地球科学进展 ›› 2016, Vol. 31 ›› Issue (8): 820 -828. doi: 10.11867/j.issn.1001-8166.2016.08.0820.

研究论文 上一篇    下一篇

降雨发生装置空间均匀性的研究
刘波 1, 王晓蕾 1*, *, 康钊菁 1, 苏腾 2, 翟东力 3, 袁靖 3   
  1. 1.解放军理工大学气象海洋学院探测工程教研室,江苏 南京 211101;
    2 酒泉卫星发射中心, 甘肃 酒泉 732750;
    3.太原航空仪表技术有限公司南京分公司,江苏 南京 211106
  • 收稿日期:2016-05-08 修回日期:2016-07-10 出版日期:2016-08-20
  • 通讯作者: 王晓蕾(1964-),女,浙江宁波人,教授,主要从事军事气象计量与测试技术研究.E-mail:wangxiaolei0199@sina.com
  • 基金资助:
    国家自然科学基金项目“降水瞬态微物理特征测量仪”(编号:41327003)和“基于微波链路的区域降水反演”(编号:41475020)资助

Research on Spatial Uniformity of Rainfall Generator

Liu Bo 1, Wang Xiaolei 1, Kang Zhaojing 1, Su Teng 2, Zhai Dongli 3, Yuan Jing 3   

  1. 1. College of Meteorology and Oceanography,PLA University of Science and Technology, Nanjing 211101,China;
    2.Jiuquan Satellite Launch Center,Jiuquan 732750,China;
    3.Taiyuan Aero-Instruments Co., Ltd of Nanjing Branch,Nanjing 211106,China
  • Received:2016-05-08 Revised:2016-07-10 Online:2016-08-20 Published:2016-08-20
  • Contact: Wang Xiaolei(1964-), female, Ningbo City, Zhejiang Province,Professor. Research areas include military meteorological measurement and testing technology.E-mail:wangxiaolei0199@sina.com
  • Supported by:
    Project supported by the National Natural Science Foundation of China “Measuring instrument for the transient micro-physically characteristics of precipitation” (No.41327003) and “Inversion of regional precipitation by microwave links”(No.41475020)
为提高降雨发生装置的空间均匀性,对通过测试平台旋转提高降雨场空间均匀性的方法进行研究,设计、研制了旋转测试平台,解决了旋转过程中的信号传输问题,建立了转速与降雨发生装置空间均匀性之间的关系,结合翻斗式雨量计在降雨场中的测试与流量式雨量雨强标准装置的测试,论证了降雨发生装置作为雨量和雨强的测试环境是可行的。结果表明,随着转台转速的增加,降雨场的空间均匀性先增大后减小,且随着测试面积的减小,不同转速呈现出不一样的变化趋势,转台转速为1 RPM时,测试面积为1.6 m ×1.6 m和1.2 m×1.2 m时,其均匀度系数最大(>95%);随着测试平台转速的增加,翻斗式雨量计累积降雨量和降雨强度之间的一致性增强,在转速为1 RPM和2 RPM时,翻斗式雨量计累积降雨量的最大偏差最小,为0.2 mm;流量式雨量雨强标准装置测试的累积降雨量的平均值与旋转测试平台在转速为1 RPM和2 RPM时测得的结果一致,充分说明通过旋转式测试工作平台可得到与流量式雨量雨强标准装置相一致的结果,证明了该方法提高降雨发生装置空间均匀性是可行的,且能得到累积降雨量的动态测量误差。
In order to improve the spatial uniformity of rainfall generator to natural rainfall uniformity, according to the rotation of the test platform, a rotary test platform was designed and developed, and the slip-ring was used to solve the problem of signal transmission in the process of the rotation. Besides, the relationship between rotational speed and spatial uniformity of rainfall generator was established. The results of tipping-bucket rain gauge tested in rainfall field and flow type rainfall intensity standard device testing demonstrated that rainfall generator as the rainfall accumulation and rainfall intensity of the test environment was feasible. Results showed that with the increase of the rotate speed, spatial uniformity first increased, and then decreases, and with the decrease of the test area, different speed presented different trends. When the rotational speed was 1 RPM, test area was 1.6 m×1.6 m and 1.2 m×1.2 m, its uniformity of rainfall generator reached maximum which was bigger than 95%; with the increase of the rotate speed, tipping-bucket rain gauge of RA and RI were of good consistency under the RPM 1 and RPM 2 and the RA maximum deviation reached minimum, 0.2 mm; the average of RA under flow type rainfall intensity standard device test consisted well with rotating test platform at speed RPM 1 and 2, which illustrated the rotary testing platform was consistent with the flow type rainfall intensity standard device. It showed that the method to improve the space uniformity of rainfall generator is feasible and it could find the dynamic difference of RA.

