地球科学进展 ›› 2015, Vol. 30 ›› Issue (3): 346 -356. doi: 10.11867/j.issn.1001-8166.2015.03.0346

上一篇    下一篇

2012年夏季挪威海和格陵兰海水文特征分析
王晓宇( ), 赵进平, 李涛, 钟文理, 矫玉田   
  1. 中国海洋大学物理海洋重点实验室,海洋环境学院,山东 青岛 266100
  • 出版日期:2015-04-08
  • 基金资助:
    国家自然科学基金重点项目“北极海冰与上层海洋环流耦合变化及其气候效应”(编号:41330960);全球变化研究国家重大科学研究计划“北极海冰减退引起的北极放大机理与全球气候效应”(编号: 2015CB953900)资助

Hydrographic Features of the Norwegian Sea and the Greenland Sea in Summer 2012

Xiaoyu Wang( ), Jinping Zhao, Tao Li, Wenli Zhong, Yutian Jiao   

  1. Key Laboratory of Physical Oceanography, MOE, College of Physical and Environmental Oceanography, Ocean University of China, Qingdao 266100, China
  • Online:2015-04-08 Published:2015-03-20

利用2012年夏季在北欧海(挪威海和格陵兰海)的水文考察数据,对调查区域内海洋水团性质和分布进行了分析,并对北欧海冷却对流的发展加深过程进行了研究。在上层,从东侧暖而咸的大西洋水跨越锋区至西侧低温低盐的格陵兰海盆上层水体,温度和盐度的变化分别可以达到8 ℃和0.4 psu。中层与深层水体的性质则相对均匀和稳定,3个海盆内从浅至深依次分布着北极中层水、海盆深层水、北极深层水以及海盆底层水。格陵兰海盆中深层水体在3 500 m深度上位温约为-0.97 ℃,相比较1970s观测到的-1.30 ℃,升温幅度超过了0.3 ℃,表明海盆深层存储的热量显著增加。在只考虑局地表面冷却的简化条件下,当前格陵兰海内部通过冷却对流混合至季节性跃层下界需要向大气释放0.9×109~1.2×109 J的热量,这一过程至少需要2个月的时间而不利于对流向深层的发展。大量的热量被存储于北欧海深海盆中使得北欧海已经成为北半球高纬海域的热量存储器,对当前北极气候变化的影响有待深入研究。

Based on observations during the 5th Chinese Arctic expedition in 2012, the property and distribution of water masses were identified and the evolution of cooling convection was studied. In the upper layer, from the warm and salty Atlantic waters, which mainly lie on the east, westerly to the cold and fresh Greenland upper waters, the temperature and the salinity decreases were about 8 ℃ and 0.4 psu respectively. As for the intermediate and deep waters, water properties were more homogeneous and stable. Along with the depth deepening, there existed the Arctic Intermediate Water, the Basin Deep Water, the Arctic Deep Water and the Basin Bottom Water in all the three deep basins. In the center of the Greenland Basin, the potential temperature was about -0.97 ℃ at depth 3 500 m, which was nearly 0.3 ℃ warmer compared to the value -1.30 ℃ observed in 1970s, implying a heat increase in the deep layer. Under a simplified hypothesis only concerning the surface cooling to erode the seasonal pycnocline, now a total heat loss of about 0.9×109~1.2×109 J/m2 was needed for the upper ocean of the Greenland Sea. This process may take at least two months and thus leaves less time for the following deepreaching convection. At present, the Nordic seas are becoming a heat reservoir on the northern hemisphere and impacts of such change on the Arctic climate are worthy of further study.

中图分类号: 

