地球科学进展 ›› 2013, Vol. 28 ›› Issue (7): 794 -801. doi: 10.11867/j.issn.1001-8166.2013.07.0794

综述与评述 上一篇    下一篇

深海热液口化能合成共生作用的研究进展
刘昕明 1,2,林荣澄 1*,黄丁勇 1   
  1. 1.国家海洋局第三海洋研究所,福建 厦门 361005;
    2.广西海洋环境监测中心站,广西 北海 536000
  • 收稿日期:2013-03-04 修回日期:2013-06-09 出版日期:2013-07-10
  • 通讯作者: 林荣澄(1956-),男,福建泉州人,研究员,主要从事深海生物生态研究。 E-mail:rclinxm@189.cn
  • 基金资助:

    中国大洋协会项目“西南印度洋多金属硫化物资源合同区生物学基线及其变化”(编号:DY125-11-E-03);国家自然科学基金青年科学基金项目“大洋深海热液区甲壳动物分类研究”(编号:41206157)资助.

Research Progress of the Chemosynthetic Symbioses in the Deep-Sea Hydrothermal Vent

Liu Xinming 1,2, Lin Rongcheng 1, Huang Dingyong 1   

  1. 1.Third Institute of Oceanography, State Oceanic Adminstration, Xiamen 361005, China;
    2.Marine Environmental Monitor Center of Guangxi, Beihai 536000, China
  • Received:2013-03-04 Revised:2013-06-09 Online:2013-07-10 Published:2013-07-10

海洋无脊椎动物和细菌间的化能合成共生作用的发现,改变了人们对深海热液口初级生产力主要来源的认知。近年的研究表明,营化能合成共生的动物隶属于纤毛门、软体动物门、环节动物门和节肢动物门;其中无脊椎动物作为宿主在与共生菌的长期共生过程中,伴随着部分器官和功能的退化或消失,逐渐形成和演化出了与此相适应的形态结构,并产生了一些特殊的行为;在深海热液口发现的所有化能合成共生菌都属于革兰氏阴性菌,它们的宿主大致可以分为2个群体;通过16SrRNA基因编码分析,不同代谢类型的共生菌在系统发育中通常处于不同分支,形态也有所差异;共生菌独特的传播方式和进化模式也使其更加适应共生生活;由无脊椎动物和化能合成细菌构成的共生体系与环境相互作用,影响了深海热液口生态系统的演化。对共生菌蛋白质及代谢组学的研究,以及对宿主生理和代谢机制的研究将成为未来热液口化能合成共生作用研究的新热点。

The discovery of the chemosynthetic symbioses between marine invertebrates and bacteria revolutionized our understanding of the energy sources that fuel primary productivity in the deep sea. Chemosynthetic host were classified within four major group including Ciliophora,Mollusca,Annelida and Arthropoda; Symbiotic invertebrates with anatomical adaptations of chemosynthetic associations are usually characterized by rudimentary or absent digestive system. Effective behavioural and physiological strategies are also used by animals to supply their symbionts with both reductants and oxidants. All the symbionts are Gram negative bacteria, and clustered in two different branches related to symbiont type in the phylogenetic tree based on the 16S rRNA gene sequences, distinct differences in morphology were also observed between the two groups. The transmission and evolution strategy utilized by symbionts have been inferred from phylogenetic evidence. Interaction between the symbiotic system and environment will finally influence the evolution of ecosystem. Some hot spots were mentioned including the research of ‘moics’ and metabolic pathways for both the symbionts and their hosts.

中图分类号: 

[1] Cavanaugh C M, McKiness Z, Newton I L G,et al. Marine chemosynthetic symbioses[J].The Prokaryotes, 2006, 1: 475-507.

[2] De Bary A. Die Erscheinung der Symbiose: Vortrag[M].Germany: Verlag von Karl Trübner J, 1879.

[3] Dubilier N, Bergin C, Lott C. Symbiotic diversity in marine animals: The art of harnessing chemosynthesis[J].Nature Reviews Microbiology, 2008, 6: 725-740.

[4] Cavanaugh C M. Microbial symbiosis: Patterns of diversity in the marine environment[J].American Zoologist,1994, 34: 79-89.

[5] Corliss J B, Dymond J, Gordon L I,et al. Submarine thermal springs on the Galapagos Rift[J].Science, 1979, 203: 1 073-1 083.

