地球科学进展 ›› 2006, Vol. 21 ›› Issue (1): 47 -52. doi: 10.11867/j.issn.1001-8166.2006.01.0047

综述与评述 上一篇    下一篇

俯冲—碰撞和高压、超高压变质带中的金红石研究进展
余金杰 1,王登红 1,王平安 2,徐 珏 1,李晓峰 1,陈毓川 3,陈振宇 1   
  1. 1.中国地质科学院矿产资源研究所,北京 100037; 2.中国地质科学院地质力学研究所,北京 100081;3.中国地质科学院,北京 100037
  • 收稿日期:2005-08-18 修回日期:2005-11-01 出版日期:2006-01-15
  • 通讯作者: 余金杰 E-mail:yjjchina@sina.com
  • 基金资助:

    国家重点基础研究发展计划项目“大陆板块会聚边界的深部成矿作用研究”(编号:2003CB716507)资助.

The Research Advances in the Rutile in the Subduction-Collision Zone, High Pressure and Ultrahigh Pressure Metanorphic Zone

Yu Jinjie 1,Wang Denghong 1,Wang Pingan 2,Xu Jue 1,Li Xiaofeng 1,Chen Yuchuan 3,Chen Zhenyu 1   

  1. 1.Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China;2.Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China;3.Chinese Academy of Geological Sciences, Beijing 100037, China
  • Received:2005-08-18 Revised:2005-11-01 Online:2006-01-15 Published:2006-01-15

金红石是高级变质岩和热液矿床中广为展布的一种矿物。目前,金红石在俯冲—碰撞和高压—超高压变质带中研究包括以下4个方面:①金红石在俯冲—碰撞带中的作用;②金红石同质多象变体;③金红石的U-Pb定年;④金红石对源区的示踪。第一方面的研究一直是最近10余年来研究的主题之一,而后3个方面的研究尚处于起步阶段,上述研究对认识俯冲—碰撞过程中埃达克岩的成因和特征,对超高压大陆深俯冲深度及形成岩石温压条件的限定,对重塑超高压或高级变质地体峰期变质事例年龄,对赋存金红石岩石的源区示踪具有重要的意义。

Rutile is a widely distributed mineral in high-grade metamorphic rocks and hydrothermal deposits. The rutile studies of the subduction-collision zones and high pressure and ultrahigh pressure metamorphic zones include (1) role of the rutile in the subduction-collision zone; (2) polymorph of rutile; (3) U-Pb dating of rutile and (4) tracing of rutile for a source rock. These studies is very important not only for origin and characteristics of the akadite in the subduction-collision zone but also for the depth, temperature and pressure of continental ultra-deep subduction, and age of the metamorphic event in high-grade metamorphic terrane, and tracing of the rutile-hosted source rock.

中图分类号: 

[1] Heaman L, Creaser R, Cookenboo H. Extreme High-Field-Strength Element Enrichment in Eclogite Xenoliths from the Jericho Kimberlite, Canada: The Geochemical Complement of Subduction Zone Magmatism[Z]. Journal of Conference Abstracts, Oxford: Cambridge Publications, 2000:497.

[2] Zack T, Kronz A, Foley S F, et al. Trace element abundances in rutiles from eclogites and associated garnet mica schists [J]. Chemical Geology, 2002, 184:97-122.

[3] Brenan J M, Shaw H F, Phinney D L, et al. Rutile-aqueous fluid partitioning of Nb, Ta, H, Zr, U and Th: implications for high field strength element depletions in island arc basalts[J]. Earth and Planetary Science Letters, 1994, 128:327-339.

[4] Foley S F, Barth M G, Jenner G A. Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas [J]. Geochimica et Cosmochimica Acta, 2000, 64:933-938.

[5] Jenner G A, Foley S F, Jackson S E, et al. Determination of partition coefficients for trace elements in high pressure temperature experimental run products by laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) [J]. Geochimica et Cosmochimica Acta, 1993, 57:5 099-5 103.

[6] Stalder R, Foley S F, Brey G P, et al. Mineral aqueous fluid partitioning of trace elements at 900/1200 and 3.0 GPa to 5.7 GPa: New experimental data set for garnet, clinopyroxene and rutile and implications for mantle metasomatism [J]. Geochimica et Cosmochimica Acta, 1998, 62:1 781-1 801.

[7] Klemme S, Blundy J D, Wood B J. Experimental constraints on major and trace element partitioning during partial melting of eclogite [J]. Geochimica et Cosmochimica Acta, 2002, 66:3 109-3 123.

[8] Briqueu L, Bougault H, Joron J L. Quantification of Nb, Ta, Ti and V anomalies in magmas associated with subduction zones: Petrogenetic implications [J]. Earth and Planetary Science Letters, 1984, 68:297-308.

[9] Elliott T, Plank T, Zindler A, et al. Element transport from slab to volcanic front at the Mariana arc [J]. Geophysics Research,1997, 102:14 991-15 019.