图1 北欧海上层环流示意图 [ 5 ]
Fig.1 A schematic illustration of the current system in the Nordic Seas [ 5 ] Arrows with broken lines represent Arctic water and solid lines represent Atlantic Water
图2 北欧海地理情况以及2012中国第五次北极科学考察水文站位的分布
Fig.2 Main bathymetric features of the Nordic Seas and locations of the hydrographic stations during the fifth Chinese Arctic Research Expedition in 2012
图3 位势温度,盐度和位势密度在BB和AT断面分布 (a,b)位势温度,(c,d)盐度和(e,f)位势密度在BB和AT断面上的分布;灰色区域表示数据缺测,黑色三角形表示断面上海底山脊所在位置
Fig.3 Distributions of potential temperature, salinity and potential density in section of BB and section AT (a, b)potential temperature,(c, d)salinity and (e, f)potential density in section of BB and section AT. Grey area marks the region where data is missing and the black triangles mark the location of sea ridge
图4 T-S温盐图解,所有站位的CTD数据
Fig.4 Potential temperature-salinity diagram for waters from CTD observations
图5 所有站点CTD数据在中、深层深度上的 T-S图解
Fig.5 Potential temperature-salinity diagram of waters from the intermediate to deep layers
图6 北欧海水团的温、盐和密度剖面 (a)5个代表站位在上500 m的温盐剖面(只有4个),(b)5个代表站位全深度的温盐剖面;标注的水团其颜色与其站位的颜色一致
Fig.6 The vertical potential temperature, salinity and potential density measured at the five representative stations (a) and (b) show the hydrographic profiles of the upper 500m layer and the full depth, respectively
图7 所有站点CTD数据在深层的 T-S
Fig.7 Potential temperature-salinity diagram of deep waters for all CTD stations
表1 2012年夏季挪威海以及格陵兰海内水团性质一览
Table1 Water properties of the Norwegian sea and the Greenland sea in the summer of 2012
图8 冷却对流过程的示意图 红色和蓝色实线分别是BB09站所观测的海水盐度以及位势密度剖面
Fig.8 The schematic process of simplified cooling convection The salinity (red line) and potential density (blue line) are measured at station BB09
图9 冷却对流深度 h与混合层内平均温度的对应关系(实线),以及冷却对流深度 h与混合层内水体热释放量 Qh的对应关系(虚线)
Fig.9 Deepening of the convection depth h (solid lines) with the mixed layer cooling and the corresponding heat loss Qh(dotted lines) needed to escape from the mixed layer
[1] Aagaard K, Swift J. Seasonal transitions and water mass formation in the Iceland and Greenland Seas[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 1981, 28(10):1 107-1 129.
[2] Hansen B, Østerhus S. North Atlantic-Nordic Seas exchanges[J]. Progress in Oceanography, 2000, 45(2): 109-208.
[3] Rossby T, Prater M D, Søiland H. Pathways of inflow and dispersion of warm waters in the Nordic Seas[J]. Journal of Geophysical Research, 2009,114(C4): C04011,doi:10.1029/2008JC005073.[JP]
[4] He Yan, Zhao Jinping. Distributions and seasonal variations of fronts in GIN Seas[J]. Advances in Earth Science, 2011,26(10): 1079-1091.
[何琰,赵进平. 北欧海的锋面分布特征及其季节变化[J]. 地球科学进展, 2011, 26(10): 1079-1091]
[5] Blindheim J, Rey F. Water-mass formation and distribution in the Nordic Seas during the 1990s[J]. ICES Journal of Marine Science, 2004, 61(5): 846-863.
[6] Swift J. The Arctic waters[M]//Hurdle B G, ed. The Nordic Seas. Washington DC: Springer, 1986:129-154.
[7] Blindheim J. Arctic intermediate water in the Norwegian Sea[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 1990, 37(9): 1 475-1 489.
[8] Furevik T, Mauritzen C, Ingvaldsen R. The flow of Atlantic water to the Nordic Seas and Arctic Ocean[M]//Arctic Alpine Ecosystems and People in A Changing Environment. Berlin, Heidelberg: Springer, 2007: 123-146.
[9] Aagaard K, Swift J H, Carmack E C. Thermohaline circulation in the Arctic Mediterranean Seas[J]. Journal of Geophysical Research, 1985, 90(C3): 4 833-4 846.
[10] Gascard J, Watson A J, Messias M, et al. Long-lived vortices as a mode of deep ventilation in the Greenland Sea[J]. Nature, 2002, 416(6 880): 525-527.
[11] Rudels B, Friedrich H J, Quadfasel D. The Arctic circumpolar boundary current[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 1999, 46(6): 1 023-1 062.
