8 constituents lie in the range from 2.0 to 2.3 cm. Comparison of the global tidal models to 18 offshore and island tide gauge observations in the seas adjacent to China shows that the accuracy significantly decreases. The RMSd values of constituent M2  lie in the range of 4.4  to 10 cm, which is significantly greater than that in the deep ocean area. Among these models, the model NAO99 that assimilates T/P altimeter data and tide gauge observations into a hydrodynamic model, developed by the National Astronomical Observatory of Japan, has the best accuracy for the seas adjacent to China.

 

Key words: Ocean tidal model    Accuracy assessment    Satellite altimetry    Tide gauge data
收稿日期: 2009-04-28 出版日期: 2010-04-10
:  P731.23  
基金资助:

  国家自然科学基金项目“中国近海及邻近海区海洋与地球潮汐相互作用研究”(编号:40676009);国家自然科学青年基金项目“印尼海潮波和潮混合的分析和数值研究”(编号:40606006)资助.  

通讯作者: 方国洪(1939-),男,浙江瑞安人,研究员,中国工程院院士,主要从事海洋潮汐、海洋环流和海洋数值建模研究.     E-mail: fanggh@fio.org.cn
作者简介: 汪一航(1963-),男,浙江富阳人,副教授,主要从事潮汐潮流分析与数值模拟研究. E-mail:wangyihang@nbu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
汪一航
方国洪
魏泽勋
王永刚
王新怡

引用本文:

汪一航,方国洪,魏泽勋,王永刚,王新怡. 基于卫星高度计的全球大洋潮汐模式的准确度评估[J]. 地球科学进展, 2010, 25(4): 353-362.

Wang Yihang,Fang Guohong, Wei Zexun,Wang Yonggang,Wang Xinyi. Accuracy Assessment of Global Ocean Tide Models Base on Satellite Altimetry. Advances in Earth Science, 2010, 25(4): 353-362.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2010.04.0353        http://www.adearth.ac.cn/CN/Y2010/V25/I4/353

[1] Munk W. The evolution of physical oceanography in the last hundred years[J].Oceanography,2002, 15: 135-141.
[2] Schwiderski E W. On charting global ocean tides[J].Reviews of Geophysics and Space Physics,1980,18:243-268.
[3] Cartwright D E, Ray R D. Oceanic tides from Geosat altimetry[J].Journal of Geophysical Research,1990, 95: 3 069-3 090.
[4] Kantha L. Barotropic tide in the global ocean from a nonlinear tidal model assimilating altimetry tides, I, Model description and result[J].Journal of Geophysical Research,1995, 100: 25 283-25 308.
[5] Tapley B D, Chambers D P, Shum C K, et al. Accuracy assessment of the large-scale dynamic ocean topography from TOPEX/POSEIDON altimetry[J].Journal of Geophysical Research,1994, 99(C12): 24 605-24 619.
[6] He Yijun, Chen Ge, Guo Peifang, et al. Ocean Remote Sensing of Altimeter Research and Application[M]. Beijing: Science Press, 2002.[何宜军,陈戈,郭佩芳,等.高度计海洋遥感研究与应用 [M].北京:科学出版社,2002.]
[7] Andersen O B, Woodworth P L, Flather R A, et al. Intercomparison of recent ocean tide model[J].Journal of Geophysical Research,1995, 100:25 261-25 282.
[8] Shum C K, Woodworth P L, Andersen O B, et al. Accuracy assessment of recent ocean tide models [J].Journal of Geophysical Research,1997, 102: 25 173-25 194.
[9] Yu Nanhua. Ocean tide models′ performance in coastal regions[J].Annals of Shanghai Observatory Academia Sinica,2006, 27: 17-25.
[10] Zahran K H, Jentzsch G, Seeber G. Accuracy assessment of ocean tide loading computations for precise geodetic observations[J].Journal of Geodynamics,2006,42: 159-174.
[11] Ma X C, Shum C K, Eanes R J, et al. Determination of Ocean Tides from the first year TOPEX/POSEIDON altimeter measurements[J]. Journal of Geophysical Research,1994, 99: 24 809-24 820.
[12] Eanes R, Bettadpur S. The CSR3.0 global ocean tide model: Diurnal and semi-diurnal ocean tides from TOPEX/POSEIDON altimetry[R]. Technical Report CRS-TM-96-05, Centre for Space Research, Texas: University of Texas,1996.
[13] Schrama E J O, Ray R D. A preliminary tidal analysis of TOPEX/POSEIDON altimetry[J].Journal of Geophysical Research,1994, 99: 24 799-24 808.
[14] Ray R D. A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99[R]. Technical Report NASA Technical Mem. 209478, Goddard Space Flight Centre, Greenbelt, MD, USA, 1999.
[15] Desai S D,Wahr J M. Empirical ocean tide models estimated from TOPEX/POSEIDON altimetry[J].Journal of Geophysical Research,1995, 100: 25 205-25 228.
[16] Smith A J E, Ambrosius B A C, Wakker K F. Ocean tides from T/P, ERS-1, and GEOSAT altimetry[J].Journal of Geodesy,2000, 74: 399-413.
[17] Le Provost C, Genco M L, Lyard F, et al. Spectroscopy of the ocean tides from a finite element hydrodynamic model[J].Journal of Geophysical Research,1994, 99: 24 777-24 797.
[18] Ray R D, Eanes R J, Chao B F. Detection of tidal dissipation in the solid Earth by satellite tracking and altimetry[J].Nature,1996, 381: 595-597.
[19] Tierney C C, Born G H, Kantha L H, et al. Shallow and deep water global ocean tides from altimetry and numerical modeling[J].Journal of Geophysical Research,2000, 105:11 259-11 278.
[20] Egbert G D, Erofeeva S Y. Efficient inverse modeling of barotropic ocean tides[J].Journal of Atmospheric and Oceanic Technology,2002, 19: 183-204.
[21] Egbert G D, Bennett A, Foreman M. TOPEX/POSEIDON tides estimated using a global inverse model[J].Journal of Geophysical Research,1994, 99:24 821-24 852.
[22] Matsumoto K, Takanezawa T, Ooe M. Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and a regional model around Japan[J].Journal of Oceanography,2000, 56:567-581.
[23] Lefevre F, Lyard F H, Le Provost C. FES98: A new global tide finite element solution independent of altimetry[J].Geophysical Research Letters,2000,27:2 717-2 720.
[24] Lefevre F, Lyard F H, Le Provost C, et al. FES99: A global tide finite element solution assimilating tide gauge and altimetric information[J].Journal of Atmospheric and Oceanic Technology,2002, 19:1 345-1 356.
[25] Lyard F, Lefevre F, Letellier T, et al. Modelling the global ocean tides: modern insights from FES2004[J].Ocean Dynamics,2006, 56:394-415.
[26] Smithson M J. Pelagic Tidal Constants-3[M]. IAPSO Publication Scientifique No.35. International Association for the Physical Sciences of the Ocean (IAPSO) of the International Union of Geodesy and Geophysics,1992:191.
[27] Ponchaut F, Lyard F, Le Provost C. An analysis of the tidal signal in the WOCE Sea level dataset[J].Journal of Atmospheric and Oceanic Technology,2001,18: 77-91.
[28] Fang Guohong, Wang Yonggang, Wei Zexun, et al. Empirical cotidal charts of the Bohai, Yellow and East China Seas from 10 years of TOPEX/Poseidon altimetry[J].Journal of Geophysical Research,2004, 109, doi:10.1029/2004JC002484.

[1] 高抒. 潮汐汊道形态动力过程研究综述[J]. 地球科学进展, 2008, 23(12): 1237-1248.