Please wait a minute...
img img
高级检索
地球科学进展  2003, Vol. 18 Issue (4): 597-602    DOI: 10.11867/j.issn.1001-8166.2003.04.0597
研究论文     
土壤呼吸中根系与微生物呼吸的区分方法与应用
程慎玉,张宪洲
中国科学院地理科学与资源研究所,北京 100101
A REVIEW ON DIFFERENTIAL METHODS FOR ROOT AND SOIL MICROBIAL CONTRIBUTIONS TO TOTAL SOIL RESPIRATION
Cheng Shenyu, Zhang Xianzhou  
Institute of Geographical Sciences and Natural Resources Research, CAS, Beijing 100101, China
 全文: PDF(75 KB)  
摘要:

土壤呼吸中根系呼吸和微生物呼吸的区分在研究生态系统碳循环和土壤碳储量时具有重要意义。较系统地介绍了各种区分方法,主要包括成分综合法、生物量外推法、根去除法、同位素标记法等。现国内研究中使用生物量外推法较多,但其相关性较差。根去除法又可分为根移除法、挖沟隔离法和林隙法,由于是就地测定,其数据可信度较高。同位素标记法包括脉冲标记法和连续标记法,该方法避免了大的干扰,数据较准确,缺点在于设备复杂、操作困难、分析费用高。同时对各种方法的原理和应用进行了介绍。

关键词: 土壤呼吸根系呼吸区分方法    
Abstract:

The contribution of root respiration to total soil respiration is important in carbon cycle and soil carbon sequestration. Some methods, which have been widely used, include component integration method, root biomass extrapolation method, root exclusion method, and isotopic method and so on, are compared and appraised. Component integration involves separation of the constituent soil components contributing to CO2 efflux(i.e., roots, sieved soil, and litter) followed by measurements of the specific rates of CO2 efflux from each component part. Rates of all component parts are then multiplied by their respective masses and summed to yield an integrated total of TScer. Root biomass extrapolation based on the variety of root biomass and soil respiration flux at different sites, thus we can estimate the root contributions to total soil respiration. Existing root exclusion techniques may be categorized into three broadly defined areas: root removal, roots are removed, soil is placed back in reverses order of removal, and further root growth is prevented by barriers (alternatively, roots may be removed after a series of TScer measurements ); trenching, existing roots are severed by trenching at a plot boundary but not removed, and a barrier is installed to inhibit future root growth; and gap analysis, aboveground vegetation is removed from relatively large areas (e.g., clearcutting in forests) and TScer measurements in the gap are compared to TScer data for a forested area. Isotopic methods can be broadly classified as pulse labelling and continuous labeling. Isotopic methods have an advantage over other methods because they allow partitioning of TScer between root respiration and soil organic matter decomposition in situ, and avoid the disturbance effects. The comparison and application of these methods have been discussed.

Key words: Soil respiration    Root respiration    Differential methods.
收稿日期: 2002-12-26 出版日期: 2003-08-01
:  S154.3  
基金资助:

国家重点基础研究发展规划项目“青藏高原农田和草原生态系统温室气体排放及其对全球变化的响应”(编号:G1998040800)资助.

通讯作者: 程慎玉     E-mail: csyxxsc@sina.com
作者简介: 程慎玉(1979-),男,山东济宁人,硕士研究生,主要从事高原生理生态研究.E-mail:csyxxsc@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
程慎玉
张宪洲

引用本文:

程慎玉,张宪洲. 土壤呼吸中根系与微生物呼吸的区分方法与应用[J]. 地球科学进展, 2003, 18(4): 597-602.

Cheng Shenyu, Zhang Xianzhou . A REVIEW ON DIFFERENTIAL METHODS FOR ROOT AND SOIL MICROBIAL CONTRIBUTIONS TO TOTAL SOIL RESPIRATION. Advances in Earth Science, 2003, 18(4): 597-602.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2003.04.0597        http://www.adearth.ac.cn/CN/Y2003/V18/I4/597

[1] Cui Yuting, Han Chunru, Lu Jindeng. Dynamics of organic material decomposition and soil respiration in intensive and high-yield agroecosystem [J]. Chinese Journal of Application Ecology,1997, 8(1): 59-64. [崔玉亭,韩纯儒,卢进登.集约高产农业生态系统有机物分解及土壤呼吸动态研究[J].应用生态学报,1997, 8(1): 59-Y64.]

[2] Wiant H V. Has the contribution of litter decay to forest soil respiration been overestimated? [J]. Journal of Forestry, 1967a, 65: 408-409.

[3] Anderson J M. The effects of climate change on decomposition processes in grassland and coniferous forests [J]. Ecology Application, 1991, 1: 326-347.