中图分类号: 

[1] Ren Zhihua, Wang Gaili, Zou Fengling, et al . The research of precipitation measurement errors in China[J]. Acta Meteorologica Sinica , 2003, 61(5):621-627.
. 气象学报, 2003, 61(5):621-627.]
[2] Zhu Yaqiao, Liu Yuanbo. Advances in measurement techniques and statistics features of surface raindrop size distribution[J]. Advances in Earth Science , 2013, 28(6):685-694. [朱亚乔, 刘元波. 地面雨滴谱观测技术及特征研究进展[J]. 地球科学进展, 2013, 28(6):685-694.]
[3] Liu Xichuan, Gao Taichang, Liu Lei, et al. Advances in microphysical features and measurement techniques of raindrops[J]. Advances in Earth Science , 2013, 28(11):1 217-1 226. [刘西川, 高太长, 刘磊,等. 雨滴微物理特征研究及测量技术进展[J]. 地球科学进展, 2013, 28(11):1 217-1 226.]
[4] Ye Baisheng, Yang Daqing, Ding Yongjian, et al. A bias-corrected precipitation climatology for China[J]. Acta Geographica Sinica , 2007, 62(1):3-13.
. 地理学报, 2007, 62(1):3-13.]
[5] Gao Jiangbo, Wu Shaohong, Dai Erfu, et al. The progresses and prospects of research on water and heat balance at land surface in the Karst region of southwest China[ J]. Advances in Earth Science , 2015, 30 (6):647-653. [高江波, 吴绍洪, 戴尔阜,等. 西南喀斯特地区地表水热过程研究进展与展望[J]. 地球科学进展, 2015, 30(6):647-653.]
[6] Zhang Qiang, Yao Yubi, Li Yaohui, et al. Research progress and prospect on the monitoring and early warning and mitigation technology of meteorological drought disaster in northwest China[J]. Advances in Earth Science , 2015, 30(2):196-213. [张强,姚玉璧,李耀辉,等. 中国西北地区干旱气象灾害监测预警与减灾技术研究进展及其展望[J]. 地球科学进展,2015,30(2):196-213]
[7] Sevruk B, Ondr��s M, Chvíla B. The WMO precipitation measurement intercomparisons[J]. Atmospheric Research , 2009, 92(3): 376-380.
[8] Li Wei, Song Qingdou. The technique of rainfall standard device[J]. Meteorological , Hydrological and Marine Instruments , 2007,(4):1-5.
. 气象水文海洋仪器,2007,(4):1-5.]
[9] Colli M, Lanza L G, La Barbera P, et al. Measurement accuracy of weighing and tipping-bucket rainfall intensity gauges under dynamic laboratory testing[J]. Atmospheric Research , 2014, 144: 186-194,doi: 10.1016/j.atmosres.2013.08.007.
[10] Shedekar V S, King K W, Fausey N R, et al. Assessment of measurement errors and dynamic calibration methods for three different tipping bucket rain gauges[J]. Atmospheric Research , 2016, 178: 445-458.
[11] Lanza L G, Vuerich E. The WMO field intercomparison of rain intensity gauges[J]. Atmospheric Research , 2009, 94(4): 534-543.
[12] Wong K. Performance of several present weather sensors as precipitation gauges[C]∥Technical Conference on Instruments and Methods of Observation. Brussels: World Meteorological Organization,2012:16-18.
[13] de Moraes Frasson R P, da Cunha L K, Krajewski W F. Assessment of the Thies optical disdrometer performance[J]. Atmospheric Research , 2011, 101(1/2): 237-255.
[14] Azbukin A A, Kalchikhin V V, Kobzev A A, et al. Determination of calibration parameters of an optoelectronic precipitation gage[J]. Atmospheric and Oceanic Optics , 2014, 27(5): 432-437.
[15] Salmi A, Elomaa L, Kopsala P, et al. Piezoelectric Vaisala raincap��rain sensor applied to drop size distribution monitoring[C]∥Technical Conference on Meteorological and Environmental Instruments and Methods of Observation. Geneva: World Meteorological Organization, 2011:1-7.