[10] Hogewerff J A, van Bergen M J, Vroon P Z, et al. U-series, Sr-Nd-Pb isotope and trace element systematics across an active island arc-continent collision zone: Implications for element transfer at the slab-wedge interface [J]. Geochimica et Cosmochimica Acta, 1997, 61:1 057-1 072.

[11] Turner S T, Hawkesworth C, van Calsteren P, et al. U-series isotopes and destructive margin magma genesis in the Lesser Antilles [J]. Earth and Planetary Science Letters, 1996, 142:191-207.

[12] Poli S. The amphibolite-eclogite transformation: An experimental study on basalt [J]. American Journal of Science, 1993, 293:1 061-1 107.

[13] Schmidt M W, Poli S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation [J]. Earth and Planetary Science Letters, 1998, 163:361-379.

[14] Nichols G T, Wyllie P J, Stern C R. Subduction zone melting of pelagic sediments constrained by melting experiments [J]. Nature, 1994, 371:785-788.

[15] Defant M J, Drummond M S. Derivation of some modern arc magmas by partial melting of young subducted lithosphere [J]. Nature, 1990, 347:662-665.

[16] Green T H, Ringwood A E. Genesis of the calc-alkaline igneous rock suite [J]. Contributions to Mineralogy and Petrology, 1968, 18:105-162.

[17] Hou Zengqian, Mo Xuanxue, Gao Yongfeng, et al. Adakite, a possible host rock for porphyry copper deposits: Case studies of porphyry copper belts in Tibetan plateau and in northern Chile[J]. Mineral Deposit,2003, 22(1):1-12.[侯增谦,莫宣学,高永丰,. 埃达克岩:斑岩铜矿的一种可能的重要含矿母岩——以西藏和智利斑岩铜矿为例[J]. 矿床地质,2003,22(1):1-12.]

[18] Fitton J G. Coupled molybdenum and niobium depletion in continental basalts [J]. Earth and Planetary Science Letters, 1995, 136:715-721.

[19] Jochum K P, Hofmann A W, Seufert H M. Tin in mantle-derived rocks: Constraints on earth evolution [J]. Geochimica et Cosmochimica Acta,1993, 57:3 585-3 595.

[20] Green T H, Pearson N J. An experimental study of Nb and Ta partitioning between Ti-rich minerals and silicate melts at high pressure and temperature [J]. Geochimica et Cosmochimica Acta,1987, 51:55-62.

[21] Eggins S M, Woodhead J D, Kinsley L P J, et al. A simple method for precise determination of ≥40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation [J]. Chemical Geology, 1997, 134:311-326.

[22] Stolz A J, Jochum K P, Spettel B, et al. Fluid-and melt-related enrichment in the subarc mantle: Evidence from Nb/Ta variations in island-arc basalts [J]. Geology,1996, 24:587-590.

[23] Green T H. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system [J]. Chemical Geology, 1995, 120:347-359.

[24] Münker C. Nb/Ta fractionation in a Cambrian arc/back arc system, New Zealand: Source constraints and application of refined ICPMS techniques [J]. Chemical Geology, 1998, 144:23-45.

[25] Rudnick R L, Barth M, Horn I, et al. Rutile-bearing refractory eclogites: Missing link between continents and depleted mantle [J]. Science, 2000, 287:278-281.

[26] Niu Y, Batiza R. Trace element evidence from seamounts for recycled oceanic crust in the Eastern Pacific mantle [J]. Earth and Planetary Science Letters, 1997, 148:471-483.

[27] Stolz A J, Jochum K P, Hofmann A W, et al. HFSE constraints on the nature of island arc and ocean magma sources [J]. Terra Nova, 1995, 7:299.

[28] David K,Schiano P, Allegre C J. Assessment of the Zr/Hf fractionation in oceanic basalts and continental materials during petrogenetic processes [J]. Earth and Planetary Science Letters, 2000, 178:285-301.

[29] Ernst W G, Liu J. Experimental phase equilibrium study of Al- and Ti-contents of calcic amphibole in MORB-A semiquantitative thermobarometer [J]. American Mineralogist, 1998, 83:952-969.

[30] Frost B R. Stability of oxide minerals in metamorphic rocks[A]. In: Lindsley D H ed. Oxide Minerals: Petrological and Magnetic Significance[C]. Reviews in Mineralogy,1991,25:469-488.

[31] Bohlen S R, Liotta J J. A barometer for garnet amphibolites and garnet granulites [J]. Journal of Petrology, 1986, 27:1 025-1 034.

[32] Goresy A E, Chen M, Dubrovinsky L, et al. An Ultradense Polymorph of Rutile with Seven-Coordinated Titanium from the Ries Crater [J]. Science, 2001, 293:1 467-1 470.

[33] Hwang S L, Shen P, Chu H T, et al. Nanometer-Size a-PbO2 Type TiO2 in garnet: A thermobarometer for ultrahigh-pressure metamorphism [J]. Science, 2000, 288:321-324.

[34] Song Y R, Jin Z M. Nanometer sized UHP rutile: Tracing for the depth of continental deep subduction[J]. Earth Science Frontiers, 2002,9(4):267-272.[宋衍茹,金振民.纳米级超高压相金红石——大陆深俯冲深度的示踪[J].地学前缘,2002,9(4):267-272.]

