Please wait a minute...
img img
高级检索
地球科学进展  2019, Vol. 34 Issue (4): 414-423    DOI: 10.11867/j.issn.1001-8166.2019.04.0414
地球化学     
水热体系中Na2SO4/K2SO4 溶解度的热力学计算
张为1,2(),周丽2(),唐红峰2,李和平2,王力2,3
1. 贵州师范大学喀斯特生态文明研究中心,贵州 贵阳 550025
2. 中国科学院地球化学研究所地球内部物质高温高压院重点实验室,贵州 贵阳 550002
3. 中国科学院大学,北京 100039
Thermodynamic Calculation of Solubility of Na2SO4/K2SO4 in Hydrothermal Fluids
Wei Zhang1,2(),Li Zhou2(),Hongfeng Tang2,Heping Li2,Li Wang2,3
1. Research Center of Karst Ecological Civilization, Guizhou Normal University, Guiyang 550025, China
2. Key Laboratory of High-Temperature and High-Pressure Study of the Earth’s Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
3. University of Chinese Academy of Sciences, Beijing 100039, China
 全文: PDF(1599 KB)   HTML
摘要:

硫酸盐流体是自然界中的常见热液,其盐度可以为成矿流体演化、成矿元素的迁移富集和矿床类型的划分等提供重要信息。但是现有文献报道的Na2SO4和K2SO4溶解度多是在饱和蒸气压条件或超临界条件下,而对于低温成矿热液体系的实验研究较少。热力学计算是研究流体性质的重要手段,特别是在实验结果较少的温压范围内起着重要作用,但是利用热力学模型来计算硫酸盐溶解度的工作却少有开展。使用Pitzer模型,利用Na2SO4和K2SO4溶液高温高压条件下的密度数据,使用非线性最小二乘法拟合,获得了压力对Na2SO4和K2SO4的活度系数及其溶解过程中的标准偏摩尔体积影响的模型参数,评价了压力对其活度系数和标准偏摩尔体积的影响。结合文献中饱和蒸气压下的相关参数,构建了温度范围为0~250 oC,压力范围为0.1~40.0 MPa,Na2SO4和K2SO4溶解度的热力学计算模型。模型计算结果与文献数据吻合较好。计算结果还显示,压力对Na2SO4和K2SO4的平均活度系数和溶度积都有正向的促进作用,但是由于平均活度系数随压力的变化更大,导致Na2SO4和K2SO4的溶解度随压力的增大而降低,并且随着温度的升高这种降低的程度变得更大。

关键词: 硫酸盐流体包裹体溶解度热力学计算Pitzer模型    
Abstract:

Sulfate fluids are common fluids in nature, and their salinity studies can provide important information for the evolution of ore-forming fluids, migration and enrichment of ore-forming elements, and the classification of deposit types. Considerable research has been carried out to investigate the solubility of Na2SO4 and K2SO4 in hydrothermal fluids, however most of the literature reported experimental data were under saturated vapor pressure or the water supercritical region. A few data have been reported for the low temperature hydrothermal mineralization region. Thermodynamic model is a useful method to study the properties of hydrothermal geofluids, especially for mineral solubility. Pitzer interaction model is one of the most widely used model to calculate the thermodynamic properties of hydrothermal fluids, but few work have ever been carried out to calculate the solubility of sulfate at high temperature and pressure. With Pitzer specific interaction model, using the literature reported density data of Na2SO4 and K2SO4 solutions at high temperature and pressure, the pressure effect on Pitzer activity coefficient of sulfate and the standard partial molar volume change during sulfate dissolution process were evaluated and related parameters were obtained. The standard partial molar volumes of Na2SO4 and K2SO4 calculated with these parameters agreed well with those reported in the literature. Combined with the relevant parameters in the literature under saturated vapor pressure, a thermodynamic model for Na2SO4 and K2SO4 solubility calculation with temperature up to 250 ℃ and pressure up to 40 MPa was developed. The model gave very good agreement with the experimental solubility data. With this model, Na2SO4 and K2SO4 solubility was calculated at high temperature and pressure. The calculation results showed that pressure had a positive effect on both the average activity coefficient and solubility product of Na2SO4 and K2SO4, but the solubility of Na2SO4 and K2SO4 decreased with pressure due to the larger change of the average activity coefficient with pressure. And as the temperature increased, the degree of such reduction became larger. The results herein can provide instructions for the compositional analysis of sulfate fluid inclusions.