[16] Salmi A, Ikonen J, Oyj V. Piezoelectric precipitation sensor from Vaisala[C]∥Technical Conference on Meteorological and Environmental Instruments and Methods of Observation. Bucharest: World Meteorological Organization, 2005: 4-7.
[17] Lanzinger E, Theel M, Windolph H. Rainfall amount and intensity measured by the Thies laser precipitation monitor[C]∥Technical Conference on Instruments and Methods of Observation. Geneva: World Meteorological Organization, 2006: 4-6.
[18] Kasparis T, Lane J, Jones L. Modeling of an impact transducer for in situ adaptive disdrometer calibration[C]∥International Symposium on Communications, Control and Signal Processing. IEEE, 2010,43(3): 1-4.
[19] Lane J E, Kasparis T, Metzger P T, et al. In situ disdrometer calibration using multiple DSD moments[J]. Acta Geophysica , 2014, 62(6):1 450-1 477.
[20] Raupach T H, Berne A. Correction of raindrop size distributions measured by Parsivel disdrometers, using a two-dimensional video disdrometer as a reference[J]. Atmospheric Measurement Techniques , 2015, 8(1): 343-365.
[21] Barthazy E, Göke S, Schefold R, et al . An optical array instrument for shape and fall velocity measurements of hydrometeors[J]. Journal of Atmospheric and Oceanic Technology , 2004, 21(9): 1 400-1 416.
[22] Chen Wenguang, Li Wei, Zhang Yankun, et al. The simulate and test techniques of standard rain drops and rainfall intensity[C] ∥The 31 th Annual Meeting of China Meteorology.Beijing: Chinese Meteorological Society,2014: 1-6.
∥第31届中国气象学会年会.北京:中国气象学会, 2014: 1-6.]
[23] Colli M, Stagnaro M, Lanza L, et al . Metrological requirements for a laboratory rainfall simulator[C]∥Rainfall in Urban and Natural Systems. Pontresina: International Workshop on Precipitation in Urban Areas,2015:1-6.
[24] Su Teng. Research and Application of Rainfall Generator[D]. Nanjing:PLA University of Science and Technology, Institute of Meteorology and Oceanography,2015.
. 南京:解放军理工大学,2015.]
[25] Liu Bo, Wang Xiaolei, Su Teng, et al. Simulation and tests of multiple sprinklers rainfall generator[J], Chinese Journal of Sensors and Actuators , 2016, 29(1):141-145. [刘波, 王晓蕾, 苏腾,等. 降雨发生装置多喷头仿真和测试研究[J]. 传感技术学报, 2016, 29(1):141-145.]
[26] Kathiravelu G, Lucke T, White R, et al. Review on design requirements of a rainfall simulator for urban stormwater studies[C]∥Stormwater Queensland, Townsville: Proceedings of the 2014 Stormwater Queensland Conference,2014: 1-13.
[27] Liu Bo, Wang Xiaolei, Su Teng, et al. The preliminary analysis on the small scale spatial uniformity of natural rainfall event [J]. Journal of PLA University of Science and Technology ( Natural Science Edition ), 2016, in press.
.解放军理工大学学报:自然科学版, 2016, 待刊.]
[28] Abudi I, Carmi G, Berliner P. Rainfall simulator for field runoff studies[J]. Journal of Hydrology , 2012, 454: 76-81.
[29] Sun Kai,Zhang Jiru. Design and calibration of needle-turbing artificial rainfall device[J]. Journal of Wuhan University of Technology , 2013, 35(12):125-129.
. 武汉理工大学学报, 2013, 35(12): 125-129.]
[30] Christiansen J E. The uniformity of application of water by sprinkler systems[J]. Agricultural Engineering , 1941, 22(3): 89-92.
[1] 谢鑫昌,杨云川,田忆,廖丽萍,韦钧培,周津羽,陈立华. 广西降水非均匀性多尺度特征与综合评价[J]. 地球科学进展, 2019, 34(11): 1152-1164.
阅读次数
全文


摘要