地球科学进展 ›› 1996, Vol. 11 ›› Issue (6): 575 -579. doi: 10.11867/j.issn.1001-8166.1996.06.0575

学术评论 上一篇    下一篇

沉积盆地流体—岩石相互作用研究的现状
蔡春芳   
  1. 江汉石油学院 湖北荆沙 434102
  • 收稿日期:1996-04-15 修回日期:1996-05-27 出版日期:1996-11-01
  • 通讯作者: 蔡春芳,男,1966年2月出生,讲师,主要从事储层地质与地球化学研究。

ADVANCEMENTS OF FLUID ROCK INTERACTIONS IN SEDIMENTARY BASIN

Cai Chunfang   

  1. Jianghan Petroleum Institute,Jingsha,Hubei 434102
  • Received:1996-04-15 Revised:1996-05-27 Online:1996-11-01 Published:1996-11-01

沉积盆地流体-岩石相互作用研究主要是通过实验地球化学和岩石学、地球化学模拟方法开展的。综述了这一领域的研究现状,主要包括有机酸来源和分布及其对矿物稳定性的影响、地层水成因与演化、烃类与岩石间的氧化还原反应、以及储层润湿性的变化等,并展望了其发展趋势。

The study of fluid rock interactions in sedimentary basin mainly deals with four problems: 1) the source and distribution of organic acids and anions,and their effects on mineral stability; 2) origin and evolution of formation water; 3) redox reactions between hydrocarbon and rock,and 4) factors to change reservoir wettability.The above research is to trace reservoir geochemical process by means of experimental geochemistry and petrology,geochemical modeling. The paper reviews advancements of the area,and prospects its future.

[1]Surdam R C,  Boese SW,Crossey L J.  The chemistry of secondary porosity.  McDonald and Surdam eds.  Clastic Diagenesis, Am Asso Petrol Ceol Mem, 1984, 37: 127-149.
[2]Birth T,Bjφrlykke K.Organic acids from source rock maturation: generation potentials, transport mechanisms and relevance for mineral diagenesis. Applied Geochemistry, 1993, 8: 325-337.
[3]Kharaka Y K,  Lungedard P D, Ambits C, et al.  Generation of aliphatic acid anions and carbon dioxide by hydrous pyrolysis of crude oils. Applied Geochemistry, 1993, 8: 317-324.
[4]蔡春芳,梅博文,马亭,等.塔里木盆地不整合面附近成岩改造体系烃一水一岩相互作用.科学通报,1995, 40(24):2253-2256.
[5]Machel H C,Krouse H R,  Sassen R.  Products and distinguishing criteria of bacterial and thermochemical sulfate reduction. Applied geochemistry, 1995, 10: 373-3 89.
[6]Surdam R C,  Crossey L J,  Mac Cowan.  Redox reactions involving hydrocarbons and mineral oxidants:A mechanism for significant porosity enhancement in sandstones, AAPC Bull, 1993, 77(9):1509-1518.
[7]Ciordano T H,  I}haraka Y K. Organic ligand distribution and speciation in sedimentary basin brines, diagenetic fluids and related ore solutions. In: Parnell J ed.  Ceofluids: Origin,M igration and Evolution of Fluids in Sedimentary Basins. Geological Society Special Publication 1994, 78: 175-202.
[8]梅博文主译,杨文宽校.储层地球化学译文集.西安:西北人学出版社,1991. 1- 241.
[9]Land L S and Macpherson C L.  Origin of saline formation waters,  Cenozoic section, Culf of Mexico sedimentary basin. AAPC Bull, 1992, 76(9):1344- 1362.
[10]蔡春芳,梅博文,马亭,等.塔北侏罗—三叠系成岩反应.石油与天然气地质,1995, 16(3) : 259- 264.
[11]Fisher J B.  Distribution and occurence of aliphatic anions in deep subsurface waters.  Ceochim Cosmochim Acta,1987, 51(9):2459-2468.
[12]Willey L M,Kharaka Y K, Presser T S, et al.  Short chain aliphatic acid anions in oil field w aters and their contribution to the measured alkalinity. Ceochimica et Cosmochimica Acta, 1975, 39: 1707- 1711.
[13]Fisher J B,  Boles J R.  Water-rock interaction in Tertiary sandstones,  San Joaquin basin, California, USA-Diagenetic controls on water composition.  Chemical Geology, 1990, 82: 83-101.
[14]Wikon T P,  Long L D.  Geochemistry and isotope chemistry of Michigan Basin brine: Devonian formations. Applied Geochemistry,  1993, 8: 81-100.
[15]Kharaka Y K, Berry F A,Friedman I. Isotopic composition of oil-field brines from I}ettleman North Dome, Califorma,  and their geologic implications. Ceochim Cosmochim Acta, 1973, 37: 1899-1908.
[16]Knauth L P,  Beeunas M A.Isotope geochemistry of fluid inclusions in Permian halite with implications for the isotopic history of ocean water and origin of saline formation waters. Ceochimica et Cosmochimica Acta, 1986, 50: 419-433.
[17]Stueher A  L, I'urhliar P,  Hetherington E A.A  strontium isotopic study of Smackover brines and associated solids, southern Arkansas. Ceochimica et Cosmochimica Acta, 1984, 48: 1637-1649.
[18]Connolly C A,Walter L M,Baadsgaad H, et al. Origin and evolution of formation waters, Alberta Basin,Wextern Canada Sedimentary Basin. Ⅱ.Isotope systematics and water mixing. Applied geochemistry, 1990, 5: 397-413.
[19]Worden R H, Smalley P C,   Oxtoby N H.  Gas Souring by Thermochemical Sulfate Reduction at 140℃,AAPC, 1995, 79( 6):854- 863.
[20]Sassen R.  Ceochemical and carbon isotopic studies of crude oil destruction, bitumen precipitation and sulfate reduction in the deep Smackover Formation. Org Ceochem, 1988, 12: 351-361.
[21]Kirliland DW,benison E, Rooney M A .Diagenetic alteration of Permian strata at oil fields of south central Oklahoma, U SA.M urine Petroleum Geology, 1995, 12: 629-644.
[22]Plummer L N.Ceochemical modeling water-rock interaction: Past, present, future.  In: Kharaka&M aest eds, 7th Water Rock Interaction. Balkema, Rotterdam, 1992. 23-32.
[23]Kharalia Y K,  et al.  SOLMINEQ.88:  A computer program for geochemical modeling of water-rock interacdons.  USGS W ater Resources Invest.  Report 88-4227, Menlo Park, CA,1988. 1-120.
[24]Kettler R M,Palmer D A,Wesolowski D J.  Comment on "Predictions of diagenetic reactions in the presence of organic acids”by Harrison W,J,  Thyne C D.  Ceochimica et Cosmochimica Acta, 1995, 59( 18):3843-3851.
[25]Harrison W J, Thyne G D.  Reply to comment by R M Kettler, D A Palmer and D J Wesolowski on "Predictions of diagenetic reactions in the presence of organic acids”.Ceochimica et Cosmochimica Acta, 1995, 59( 18):3853-3856.

[1] 吴丰昌,万国江,蔡玉蓉. 沉积物—水界面的生物地球化学作用[J]. 地球科学进展, 1996, 11(2): 191-197.
[2] 陈宗宇. 水文地球化学模拟研究的现状[J]. 地球科学进展, 1995, 10(3): 278-282.
阅读次数
全文


摘要