Key words: Sulfate fluids inclusion    Solubility    Thermodynamic model    Pitzer model.
收稿日期: 2018-11-08 出版日期: 2019-05-27
ZTFLH:  P592  
基金资助: 国家自然科学基金项目“独居石和磷钇矿在热液中溶解行为的实验研究:对U-Th-Pb年龄有效性以及稀土元素成矿的约束”(编号:41773058);贵州省科技厅—贵州师范大学联合基金项目“石阡县地热资源可持续利用研究”(编号:黔科合LH字[2017]7339号)
通讯作者: 周丽     E-mail: zhangwei@gznu.edu.cn;zhouli@vip.gyig.ac.cn
作者简介: 张为(1988-),男,湖北武汉人,讲师,主要从事水—岩反应相关的地球化学研究. E-mail:zhangwei@gznu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张为
周丽
唐红峰
李和平
王力

引用本文:

张为,周丽,唐红峰,李和平,王力. 水热体系中Na2SO4/K2SO4 溶解度的热力学计算[J]. 地球科学进展, 2019, 34(4): 414-423.

Wei Zhang,Li Zhou,Hongfeng Tang,Heping Li,Li Wang. Thermodynamic Calculation of Solubility of Na2SO4/K2SO4 in Hydrothermal Fluids. Advances in Earth Science, 2019, 34(4): 414-423.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2019.04.0414        http://www.adearth.ac.cn/CN/Y2019/V34/I4/414

图1   25 oC不同压力下,模型计算的NaCl的平均活度系数随浓度的变化
温度范围/oC 压力范围/MPa 参考文献
25.0~300.0 9.0~30.0 [48]
25.0~200.0 1.1~68.6 [49]
5.0~60.0 0.1 [50]
20.0~200.0 2.0~10.0 [51]
0~50.0 0.1~80.0 [52]
50.0~200.0 2.0 [53]
25.0~100.0 0.6 [54]
25.0~250.0 0.1~40 [55]
30.0~300.0 2.4~39.8 [56]
5.0~100.0 0.1 [57]
表1   Na2SO4-H2O体系密度实验数据
温度范围/oC 压力范围/MPa 参考文献
25.0~300.0 9.0~30.0 [48]
50.0~200.0 2.0 [53]
25.0~100.0 0.6 [54]
0~90.0 0.1 [57]
20.0~300.0 5.0~40.0 [58]
表2   K2SO4-H2O体系密度的实验数据
图2  水热体系中模型计算的Na2SO4 溶液密度(a)和K2SO4 溶液密度(b)与实验数据的对比
参数 Na2SO4 K2SO4
m r 1.5 1.0
a 1 9.69382688×102 1.10686112×103
a 2 2.83105828×10-1 -5.98247606×10-1
a 3 -9.00393580×10-4 5.96259241×10-4
a 4 2.57624184×10-6 2.39804594×10-6
a 5 -1.43199512×100 -2.71085716×100
a 6 7.37402186×10-3 1.41493666×10-2
a 7 -1.17539062×10-5 -2.08587301×10-5
a 8 -4.86834961×10-4 5.43596750×10-3
a 9 8.87142143×10-2 4.61245819×10-3
a 10 2.75966178×10-7 -1.21299746×10-5
a 11 2.13350752×10-4 -5.55380818×10-3
a 12 -1.36823713×10-2 6.41685688×10-2
a 13 -2.95936943×10-7 1.44544684×10-5
表3   Na2SO4 和K2SO4 体积性质计算的参数
图3   Na2SO4 (a)和K2SO4 (b)标准偏摩尔体积随温度的变化
图4  不同温度压力下模型计算的Na2SO4 (a)和K2SO4 (b)平均活度系数随浓度的变化
温度/oC 实验结果/(mol/kg) 模型计算/(mol/kg) 参考文献

Na2SO4

P=P sat

60.0 3.15 3.34 [16,27]
100.0 2.99 3.04
120.0 2.95 2.94
140.7 2.96 2.89
200.7 3.15 3.16

K2SO4

P=P sat

50.00 0.95 0.94 [15]
80.00 1.23 1.20
100.0 1.40 1.33
150.0 1.69 1.57
190.0 1.97 1.71

