地球科学进展 ›› 1996, Vol. 11 ›› Issue (2): 191 -197. doi: 10.11867/j.issn.1001-8166.1996.02.0191

学术研究动态 上一篇    下一篇

沉积物—水界面的生物地球化学作用
吴丰昌,万国江,蔡玉蓉   
  1. 中国科学院地球化学研究所环境地球化学国家重点实脸室 贵阳 550002
  • 收稿日期:1995-07-03 修回日期:1995-08-24 出版日期:1996-03-01
  • 通讯作者: 吴丰昌,男,1965年10月出生,博士,主要从事环境地球化学研究.
  • 基金资助:

    国家自然科学基金项目“云贵高原湖泊沉积地球化学过程及环境信息的提取气”(项目编号:49333040)和“湖泊季节性硫酸盐还原作用和环境效应研究”(项目编号:4950305的资助.

BIOGEOCHEMICAL PROCESSES AT THE SEDIMENT-WATER INTERFACE

Wu Fengchang;Wan Guojiang;Cai Yurong   

  1. Institute of Geochemistry ,Chinese Academy of Sciences ,Guiyand 550002
  • Received:1995-07-03 Revised:1995-08-24 Online:1996-03-01 Published:1996-03-01

沉积物-水界面是天然水体在物理、化学和生物特征等方面差异性最显著和负责水体和沉积物之间物质输送和交换的重要边界环境。对沉积物-水界面生物地球化学的定义、研究方法和它在水体微量物质循环中所起的作用、物质迁移方式、典型氧化还原敏感性元素转化反应(C、O、N)、界面扩散通量和表面扩散亚层的意义和估算等进行了讨论。 

Sediment-water interface is an important boundary,the greatest gradient in physics, chemistry and biology in natural water, responsible for transportation and exchange of chemical species between waters and sediments. All chemical processes occuring near the interface were involved in organic matter and micrical organic oxidation indirectly or directly in deep-water and oxic/anoxic interface environment,it’s typical biogeochemical process.Organic oxidation and the resulting redox process is the base of all chemical processes and transformation near the interface.The article discussed research methods,the contribution of interface processes to rare elements; cycling,mobile and transporting mechanisms,transformation of typical redox elements(C,N,O),and significance and calculation of diffusive fluxes and sublayers of the interface.

[1] Rudd J W M ,Kelly C A and Schinder D W. A comparison of the acidification efficiencies of nitric and sulfuric acids by two whole-lake addition experiments. Limnol oceanogr,1990, 35( 3):663-679.
[2] Urban N R,Brewnik P L,Baker L A and ASherman L. Sulfate reduction and diffusion in sediments of little rock lake,Wisconsin. Limnol Oceanogr.1994,39(4):797-813.
[3] 吴丰昌,万国江.云南沪沽湖沉积物对上覆水体基本化学组成的影响.环境科学,1995,16卷(印刷中).
[4]Andrews D, et al. Close interval sampling of interstitial silicate and porosity in marine sediments. Geochim Cosmochim Acta,1984,48:711-722.
[5] Santschi P H, et al. Chemical processes at the sediment-water interface. Marine Chemistry,1990,30:269-315.
[6]Santschi P H, et al. Natural and Chernobyl radionuclides as tracrers of particle setting and resuspension in Lake Zurich Switzerland. Terra Cognita,1987,7(2-3):185.
[7]Schindler P W. Surface complexes at oxide/water interfaces. In:Anderson M A and Rubin A J (Editor)·Adsorption of Inorganics at the Solid/Liquid Interface. Ann Arbor Science Publ,Ann Arbor,MI. 1981.
[8]Gachter R,et al. Contribution of bacteria to release and fixation of phosphorus in lake sediments.  Limnol Oceanogr,1988,33:1542-1558.
[9]Rowe G,et al. Total sediment biomass and preliminary estimates of organic carbon residence time in deep-sea benthos.Biol Oceanogr, 1990.
[10]Jahnke R A,et al. Fine scale distributions of porosity and particulate excess 210Pb,organic carbon and CaCO3 in surface sediments of the deep equatorial Pacific. Earth Planet Sci Lett,1986,77:59-69.
[11]Sweert J P,et al. Metabolic activities in flocculent surface sediments and underlying sandy littoral sediments. Limnol Oceanogr, 1986,31:330-338.
[12]Seitzinger S P. Denitrification in freshwater and coastal marine ecosystems serological and geochemical significance. Limnol Oceanogr,1988,33:702-724.
[13]Benoit G. 2l0Pb and 210Po remobilization from lake sediments in relation to iton and manganese cycling. Environ Sci Technol,1990,24(8):1224-1234.
[14]McKee B A,et al. Uranium geochemistry on the Amawn shelf, evidence for uranium release from bottom sediments.Geochim Cosmochim Acta,1987,51:2779-2786.
[15]Sundby B, Gobeil C,et al. The phosphorus cycle in coastal marine sediments. Limnol Oceanogr,1992,37(6):1129-1145.
[16]Berelson W, et al.  Radon fluxes measured with the MANOP bottom Lander. Deep-Sea Res,1987,34(7):1209-1228.
[17]Balistrieri L S, et al. The surface chemistry of sediments from the Panama Basin:the influence of Mn oxides on oxides on metal adsorption. Geochim Cosmochim Acta,1986,50:2235-2242.
[18]Boulegue J C,et al.  Sulfur speciation and associated trace metals ( Fe Cu)in the pore water of Great Marsh,Delaware. Geochica et Cosmochimica Acta,1981,46:453-460.
[19]Bothner M H, et al. Rate of mercury loss from contaminated estuarine sediments. Geochim Cosmochim Acta,1980,44:273-285.
[20]Hooves B L,et al.  Effects of sampling technique on measurements of porewater constituents in salt marsh sediments. Limnol Oceanogr, 1985,30; 221-227.
[21]Newman D A  et al. Flow cytometric detection and sizing of fluorescent particles deposited at a sewage outfall site. Environ Sci TechnoL,1990,24:513-519.
[22]Molongoski J J  et al. Anaembic metabolism of particulate organic matter in the sediments of a hypereutrophic lakes.Freshwater Biol, 198010:507-518.
[23]Jansson M , et al.湿地和湖泊:氮的储集库.AMBIO(人类环境杂志),1994,25(6) :320 - 325.

[1] 魏皓,赵亮,刘广山,江文胜. 浅海底边界动力过程与物质交换研究[J]. 地球科学进展, 2006, 21(11): 1180-1184.
[2] 陈宗团,徐立,洪华生. 河口沉积物—水界面重金属生物地球化学研究进展[J]. 地球科学进展, 1997, 12(5): 434-439.
[3] 蔡春芳. 沉积盆地流体—岩石相互作用研究的现状[J]. 地球科学进展, 1996, 11(6): 575-579.
阅读次数
全文


摘要