[6] Laubier L. Ecosystemes benthiques profonds et chimiosynthese bacterienne: Sources hydrothermales et suintements[C]Intervention Sous-Marine ISM 90. France:Toulon, 1990: 3-5.

[7] Lonsdale P. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers[J].Deep-Sea Research, 1977, 24: 857-863.

[8] Southward A, Southward E C, Brattegard T,et al. Further experiments on the value of dissolved organic matter as food for Siboglinum fiordicum (Pogonophora)[J].Journal of the Marine Biological Association of the United Kingdom, 1979, 59: 133-148.

[9] Felbeck H. Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia Pachyptila Jones (Vestimentifera)[J].Science, 1981, 213: 336.

[10] Childress J J, Fisher C, Brooks J,et al. A methanotrophic marine molluscan (bivalvia, mytilidae) symbiosis: Mussels fueled by gas[J].Science, 1986, 233: 1 306.

[11] Cavanaugh C, Levering P, Maki J,et al. Symbiosis of methylotrophic bacteria and deep-sea mussels[J].Nature, 1987, 325: 346-348.

[12] Petersen J M, Zielinski F U, Pape T,et al. Hydrogen is an energy source for hydrothermal vent symbioses[J].Nature, 2011, 476: 176-180.

[13] Wang Chunsheng, Yang Junyi, Zhang Dongsheng,et al. A review on deep-sea hydrothermal vent communities[J].Journal of Xiamen University (Natural Science), 2006,45(Suppl.2): 141-149.[王春生, 杨俊毅, 张东声, 等. 深海热液生物群落研究综述[J]. 厦门大学学报:自然科学版, 2006,45(增刊2): 141-149.]

[14] Huang Dingyong, Lin Rongcheng, Niu Wentao,et al. Summary of deep sea hydrothermal activity and hydrothermal vent communities[J].Journal of Central South University (Science and Technology), 2011, 42(Suppl.2): 196-203.[黄丁勇, 林荣澄, 牛文涛, 等. 深海热液活动及热液生物群落研究概述[J]. 中南大学学报:自然科学版, 2011, 42(增刊2):196-203.]

[15] Wang Liling, Lin Jingxing, Hu Jianfang. Recent progress in deep-sea hydrothermal vent communities[J].Advances in Earth Science, 2008,23(6): 604-612.[王丽玲, 林景星, 胡建芳. 深海热液喷口生物群落研究进展[J]. 地球科学进展, 2008, 23(6): 604-612.]

[16] Kouris A, Kim Juniper S, Frebourg G,et al. Protozoan-bacterial symbiosis in a deep-sea hydrothermal vent folliculinid ciliate (Folliculinopsis  sp.) from the Juan de Fuca Ridge[J].Marine Ecology, 2007, 28: 63-71.

[17] Fiala-Medioni A. Mise en évidence par microscopie électronique à transmission de l’abondance de bactéries symbiotiques dans la branchie de Mollusques bivalves de sources hydrothermales profondes[J].Comptes rendus des séances de l’Académie des sciences Série 3, Sciences de la vie,1984, 298: 487-492.

[18] Thurber A R, Jones W J, Schnabel K. Dancing for food in the deep sea: Bacterial farming by a new species of Yeti crab[J].PLoS One, 2011, 6(11): e26243.

[19] Bright  M, Giere  O. Microbial symbiosis in Annelida[J].Symbiosis,2005, 38: 1-45.

[20] Boss K, Turner R. The giant white clam from the Galapagos Rift, Calyptogena magnifica species novum[J].Malacologia,1980, 20: 161-194.

[21] Johnson S B, Young C R, Jones W J,et al. Migration, isolation, and speciation of hydrothermal vent limpets (Gastropoda; Lepetodrilidae) across the Blanco Transform Fault[J].The Biological Bulletin, 2006, 210: 140-157.

[22] Katz S, Cavanaugh C M, Bright M. Symbiosis of epi-and endocuticular bacteria withHelicoradomenia spp.(Mollusca, Aplacophora, Solenogastres) from deep-sea hydrothermal vents[J].Marine Ecology Progress Series, 2006, 320: 89-99.

[23] Reid R G B, Bernard F R. Gutless bivalves[J].Science, 1980, 208: 609-610.

