Please wait a minute...
img img
高级检索
地球科学进展  2019, Vol. 34 Issue (1): 103-112    DOI: 10.11867/j.issn.1001-8166.2019.01.0103
    
基于ICA的引潮力互相关谱分析
邢德钊(),全海燕*()
1. 昆明理工大学,信息工程与自动化学院,云南 昆明 650500
Independent Component Extraction and Cross-correlation Spectrum Analysis of Gravity Tide Signal
Dezhao Xing(),Haiyan Quan*()
1. Kunming University of Science and Technology, Faculty of Information Engineering and Automation, Kunming 650500, China
 全文: PDF(2297 KB)   HTML
摘要:

重力固体潮信号包括日波、半日波和年波、月波谐波分量,但是日波和半日波分量能量相对强,年波和月波分量能量相对较弱。为了有效提取出这些有较大能量差异的谐波分量,并揭示它们间的调制关系,根据重力固体潮的产生机理,采用一种重力固体潮信号分解模型,将强度不同的潮汐谐波分量以独立成分的形式,分解到不同的正交方向上。同时,利用一种新型的优化算法,改进独立成分分析算法,并将不同正交方向的独立分量进行分离。在对独立成分分量的谱相关分析中,自相关运算会使强的分量更强,而弱的分量更弱,针对这一问题,采用独立成分间的互相关谱,来揭示重力固体潮信号中谐波分量间的调制关系。实验结果表明,提出的算法,不但从加性分解的角度有效分离了重力固体潮信号中强度差异比较大的独立成分,而且基于互相关谱,揭示了相应潮汐谐波间的乘性调制关系。

关键词: 重力固体潮智能优化算法独立成分分析乘性解调互相关谱    
Abstract:

The gravity solid tide signal includes daily wave, half-day wave and annual wave and moon wave harmonic component, but the energy of day wave and half-day wave component is relatively strong, and the energy of annual wave and moon wave component is relatively weak. In order to effectively extract these harmonic components with large energy differences and reveal the modulation relationship between them, according to the cause of gravity tide, a gravity solid tide signal decomposition model is used to compare the tidal harmonic components with different strengths. The form of the independent component is decomposed into different orthogonal directions. At the same time, a new optimization algorithm is used to improve the independent component analysis algorithm and separate the independent components of different orthogonal directions. In the spectral correlation analysis of the components of independent components, the autocorrelation operation will make the strong component stronger and the weak component weaker. For this problem, the cross-correlation spectrum between independent components is used to reveal the gravity tide signal., the modulation relationship between harmonic components. The experimental results show that the proposed algorithm not only effectively separates the independent components with large intensity difference in the gravity tide signal from the perspective of additive decomposition, but also reveals the multiplicative modulation relationship between the corresponding tidal harmonics based on the cross-correlation spectrum.

Key words: Gravity solid tide    Intelligent optimization algorithm    Independent Component Analysis    Multiplicative demodulation    Cross-correlation spectrum.
收稿日期: 2018-09-13 出版日期: 2019-03-05
ZTFLH:  P312.4  
基金资助: 国家自然科学基金项目“提取重力固体潮信号中地球物理信息和地震前兆信息的关键信号处理算法研究”(编号:41364002)
通讯作者: 全海燕     E-mail: 1329459095@qq.com;quanhaiyan@163.com
作者简介: 邢德钊(1992-),男,河北深泽人,硕士研究生,主要从事数字信号处理与地球物理信息研究.E-mail:1329459095@qq.com|全海燕(1970-),男,云南石屏人,副教授,主要从事信号与信息处理、智能优化决策、地球物理信息等研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
邢德钊
全海燕

引用本文:

邢德钊,全海燕. 基于ICA的引潮力互相关谱分析[J]. 地球科学进展, 2019, 34(1): 103-112.

Dezhao Xing,Haiyan Quan. Independent Component Extraction and Cross-correlation Spectrum Analysis of Gravity Tide Signal. Advances in Earth Science, 2019, 34(1): 103-112.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2019.01.0103        http://www.adearth.ac.cn/CN/Y2019/V34/I1/103