[12] Meincke J, Rudels B, Friedrich H J. The Arctic Ocean-Nordic Seas thermohaline system[J]. ICES Journal of Marine Science: Journal du Conseil, 1997, 54(3): 283-299.
[13] Rudels B, Korhonen M, Bud Eus G, et al. The East Greenland current and its impacts on the Nordic Seas: Observed trends in the past decade[J]. ICES Journal of Marine Science: Journal du Conseil, 2012, 69(5): 841-851.
[14] Rudels B. The θ-S relations in the northern seas: Implications for the deep circulation[J]. Polar Research, 1986, 4(2): 133-159.
[15] Voet G, Quadfasel D, Mork K A, et al. The mid-depth circulation of the Nordic Seas derived from profiling float observations[J]. Tellus A, 2010, 62(4): 516-529.
[16] Kushnir Y. Interdecadal variations in north Atlantic Sea surface temperature and associated atmospheric conditions[J]. Journal of Climate, 1994, 7(1): 141-157.
[17] Rudels B, Fahrbach E, Meincke J, et al. The East Greenland current and its contribution to the Denmark[J]. ICES Journal of Marine Science: Journal du Conseil, 2002, 59(6): 1133-1154.
[18] Swift J H, Aagaard K. Seasonal transitions and water mass formation in the Iceland and Greenland Seas[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 1981, 28(10): 1 107-1 129.
[19] Blindheim J. Arctic intermediate water in the Norwegian Sea[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 1990, 37(9): 1 475-1 489.
[20] Clarke R A, Swift J H, Reid J L, et al. The formation of Greenland Sea Deep Water: Double diffusion or deep convection?[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 1990, 37(9): 1 385-1 424.
[21] Akitomo K. Two types of thermobaric deep convection possible in the Greenland Sea[J]. Journal of Geophysical Research, 2011, 116(C8): C8012,doi:10.1029/2010JC006635.
[22] Shao Qiuli, Zhao Jinping. On the deep water of the Nordic Seas[J]. Advances in Earth Science, 2014,29(1):42-55.
[邵秋丽,赵进平.北欧海深层水的研究进展[J].地球科学进展, 2014,29(1):42-55.]
[23] Rhein M. Ventilation rates of the Greenland and Norwegian Seas derived from distributions of the chlorofluoromethanes F11 and F12[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 1991, 38(4): 485-503.
[24] Meincke J, Rudels B, Friedrich H J. The Arctic Ocean-Nordic Seas thermohaline system[J]. ICES Journal of Marine Science: Journal du Conseil, 1997, 54(3): 283-299.
[25] Malmberg S, Jónsson S. Timing of deep convection in the Greenland and Iceland Seas[J]. ICES Journal of Marine Science: Journal du Conseil, 1997, 54(3): 300-309.
[26] Visbeck M, Rhein M. Is bottom boundary layer mixing slowly ventilating Greenland Sea Deep Water[J]. Journal of Physical Oceanography, 2000, 30(1): 215-224.
[27] Karstensen J, Schlosser P, Wallace D W, et al. Water mass transformation in the Greenland Sea during the 1990s[J]. Journal of Geophysical Research: Oceans (1978-2012), 2005, 110(C7):2 156-2 202.
[28] Chen Xingrong, Cai Yi, Tan Jing, et al. Research progress on hiatus in the process of global warming[J]. Advances in Earth Science, 2014, 29(8): 947-955.
[陈幸荣, 蔡怡, 谭晶, 等. 全球变暖hiatus现象的研究进展[J]. 地球科学进展, 2014, 29(8): 947-955.]
[29] Gao Tao, Xie Li’an. Study on progress of the trends and physical causes of extreme precipitation in China during the last 50 years[J]. Advances in Earth Science, 2014, 29(5): 577-589.
[高涛, 谢立安. 近50年来中国极端降水趋势与物理成因研究综述[J].地球科学进展, 2014, 29(5): 577-589.]
[30] Chen Xianyao, Tung Ka-Kit. Varying planetary heat sink led to global-warming slowdown and acceleration[J]. Science, 2014, 345(6 199): 897-903.
[1] 史文奇, 赵进平. 北欧海溢流的水文特征和变化机理综述[J]. 地球科学进展, 2017, 32(3): 245-261.
[2] 邵秋丽, 赵进平. 北欧海深层水的研究进展[J]. 地球科学进展, 2014, 29(1): 42-55.
[3] 何琰,赵进平. 北欧海的锋面分布特征及其季节变化[J]. 地球科学进展, 2011, 26(10): 1079-1091.
阅读次数
全文


摘要