[24] Roeselers G, Newton I L G. On the evolutionary ecology of symbioses between chemosynthetic bacteria and bivalves[J].Applied Microbiology and Biotechnology,2012,94(1): 1-10.

[25] Taylor J D, Glover E A. Lucinidae (Bivalvia)-the most diverse group of chemosymbiotic molluscs[J].Zoological Journal of the Linnean Society, 2006, 148: 421-438.

[26] Dufour S C. Gill anatomy and the evolution of symbiosis in the bivalve family Thyasiridae[J].The Biological Bulletin, 2005, 208: 200-212.

[27] Childress J J, Fisher C R, Favuzzi J A,et al. Sulfide and carbon dioxide uptake by the hydrothermal vent clam, Calyptogena magnifica, and its chemoautotrophic symbionts[J].Physiological zoology, 1991,64: 1 444-1 470.

[28] Southward E C. The morphology of bacterial symbioses in the gills of mussels of the genera Adipicola and Idas (Bivalvia: Mytilidae)[J].Journal of Shellfish Research, 2008, 27: 139-146.

[29] Urakawa H, Dubilier N, Fujiwara Y,et al. Hydrothermal vent gastropods from the same family (Provannidae) harbour ε-and γ-proteobacterial endosymbionts[J].Environmental Microbiology, 2005, 7: 750-754.

[30] Bates A E. Feeding strategy, morphological specialisation and presence of bacterial episymbionts in lepetodrilid gastropods from hydrothermal vents[J].Marine Ecology Progress Series, 2007, 347: 87-99.

[31] Goffredi S K, Warén A, Orphan V J,et al. Novel forms of structural integration between microbes and a hydrothermal vent gastropod from the Indian Ocean[J].Applied and Environmental Microbiology, 2004, 70: 3 082-3 090.

[32] Halanych K M. Molecular phylogeny of siboglinid annelids (aka pogonophorans): A review[J].Hydrobiologia, 2005, 535: 297-307.

[33] Kubota N, Kanemori M, Sasayama Y,et al. Identification of endosymbionts in Oligobrachia mashikoi (Siboglinidae, Annelida)[J].Microbes and Environments, 2007, 22: 136-144.

[34] Schmidt C, Le Bris N, Gaill F. Interactions of deep-sea vent invertebrates with their environment: The case of Rimicaris exoculata[J].Journal of Shellfish Research, 2008, 27: 79-90.

[35] Goffredi S, Jones W, Erhlich H,et al. Epibiotic bacteria associated with the recently discovered Yeti crab,Kiwa hirsuta[J].Environmental Microbiology,2008, 10: 2 623-2 634.

[36] Flores J F, Fisher C R, Carney S L,et al. Sulfide binding is mediated by zinc ions discovered in the crystal structure of a hydrothermal vent tubeworm hemoglobin[J].Proceedings of the National Academy of Sciences of the United States of America, 2005, 102: 2 713-2 718.

[37] Zal F, Leize E, Lallier F H,et al. S-Sulfohemoglobin and disulfide exchange: The mechanisms of sulfide binding byRiftia pachyptila hemoglobins[J].Proceedings of the National Academy of Sciences,1998, 95: 8 997-9 002.

[38] Cordes E E, Arthur M A, Shea K,et al. Modeling the mutualistic interactions between tubeworms and microbial consortia[J].PLoS Biology, 2005, 3(3): e77.

[39] Doeller J E, Kraus D W, Colacino J M,et al. Gill hemoglobin may deliver sulfide to bacterial symbionts of Solemya velum (Bivalvia, Mollusca)[J].The Biological Bulletin,1988, 175: 388-396.

[40] Dufour S C, Felbeck H. Sulphide mining by the superextensile foot of symbiotic thyasirid bivalves[J].Nature, 2003, 426: 65-67.

[41] Johnson K S, Childress J J, Beehler C L,et al. Biogeochemistry of hydrothermal vent mussel communities: The deep-sea analogue to the intertidal zone[J].Deep-Sea Research Part I,1994, 41: 993-1 011.

[42] Ott J, Novak R, Schiemer F,et al. Tackling the sulfide gradient: A novel strategy involving marine nematodes and chemoautotrophic ectosymbionts[J].Marine Ecology, 2008, 12: 261-279.

[43] Cavanaugh C M. Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats[J].Nature, 1983,302:58-61.