Na2SO4

P= 25 MPa

50.0 3.53 3.19 [60]
100.0 2.34 2.74
150.0 2.33 2.53
180.0 2.39 2.48
200.0 2.41 2.46
220.0 2.37 2.40
表4  模型计算的Na2SO4 和K2SO4 溶解度和实验结果的对比
图5   Na2SO4 溶解平衡常数的自然对数(a)和溶解度(b)随温度压力的变化
图6   K2SO4 溶解平衡常数的自然对数(a)和溶解度(b)随温度压力的变化
1 Xiao Rongge , Zhang Zongheng , Chen Huiquan , et al . Types of geological fluids and ore-forming fluid [J]. Earth Science Frontiers, 2001, 8(4): 245-251.
1 肖荣阁, 张宗恒, 陈卉泉, 等 . 地质流体自然类型与成矿流体类型[J]. 地学前缘, 2001, 8(4): 245-251.
2 Xie Yuling , Tian Shihong , Hou Zengqian , et al . Discussion of migration and precipitation mechanics in Muluo REE deposit Miannong country, west Sichuan Province: Evidence from fluid inclusion in bastnaeite [J]. Acta Petrologica Sinica, 2008, 24(3):555-561.
2 谢玉玲, 田世洪, 侯增谦, 等 . 四川冕宁木落稀土矿床稀土元素迁移与沉淀机制: 来自稀土矿物中流体包裹体的证据[J]. 2008, 24(3):555-561.
3 Li Yongqiang . The Coexistence and Symbiosis Relation Research of Jinding Large-Scale Lead Zinc and the Sulfate Ore Deposit [D]. Xi'an:Changan University, 2006.
3 李永强 . 兰坪金顶超大型铅锌矿床与硫酸盐矿床共存共生关系研究[D]. 西安:长安大学, 2006.
4 Xu Jinhong , Zhang Zhengwei , Yang Xiaoyong , et al . The low-temperature mineralization of structurally-controlled fluids in Dahegou antimony ore deposit, Henan Province [J]. Acta Geologica Sinica, 2017, 91(12): 2 739-2 756.
4 徐进鸿, 张正伟, 杨晓勇, 等 . 河南省大河沟锑矿床构造—流体与低温成矿[J]. 地质学报, 2017, 91(12): 2 739-2 756.
5 Lu Huanzhang , Fan Hongrui , Ni Pei , et al . Fluind inclusion [M]. Beijing:Science Press, 2004.
5 卢焕章, 范宏瑞, 倪培, 等 .流体包裹体[M]. 北京:科学出版社, 2004.
6 Frezzotti M L , Tecce F , Casagli A . Raman spectroscopy for fluid inclusion analysis[J]. Journal of Geochemical Exploration, 2012, 112(1): 1-20.
7 Li Xiaochun , Fan Hongrui , Hu Fangfang , et al . An analysis of the invidual fluid inclusion by LA-ICP-MS and its application to ore deposit [J]. Mineral Deposit, 2010, 29(6): 1 017- 1 028.
7 李晓春, 范宏瑞, 胡芳芳, 等 . 单个流体包裹体LA-ICP-MS成分分析及在矿床学中的应用[J]. 矿床地质, 2010, 29(6): 1 017-1 028.
8 Sun He , Xiao Yilin . Fluid inclusion: Latest development, geological application and prospect [J]. Advances in Earth Science, 2009, 24(10): 1 105-1 121.
8 孙贺, 肖益林 . 流体包裹体研究:进展、地质应用及展望[J]. 地球科学进展, 2009, 24(10): 1 105-1 121.
9 Yao Ying , Sun Qiang . Raman quantitative measurements for carbon isotopic composition in CO2-rich fluid inclusion: A preliminary study [J]. Advances in Earth Science, 2016, 31(10): 1 032-1 040.
9 药瑛, 孙樯 . 应用于流体包裹体CO2碳同位素组成的拉曼光谱定量研究探讨[J]. 地球科学进展, 2016, 31(10): 1 032-1 040.
10 Wei Qing , Fan Hongrui , Lan Tingguang , et al . Genesis of Sizhuang gold deposit, Jiaodong peninsula: Evidences from fluid inclusion and quartz solubility modeling [J]. Acta Petrologica Sinica, 2015, 31(4):1 049-1 062.
10 卫清, 范宏瑞, 蓝廷广, 等 . 胶东寺庄金矿床成因: 流体包裹体与石英溶解度证据[J]. 岩石学报, 2015, 31(4): 1 049-1 062.
11 Chi Guoxiang , Lai Jianqing . Roles of fluid inclusion in study of mineral deposit [J]. Mineral Deposit, 2009, 28(6): 850-855.
11 池国祥, 赖健清 . 流体包裹体在矿床研究中的作用[J]. 矿床地质, 2009, 28(6): 850-855.
12 Xu Wengang , Fan Hongrui . Ore-forming fluids of the oxidized and reduced porphyry deposits [J]. Earth Science Frontiers, 2011, 18(5): 103-120.
12 徐文刚, 范宏瑞 . 氧化性和还原性斑岩型矿床流体成矿特征分析[J]. 地学前缘, 2011, 18(5): 103-120.
13 Xie Yuling , Hou Zengqian , Yin Shuping , et al . Continuous carbonatitic melt-fluid evolution of a REE mineralization system: Evidence from inclusions in the Maoniuping REE deposit, Western Sichuan, China [J]. Ore Geology Reviews, 2009, 36(1): 90-105.