图1  重力固体潮正交分解模型
图2   ICA解混原理图
图3   ICA与互相关谱分析流程图
图4  昆明地区重力固体潮信号
图5   ICA独立分量波形图
图6   y 1 ( t ) , y 2 ( t )和 y 3 ( t )的自相关谱
乘性调制频率/Hz 解调对应的潮汐谐波频率/Hz 潮汐谐波频率理论计算值/Hz

f 11 = 2.411 × 10 - 7

a 11 = 1.777 × 10 - 7

F 1 = f 11 + a 11 = 4.188 × 10 - 7 4.2004 × 10 - 7
F 2 = f 11 - a 11 = 6.34 × 10 - 8 6.3377 × 10 - 8

f 12 = 4.569 × 10 - 7

a 12 = 3.934 × 10 - 7

F 3 = f 12 + a 12 = 8.503 × 10 - 7 8.4725 × 10 - 7
F 4 = f 12 - a 12 = 6.35 × 10 - 8 6.3377 × 10 - 8

f 13 = 6.345 × 10 - 7

a 13 = 2.157 × 10 - 7

F 5 = f 13 + a 13 = 8.502 × 10 - 7 8.4725 × 10 - 7
F 6 = f 13 + a 13 = 4.188 × 10 - 7 4.2004 × 10 - 7

f 21 = 2.275 × 10 - 5

a 21 = 3.934 × 10 - 7

F 7 = f 21 + a 21 = 2.3143 × 10 - 5 2.3148 × 10 - 5
F 8 = f 21 - a 21 = 2.2357 × 10 - 5 2.2364 × 10 - 5

f 31 = 1.157 × 10 - 5

a 31 = 3.807 × 10 - 8

F 9 = f 31 + a 31 = 1.1608 × 10 - 5 1.1606 × 10 - 5
F 10 = f 31 - a 31 = 1.1532 × 10 - 5 1.1542 × 10 - 5

f 32 = 1.118 × 10 - 5

a 32 = 4.188 × 10 - 7

F 11 = f 32 + a 32 = 1.1599 × 10 - 5 1.1606 × 10 - 5
F 12 = f 32 - a 32 = 1.0761 × 10 - 5 1.0759 × 10 - 5