[35] Mezger K, Hanson G N, Bohlen S R. High precision U-Pb ages of metamorphic rutile: Applications to the cooling history of high-grade terranes [J]. Earth and Planetary Science Letters, 1989, 96: 106-118.

[36] Schandl E S, Davis D W, Krogh T E. Are the alteration halos of massive sulfide deposits syngenetic? Evidence from U-Pb dating of hydrothermal rutile at the Kidd volcanic center, Abitibi subprovince, Canada [J]. Geology, 1990, 18:505-508.

[37] Li Q, Li S, Zheng Y, et al. A high precision U-Pb age of metamorphic rutile in coesite-bearing eclogite from the Dabie Mountains in central China: A new constraint on the cooling history [J]. Chemical Geology, 2003, 200:255-265.

[38] Cherniak D J. Diffusion of lead in plagioclase and K-feldspar: An investigation using Rutherford backscattering and resonant nuclear reaction analysis [J]. Contributions to Mineralogy and Petrology, 1995, 120: 358-371.

[39] Cherniak D J. Pb diffusion in rutile [J]. Contributions to Mineralogy and Petrology, 2000, 139:198-207.

[40] Schärer U, Labrousse, L. Dating the exhumation of UHP rocks and associated crustal melting in the Norwegian Caledonides [J]. Contributions to Mineralogy and Petrology,2003, 144:758-770.

[41] Graham J, Morris R C. Tungsten- and antimony-substituted rutile [J]. Mineral Magazine, 1973, 39:470-473.

[42] Rice C M, Darke K E, Still J W. Tungsten-bearing rutile from the Kori Kollo gold mine, Bolivia [J]. Mineral Magazine,1998, 62:421-429.

[43] Smith D C, Perseil E A. Sb-rich rutile in the manganese concentrations at St. Marcel-Praborna, Aosta Valley Italy: Petrology and crystal-chemistry [J]. Mineral Magazine, 1997, 61:655-669.

[44] Barth M G, McDonough W F, Rudnick R L. Tracking the budget of Nb and Ta in the continental crust [J]. Chemical Geology, 2000, 165:197-213.

[45] Plank T, Langmuir C H. The chemical composition of subducting sediment and its consequences for the crust and mantle [J]. Chemical Geology, 1998, 124:325-394.

[46] Zack T, von Eynatten H, Krone A. Rutile geochemistry and its potential use in quantitative provenance studies [J]. Sedimentary Geology, 2004, 171:37-58.

[47] Li Xiaofeng, Chen Zhenyu, Wang Rucheng, et al. Mineralogical and geochemical features of hail-like rutile in quartz crystal in Donghai, Jiangsu province, China [J]. Acta Petrologica Sinica, 2005, 21(2):475-481. [李晓峰,陈振宇,王汝成,.江苏东海毛发状水晶中金红石矿物学、地球化学特征[J].岩石学报,2005, 21(2):475-481.]

[48] Zack T, Moraes R, Krone A. Temperature dependence of Zr in rutile: Empirical calibration of a rutile thermometer [J]. Contributions to Mineralogy and Petrology, 2004, 148:471-488.

[49] Wang Rucheng, Wang Shuo, Qiu Jiansheng, et al. Rutile in the UHP eclogites from the CCSD main drillhole (Donghai, eastern China): Trace-element geochemistry and metallogenetic implications [J]. Acta Petrologica Sinica, 2005, 21(2):465-474. [王汝成,王硕,邱检生,.CCSD主孔揭示的东海榴辉岩中的金红石:微量元素地球化学及其成矿意义[J]. 岩石学报,2005, 21(2):465-474.]

[1] 韩雨, 牛漫兰, 朱光, 吴齐, 李秀财, 王婷. 郯庐断裂带肥东段早白垩世中期走滑运动的年代学证据[J]. 地球科学进展, 2015, 30(8): 922-939.
[2] 辛补社,杨华,王多云,付金华,姚泾利,罗安湘,张瑜. 甘肃靖远王家山地区凝灰岩锆石U-Pb年龄及地层对比意义[J]. 地球科学进展, 2013, 28(9): 1043-1048.
[3] 简星, 关平, 张巍. 碎屑金红石:沉积物源的一种指针[J]. 地球科学进展, 2012, 27(8): 828-846.
[4] 梁金龙,施泽明,徐进勇,高 英. 金红石榴辉岩——一个可能的超球粒陨石Nb/Ta储库[J]. 地球科学进展, 2012, 27(10): 1094-1099.
[5] 裴先治,刘战庆,丁仨平,李佐臣,李高阳,李瑞保,王 飞,李夫杰. 甘肃天水地区百花岩浆杂岩的锆石LA-ICP-MS U-Pb定年及其地质意义[J]. 地球科学进展, 2007, 22(8): 818-827.
[6] 向华,张利,钟增球,周汉文,曾雯. 榍石:U-Pb定年及变质P-T-t轨迹的建立[J]. 地球科学进展, 2007, 22(12): 1258-1267.
阅读次数
全文


摘要