14 Linke W F . Solubilities of Inorganic and Metalorganic Compounds (4th ed)[M]. Washington:American Chemical Society, 1965.
15 Eysseltová J , Bouaziz R . IUPAC-NIST solubility data series. 93. Potassium sulfate in water [J]. Journal of Physical and Chemical Reference Data, 2012, 41(1): 0131031. DOI: 10.1002/chin.201340220.
doi: 10.1002/chin.201340220
16 Schroeder W C , Gabriel A , Partridge E P . Solubility equilibria of sodium sulfate at temperatures of 150 to 350 °C. I. Effect of sodium hydroxide and sodium chloride [J]. Journal of the American Chemical Society, 1935, 57(9): 1 539-1 546.
17 Ding X , Zhang T , Zhang S , et al . Experimental determination and modelling of the solubilities of sodium sulfate and potassium sulfate in sub-and supercritical water [J]. Fluid Phase Equilibria, 2019, 483: 31-51.
18 Dipippo M M , Sako K , Tester J W . Ternary phase equilibria for the sodium chloride-sodium sulfate-water system at 200 and 250 bar up to 400 °C [J]. Fluid Phase Equilibria, 1999, 157(2): 229-255.
19 Leusbrock I , Metz S J , Rexwinkel G , et al . Quantitative approaches for the description of solubilities of inorganic compounds in near-critical and supercritical water [J]. The Journal of Supercritical Fluids, 2008, 47(2): 117-127.
20 Mao S , Peng Q , Wang M , et al . The PVTx properties of aqueous electrolyte solutions containing Li+, Na+, K+, Mg2+, Ca2+, Cl? and SO 4 2 - under conditions of CO2 capture and sequestration [J]. Applied Geochemistry, 2017, 86: 105-120.
21 Duan Zhenhao . State equation of geological fluid [J]. Science in China(Series D), 2010, 40(4): 393-413.
21 段振豪 . 地质流体状态方程[J]. 中国科学: D辑, 2010, 40(4): 393-413.
22 Zhong R , Brugger J , Tomkins A G , et al . Fate of gold and base metals during metamorphic devolatilization of a pelite [J]. Geochimica et Cosmochimica Acta, 2015, 171: 338-352.
23 Pan Aoran , Shan Huimei , Peng Sanxi , et al . Thermodynamic modeling of thioarsenic species distribution in high As groundwater in Hetao Plain [J]. Advances in Earth Science, 2018, 33(11): 1 169-1 180.
23 潘敖然, 单慧媚, 彭三曦, 等 . 基于热力学模拟河套平原高砷地下水中硫代砷形态分布特征[J]. 地球科学进展, 2018, 33(11): 1 169-1 180.
24 Hu Q C , Guo H R , Lu X B , et al . Determination of P-V-T-x properties of the CO2-H2O system up to 573.15 K and 120 MPa-experiments and model [J]. Chemical Geology, 2016, 424: 60-72.
25 Mao S , Duan Z . The P, V, T,x properties of binary aqueous chloride solutions up to T = 573 K and 100 MPa [J]. The Journal of Chemical Thermodynamics, 2008, 40(7): 1 046-1 063.
26 Greenberg J P , M?ller N . The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-K-Ca-Cl-SO4-H2O system to high concentration from 0 to 250 °C [J]. Geochimica et Cosmochimica Acta, 1989, 53(10): 2 503-2 518.
27 Pabalan R T , Pitzer K S . Thermodynamics of concentrated electrolyte mixtures and the prediction of mineral solubilities to high temperatures for mixtures in the system Na-K-Mg-Cl-SO4-OH-H2O [J]. Geochimica et Cosmochimica Acta, 1987, 51(9): 2 429-2 443.
28 Pitzer K S . Thermodynamics of electrolytes. I. Theoretical basis and general equations [J]. The Journal of Physical Chemistry, 1973, 77(2): 268-277.
29 Wang L , Zhang W , Yang B , et al . Solubility measurements in Na-F-CO3-HCO3-H2O system at (308.15 and 323.15) K and development of a Pitzer-based equilibrium model for the Na-F-Cl-SO4-CO3-HCO3-H2O system[J]. The Journal of Chemical Thermodynamics, 2019, 131: 88-96.