f 33 = 1.115 × 10 - 5

a 33 = 3.934 × 10 - 7

F 13 = f 33 + a 33 = 1.1543 × 10 - 5 1.1542 × 10 - 5
F 14 = f 33 - a 33 = 1.0757 × 10 - 5 1.0759 × 10 - 5
表1   y 1 ( t ) , y 2 ( t )和 y 3 ( t )的自相关谱分析
图7   y 1 ( t ), y 2 ( t )和 y 3 ( t )的互相关谱
互相关谱峰点
1 ( 5.863 × 10 - 6 , 5.799 × 10 - 6 ) 2 ( 5.774 × 10 - 6 , 5.711 × 10 - 6 ) 3 ( 6.015 × 10 - 6 , 5.596 × 10 - 6 )
4 ( 6.193 × 10 - 6 , 5.343 × 10 - 6 ) 5 ( 5.406 × 10 - 6 , 5.343 × 10 - 6 ) 6 ( 1.164 × 10 - 5 , 1.157 × 10 - 5 )
7 ( 1.16 × 10 - 5 , 1.154 × 10 - 5 ) 8 ( 1.181 × 10 - 5 , 1.14 × 10 - 5 ) 9 ( 1.203 × 10 - 5 , 1.118 × 10 - 5 )
10 ( 1.142 × 10 - 5 , 1.136 × 10 - 5 ) 11 ( 1.131 × 10 - 5 , 1.124 × 10 - 5 ) 12 ( 1.11 × 10 - 5 , 1.104 × 10 - 5 )
13 ( 1.1 × 10 - 5 , 1.094 × 10 - 5 ) 14 ( 1.161 × 10 - 5 , 1.076 × 10 - 5 ) 15 ( 1.695 × 10 - 5 , 6.193 × 10 - 6 )
16 ( 1.737 × 10 - 5 , 5.774 × 10 - 6 ) 17 ( 1.695 × 10 - 5 , 5.406 × 10 - 6 )
表2   y 1 ( t ), y 2 ( t )和 y 3 ( t )的互相关谱峰点
潮汐谐波理论计算值/Hz 对应于乘性调制谱相关点 对应于线性差频谱相关点 对应于线性和频谱相关点
长周期波 3.1687 × 10 - 8
6.3377 × 10 - 8 1,2,5,6,7,10,11,12,13
4.2004 × 10 - 7 3,8
8.4725 × 10 - 7 4,9,14
日波 1.0338 × 10 - 5
1.0759 × 10 - 5 14 15 5
1.1186 × 10 - 5 9
1.1511 × 10 - 5 8 2
1.1542 × 10 - 5 7 17 4
1.1574 × 10 - 5 6
1.1606 × 10 - 5 7,14 16 3
1.1637 × 10 - 5 6
1.1669 × 10 - 5 8 1
1.2026 × 10 - 5 9
1.2453 × 10 - 5
半日波 2.1524 × 10 - 5
2.1580 × 10 - 5
2.1944 × 10 - 5 13
2.2000 × 10 - 5 12
2.2364 × 10 - 5 14,17
2.2728 × 10 - 5 11
2.2784 × 10 - 5 10
2.3116 × 10 - 5
2.3148 × 10 - 5 7,15,16
2.318 × 10 - 5
2.3212 × 10 - 5 6,8,9
表3   y 1 ( t ), y 2 ( t )和 y 3 ( t )的互相关谱分析
图8   y 1 ( t ), y 2 ( t )和 y 3 ( t )的部分互相关谱
潮汐谐波理论计算值/Hz 对应于乘性调制谱相关点 对应于线性差频谱相关点 对应于线性和频谱相关点
长周期波 3.1687 × 10 - 8 5
6.3377 × 10 - 8 1,2,3,21,22
4.2004 × 10 - 7 23,24
8.4725 × 10 - 7 9,
日波 1.0338 × 10 - 5 13
1.0759 × 10 - 5 4,11,12 14
1.1186 × 10 - 5 4,10 15
1.1511 × 10 - 5 8 18
1.1542 × 10 - 5 7 17
1.1574 × 10 - 5 6,8 19
1.1606 × 10 - 5 7 16,20
1.1637 × 10 - 5 6 21
1.1669 × 10 - 5 11 24
1.2026 × 10 - 5 10 23
1.2453 × 10 - 5 12 22
半日波 2.1524 × 10 - 5 2
2.1580 × 10 - 5 1
2.1944 × 10 - 5 17
2.2000 × 10 - 5 3
2.2364 × 10 - 5 13,15
2.2728 × 10 - 5 16
2.2784 × 10 - 5 9
2.3116 × 10 - 5 20
2.3148 × 10 - 5 5,19
2.318 × 10 - 5 14
2.3212 × 10 - 5 18
表4   y 1 ( t ), y 2 ( t )和 y 3 ( t )的部分互相关谱分析
1 Xu Houze . Solid Earth Tide [M]. Wuhan: Hubei Science and Technology Press, 2010.
1 许厚泽 .固体地球潮汐[M].武汉: 湖北科学技术出版社, 2010.
2 Li Xingqiao , Zhang Chuanyin , Wang Wei , et al . Analysis of influence of Earth tide on vertical deformation and gravity change in the Three Gorges area[J]. Bulletin of Surveying and Mapping,2017, (3):9-12.
2 李兴桥,章传银,王伟,等 .固体潮对三峡地区地壳垂直形变和重力变化的影响分析[J].测绘通报,2017, (3):9-12.
3 Zhang Chunguan , Yuan Bingqiang , Zhang Guoli . Quality assessment of land gravity data in the latest global gravity database V23 [J]. Advances in Earth Science, 2017, 32 (1): 75-82.
3 张春灌,袁炳强,张国利 .最新全球重力数据库V23中陆域重力资料质量评估[J].地球科学进展, 2017, 32(1): 75-82.
4 Quan Haiyan , Liu Yan . Spectral correlation analysis of EMD modal components and demodulation analysis of gravity solid tide signals[J]. Advances in Earth Science,2016,31(9):919-925.
4 全海燕,刘艳 .EMD模态分量的谱相关分析法及其对重力固体潮信号的解调分析[J].地球科学进展,2016,31(9):919-925.
5 Zhou Jiangcun , Sun Heping , Xu Jianqiao , et al . Strain and stress tide in Earth[J]. Chinese Journal of Geophysics, 2013,56(11):3 779-3 787.
5 周江存,孙和平,徐建桥,等 .地球内部应变与应力固体潮[J].地球物理学报,2013,56(11):3 779-3 787.
6 Zhang Li , Fu Rongshan , Zhou Zhi , et al . Seismic precursor information of gravity solid tides extracted by HHT[J]. Acta Seismologica Sinica, 2007, 29(2): 222-226.