[44] Dubilier N, Windoffer R, Giere O. Ultrastructure and stable carbon isotope composition of the hydrothermal vent musselsBathymodiolus brevior andB. sp. affinisbrevior  from the North Fiji Basin, western Pacific[J].Marine Ecology Progress Series, 1998, 165: 187-193.

[45] Hentschel U, Cary S C, Felbeck H. Nitrate respiration in chemoautotrophic symbionts of the bivalve Lucinoma aequizonata[J].Marine Ecology Progress Series,1993, 94: 35-35.

[46] Cavanaugh C M, Levering P R, Maki J S,et al. Symbiosis of methylotrophic bacteria and deep-sea mussels[J].Nature,1987,325:346-348.

[47] Nussbaumer A D, Fisher C R, Bright M. Horizontal endosymbiont transmission in hydrothermal vent tubeworms[J].Nature, 2006, 441: 345-348.

[48] Distel D L, Lee H, Cavanaugh C M. Intracellular coexistence of methano-and thioautotrophic bacteria in a hydrothermal vent mussel[J].Proceedings of the National Academy of Sciences,1995, 92: 9 598-9 602.

[49] McKiness Z, Cavanaugh C. The ubiquitous mussel: Bathymodiolus aff. brevior symbiosis at the Central Indian Ridge hydrothermal vents[J].Marine Ecology Progress Series, 2005, 295: 183-190.

[50] Duperron S, Bergin C, Zielinski F,et al. A dual symbiosis shared by two mussel species, Bathymodiolus azoricus and Bathymodiolus puteoserpentis (Bivalvia: Mytilidae), from hydrothermal vents along the northern Mid-Atlantic Ridge[J].Environmental Microbiology, 2006, 8: 1 441-1 447.

[51] Moran N A. Tracing the evolution of gene loss in obligate bacterial symbionts[J].Current Opinion in Microbiology, 2003, 6: 512-518.

[52] Harmer T L, Rotjan R D, Nussbaumer A D,et al. Free-living tube worm endosymbionts found at deep-sea vents[J].Applied and Environmental Microbiology, 2008, 74: 3 895-3 898.

[53] McFall-Ngai M J. The development of cooperative associations between animals and bacteria: Establishing détente among domains[J].American Zoologist,1998, 38: 593-608.

[54] Trask J L, Van Dover C L. Site-specific and ontogenetic variations in nutrition of mussels (Bathymodiolus  sp.) from the Lucky Strike hydrothermal vent field, Mid-Atlantic Ridge[J].Limnology and Oceanography, 1999,44(2): 334-343.

[55] Humes A G, Lutz R A. Aphotopontius acanthinus, new species (Copepoda: Siphonostomatoida), from deep-sea hydrothermal vents on the East Pacific Rise[J].Journal of Crustacean Biology, 1994,14(2): 337-345.

[56] Van Dover C L. The Ecology of Deep-Sea Hydrothermal Vents[M]. Princeton: Princeton University Press, 2000.

[57] Sarrazin J, Juniper S K. Biological characteristics of a hydrothermal edifice mosaic community[J].Marine Ecology Progress Series, 1999, 185: 1-19.

[58] Schrenk M O, Huber J A, Edwards K J. Microbial provinces in the subseafloor[J].Annual Review of Marine Science, 2010, 2: 279-304.

[59] Smith C. Chemosynthesis in the deep-sea: Life without the sun[J]. Biogeosciences Discussions, 2012, 9: 17 037.

[60] German C, Von Damm K. Hydrothermal Processes[M]. London: Elsevier, 2006.

[61] Yang T, Lyons S, Aguilar C,et al. Microbial communities and chemosynthesis in Yellowstone Lake sublacustrine hydrothermal vent waters[J].Frontiers in Microbiology, 2011,2:130,doi:10.3389/fmicb.72011.00130.

[62] Sievert S M, Vetriani C. Chemoautotrophy at deep-sea vents: Past, present, and future[J].Oceanography,2012,25(1):218-233.

[63] Pante E, Corbari L, Thubaut J,et al. Exploration of the deep-sea fauna of Papua New Guinea[J].Oceanography, 2012: 25(3):214.

[1] 卢龙飞, 张锐, 徐杰, 焦念志. 病毒对海洋细菌代谢的影响及其生物地球化学效应[J]. 地球科学进展, 2018, 33(3): 225-235.
阅读次数
全文


摘要