30 Parkhurst D L , Appelo C A J . Description of Input and Examples for PHREEQC Version 3: A Computer Program for Speciation, Batch-Reaction, Transport One-Dimensional , and Inverse Geochemical Calculations [R]. U.S. Geological Survey, 2013.
31 Kulik D A , Wagner T , Dmytrieva S V , et al . GEM-Selektor geochemical modeling package: Revised algorithm and GEMS3K numerical kernel for coupled simulation codes [J]. Computational Geosciences, 2013, 17(1): 1-24.
32 Dai Z , Kan A , Zhang F , et al . A thermodynamic model for the solubility prediction of barite, calcite, gypsum, and anhydrite, and the association constant sstimation of CaSO4 (0) ion pair up to 250 °C and 22000 psi [J]. Journal of Chemical and Engineering Data, 2015, 60(3): 766-774.
33 Shi W , Kan A , Fan C , et al . Solubility of barite up to 250 °C and 1500 bar in up to 6 m NaCl solution [J]. Industrial and Engineering Chemistry Research, 2012, 51(7): 3 119-3 128.
34 Dai Z , Kan A , Shi W , et al . Calcite and barite solubility measurements in mixed electrolyte solutions and development of a comprehensive model for water-mineral-gas equilibrium of the Na-K-Mg-Ca-Ba-Sr-Cl-SO4-CO3-HCO3-CO2(aq)-H2O System up to 250 °C and 1500 bar [J]. Industrial and Engineering Chemistry Research, 2017, 56 (23): 6 548-6 561.
35 Millero F J . The effect of pressure on the solubility of minerals in water and seawater [J]. Geochimica et Cosmochimica Acta, 1982, 46(1): 11-22.
36 Appelo C A J , Parkhurst D L , Post V E A . Equations for calculating hydrogeochemical reactions of minerals and gases such as CO2 at high pressures and temperatures [J]. Geochimica et Cosmochimica Acta, 2014, 125: 49-67.
37 Monnin C . A thermodynamic model for the solubility of barite and celestite in electrolyte solutions and seawater to 200 °C and to 1 kbar [J]. Chemical Geology, 1999, 153(1/4): 187-209.
38 Robie R A , Hemmingway B , Fisher J R . Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 bar (10? pascals) Pressure and at Higher Temperature [R]. Denver,CO: U.S. Geological Survey, 1978.
39 Rogers P S Z , Pitzer K S . Volumetric properties of aqueous sodium vhloride solutions [J]. Journal of Physical and Chemical Reference Data, 1982, 11(1): 15-81.
40 Pitzer K S , Peiper J C , Busey R H . Thermodynamic properties of aqueous sodium chloride solutions [J]. Journal of Physical and Chemical Reference Data, 1984, 13(1): 1-102.
41 K?nigsberger E , Eriksson G , May P M , et al . Comprehensive model of synthetic Bayer liquors. Part 1. Overview [J]. Industrial and Engineering Chemistry Research, 2005, 44(15):5 805-5 814.
42 Wagner W , Kruse A , Kurtzschmar H J . Properties of Water and steam: The Industrial Standard IAPWS-IF97 for the Thermodynamic Properties and Supplementary Equations for Other Properties: Tables Based on These Equations [M]. Berlin:Springer-Verlag Berlin, 1998.
43 Pabalan R T , Pitzer K S . Thermodynamics of NaOH(aq) in hydrothermal solutions [J]. Geochimica et Cosmochimica Acta, 1987, 51(4): 829-837.
44 Bradley D J , Pitzer K S . Thermodynamics of electrolytes. 12. Dielectric properties of water and Debye-Hückel parameters to 350 °C and 1 kbar [J]. Journal of Physical Chemistry, 1979, 83(12): 1 599-1 603.
45 Archer D G . Thermodynamic properties of the KCl+H2O system [J]. Journal of Physical and Chemical Reference Data, 1999, 28(1): 1-17.