6 张立,傅容珊,周挚,等 .基于HHT提取重力固体潮的地震前兆信息[J].地震学报, 2007, 29(2): 222-226.
7 Zhang Yan , Wu Yun , Liu Yongqi , et al . Identification and extraction of seismic precursor information in tidal deformation data[J].Journal of Geodesy and Geodynamics, 2003, 23(4): 34-39.
7 张燕,吴云,刘永启,等 .潮汐形变资料中地震前兆信息的识别与提取[J].大地测量与地球动力学, 2003, 23(4): 34-39.
8 Li Qiaoyan , Quan Haiyan . The tidal harmonic extraction of gravity solid tide signal based on ICA[J].Journal of Yunnan University (Natural Science Edition),2015,37(6):845-850.
8 李巧燕,全海燕 .基于ICA的重力固体潮信号的潮汐谐波提取[J].云南大学学报:自然科学版,2015,37(6):845-850.
9 Chen Hao , Bai Lin , Zhou Zhiyu . Development and application of blind source separation technology[J]. Space Electronic Technology, 2013, 10(1):5-10.
9 陈豪,白琳,周治宇 .盲源分离技术的发展及应用浅谈[J].空间电子技术,2013, 10(1):5-10.
10 Yu Xianchuan , Hu Dan . Theory and Application of Blind Source Separation[M]. Beijing: Science Press, 2011.
10 余先川,胡丹 . 盲源分离理论与应用[M]. 北京:科学出版社,2011.
11 Lee T , Girolami M , Sejnowski T . Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources [J]. Neural Computation, 1999, 11(2): 417- 441.
12 Zhang Xianda , Bao Zheng . Blind signal separation[J]. Acta Electronica Sinica,2001,(Suppl.1):1 766-1 771.
12 张贤达,保铮 .盲信号分离[J].电子学报,2001,(增刊 1):1 766-1 771.
13 Quan Haiyan , Shi Xinling .A surface-simplex dwarm rvolution slgorithm[J].Wuhan University Journal of Natural Sciences,2017,22(1):38-50.
14 Zhang Xianda , Bao Zheng . Non-stationary Signal Analysis and Processing[M]. Beijing: National Defense Industry Press, 1998.
14 张贤达,保铮 .非平稳信号分析与处理[M].北京:国防工业出版社,1998.
15 Huang Zhitao . Cyclic and Stationary Signal Processing and Application[M]. Beijing:Science Press,2006.
15 黄知涛 .循环平稳信号处理及应用[M].北京:科学出版社,2006.
16 Lei Dian . Non-stationary Signal Analysis Method Based on Cyclostationary Characteristics[D]. Chengdu: University of Electronic Science and Technology, 2016.
16 雷电 . 基于循环平稳特征的非平稳信号分析方法研究[D].成都:电子科技大学,2016.
17 Fang Jun . Gravity and Solid Tide Course [M]. Beijing: Seismological Press, 1982.
17 方俊 . 重力与固体潮教程[M]. 北京:地震出版社,1982.
18 Xu Huajun , Liu Lintao , Luo Xiaowen . Simulation implementation of global gravity solid tide[J]. Journal of System Simulation,2009,21(24):7 824-7 827,7 832.
18 徐华君,柳林涛,罗孝文 .全球重力固体潮的仿真实现[J].系统仿真学报,2009,21(24):7 824-7 827,7 832.
19 Su Rong , Li Shengle . The calculation of theoretical values of solid tide waves based on laplace series expansion method[J]. Journal of Geodesy and Geodynamics,2013,33(5):106-109.
19 苏融,李胜乐 .基于拉普拉斯级数展开法的固体潮波类理论值计算[J].大地测量与地球动力学,2013,33(5):106-109.
20 Gao Xiaoliang , Jing Lei , Sun Mingguo . The calculation of theoretical value of gravity solid tide based on MATLAB[J]. Western Science and Technology, 2009,8(1):33-34.
20 郜晓亮,荆磊,孙明国 .基于MATLAB的重力固体潮理论值计算[J].中国西部科技,2009,8(1):33-34.
21 Wang Qingbin , Huang Guangping , Xu Peng . The computer deduction of the tide level of solid tide[J]. Journal of Institute of Surveying and Mapping, 2003, 20(2): 83-85.
21 王庆宾,黄广平,徐朋 .固体潮引潮位的计算机演绎展开[J].测绘学院学报, 2003, 20(2): 83-85.
22 Su Qihui , Duan Yanfei , Hu Yili , et al . The closed formula of the theoretical derivative of gravity tides[J]. Chinese Journal of Geophysics, 1994, 37(5): 647-658.
22 苏其辉,段燕飞,胡毅力,等 .重力固体潮理论值导数的封闭公式[J].地球物理学报, 1994, 37(5): 647-658.
23 Wu Qingpeng . Calculation of the theoretical value of solid tide in a rotating elastic ellipsoidal earth model[J]. Acta Seismologica Sinica,1990,12(3):282-291,337.
23 吴庆鹏 .旋转弹性椭球地球模型的固体潮理论值计算[J].地震学报,1990,12(3):282-291,337.
[1] 全海燕, 刘艳. EMD模态分量的谱相关分析法及其对重力固体潮信号的解调分析[J]. 地球科学进展, 2016, 31(9): 919-925.
[2] 许厚泽,孙和平 . 我国重力固体潮实验研究进展[J]. 地球科学进展, 1998, 13(5): 415-422.