46 Rowland D , May P M . A Pitzer-based characterization of aqueous magnesium chloride, calcium chloride and potassium iodide solution densities to high temperature and pressure [J]. Fluid Phase Equilibria, 2013, 338: 54-62.
47 M?ller N . The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-Ca-Cl-SO4-H2O system, to high temperature and concentration [J]. Geochimica et Cosmochimica Acta, 1988, 52(4): 821-837.
48 Ob?il M , Majer V , Hefter G T , et al . Densities and apparent molar volumes of Na2SO4(aq) and K2SO4(aq) at temperatures from 298 K to 573 K and at pressures up to 30 MPa [J]. Journal of Chemical and Engineering Data, 1997, 42(1): 137-142.
49 Al Ghafri S Z , Maitland G C , Trusler J P M . Densities of SrCl2(aq), Na2SO4(aq), NaHCO3(aq), and two synthetic reservoir brines at temperatures between (298 and 473) K, pressures up to 68.5 MPa, and molalities up to 3 mol·kg-1 [J]. Journal of Chemical and Engineering Data, 2013, 58(2): 402-412.
50 Apelblat A , Manzurola E , Orekhova Z . Thermodynamic properties of aqueous electrolyte solutions. volumetric and compressibility studies in 0.1 mol.kg-1, 0.5 mol·kg-1, and 1.0 mol·kg-1 sodium carbonate and sodium sulfate solutions at temperatures from 278.15 K to 323.15 K [J]. Journal of Chemical and Engineering Data, 2009, 54(9): 2 550-2 561.
51 Saluja P P S , Pitzer K S , Phutela R C . High-temperature thermodynamic properties of several 1∶1 electrolytes [J]. Canadian Journal of Chemistry, 1986, 64(7): 1 328-1 335.
52 Chen C T , Emmet R T , Millero F J . The apparent molal volumes of aqueous solutions of sodium chloride, potassium chloride, magnesium chloride, sodium sulfate, and magnesium sulfate from 0 to 1000 bars at 0, 25, and 50 °C [J]. Journal of Chemical and Engineering Data, 1977, 22(2): 201-207.
53 Ellis A J . Partial molal volumes in high-temperature water. Part III. halide and oxyanion salts [J]. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1968. DOI:10.1039/j19680001138.
doi: 10.1039/j19680001138
54 Saluja P P S , Lemire R J , Leblanc J C . High-temperature thermodynamics of aqueous alkali-metal salts [J]. The Journal of Chemical Thermodynamics, 1992, 24(2): 181-203.
55 Zezin D , Driesner T , Sanchez-Valle C . Volumetric properties of Na2SO4-H2O and Na2SO4-NaCl-H2O solutions to 523.15 K, 70 MPa [J]. Journal of Chemical and Engineering Data, 2015, 60(4): 1 181-1 192.
56 Azizov N D , Akhundov T S . The bulk properties of the Na2SO4-H2O system in a wide range of the parameters of state [J]. High Temperature, 2000, 38(2): 203-209.
57 Laliberté M . A model for calculating the heat capacity of aqueous solutions, with updated density and viscosity Data [J]. Journal of Chemical and Engineering Data, 2009, 54(6): 1 725-1 760.
58 Azizov N D . The density and partial properties of K2SO4-H2O solutions from room temperature to 573 K [J]. Zhurnal Neorganicheskoi Khimii, 1998, 43(2): 323-327.
59 Pearce J N , Eckstrom H C . Vapor pressures and partial molal volumes of aqueous solutions of the alkali sulfates at 25° [J]. Journal of the American Chemical Society, 1937, 59(12): 2 689-2 691.
60 Voisin T , Erriguible A , Philippot G , et al . Investigation of the precipitation of Na2SO4 in supercritical water [J]. Chemical Engineering Science, 2017, 174: 268-276.
[1] 杜志恒,效存德,李向应. 生物活性元素Fe来源及其溶解度影响因素研究综述[J]. 地球科学进展, 2013, 28(5): 597-607.