[4] Jenkinson D S, Adams D E, Wild A. Model estimates of CO2 emissions from soil in response to global warming [J]. Nature, 1991, 351: 304-306.

[5] Smith P, Powlson D S, Glendining M J, et al. Potential for carbon sequestration in European soils: Preliminary estimates for five scenarios using results from long-term experiments [J]. Global Change Biology, 1997, 3: 67-79.

[6] Hanson P J, Edwards N T, Garten C T, et al. Separating root and soil microbial contributions to soil respiration: A review of methods and observations [J]. Biogeochemistry, 2000, 48: 115-146.

[7] Burton A J, Zogg G P, Pregitzer K S, et al. Effect of measurement CO2 concentration on sugar maple root respiration [J]. Tree Physiology, 1997, 17: 421-427.

[8] Palta J A, Nobel P S. Influence of soil O2 and CO2 on root respiration for Agave deserti [J]. Physiologia Plantarum, 1989, 76:187-192.

[9] Behera N, Joshi S K, Pati D P. Root contribution to total soil metabolism in a tropical forest soil from Orissa [J]. Indian Forest Ecology Management, 1990, 36:125-134.

[10] Gloser J, Tesarova M. Litter, soil, and root respiration measurement: An improved compartmental analysis method [J]. Pedobiologia, 1978, 18:76-81.

[11] Li Linghao, Han Xingguo, Wang Qibing, et al. Separating root and soil microbial contributions to total soil respiration in a grazed grassland in the Xilin river basin [J]. Acta Phytoecogica Sinica, 2002, 26(1): 29-32.[李凌浩,韩兴国,王其兵,.锡林河流域一个放牧草原群落中根系呼吸占土壤总呼吸比例的初步估计[J].植物生态学报, 2002, 26(1): 29-32.]

[12] Gupta S R, Singh J S. Soil respiration in a tropical grassland[J]. Soil Biology and Biochemistry,1981,13:261-268.

[13] Cui Xiaoyong, Chen Siqing, Chen Zuozhong. CO2 release from typical Stipa guandis grassland soil [J]. Chinese Journal of Applied Ecology, 2000, 11(3):390-394. [崔骁勇,陈四清,陈佐忠.大针茅典型草原土壤CO2排放规律的研究[J].应用生态学报, 2000, 11(3):390-394.]

[14] Kucera C, Kirkham D. Soil respiration studies in tall grass prairiein Missouri [J]. Ecology, 1971, 52:912-915.

[15] Upadhyaya S D, Singh V P. Microbial turnover of organic matter in a tropical grassland soil [J]. Pedobiologia, 1981, 1:100-109.

[16] Pati D P, Behera N, Dash M C. Microbial and root contribution to total soil metabolism in a tropical grassland soil from Orissa, India [J]. Revue d’Ecologie et de Biologie du Sol, 1983, 20(2):183-190.

[17] Wiant H V. Contribution of roots to forest soil respiration [J]. Advance in Frontier Plant Sciences, 1967b, 18: 163-167.

[18] Holt J A, Hodgen M J, Lamb D. Soil respiration in the seasonally dry tropics near Townsville, North Queensland [J]. Australian Journal of Soil Research, 1990, 28: 737-745.

[19] Thierron V, Laudelout H. Contribution of root respiration to total CO2 efflux from the soil of a deciduous forest [J]. Canadian Journal of Forest Research, 1996, 26:1 142-1 148.

[20] Ewel K C, Cropper W P Jr, Gholz H L. Soil CO2 evolution in Florida slash pine plantations II: Importance of root respiration[J]. Canadian Journal of Forest Research, 1987, 17: 330-333.

[21] Bowden R D, Nadelhoffer K J, Boone R D, et al. Contributions of above ground litter, below ground litter, and root respiration to total soil respriation in a temperate mixed hardwood forest [J]. Canadian Journal of Forest Research, 1993, 23:1 402-1 407.

[22] Brumme R. Mechanisms of carbon and nutrient release and retention in beech forest gaps [J]. Plant Soil, 1995, 168/169:593-600.

[23] Nakane K, Kohno T, Horikoshi T. Root respiration before and just after clear-felling in a mature deciduous, broad-leaved forest[J]. Ecology Research, 1996, 11: 111-119.

[24] Haynes B E, Gower S T. Belowground carbon allocation in unfertilized and fertilized red pine plantations in northern Wisconsin[J]. Tree Physiology, 1995, 15:317-325.

[25] Levitte S W, Paul E A, Galadima A, et al. Carbon isotopes and carbon turnover in cotton and wheat FACE experiment [J]. Plant Soil, 1996, 187: 147-155.

[26] Cheng W, Coleman D C, Carroll R, et al. In situ measurement of root respiration and soluble C concentrations in the rhizosphere[J]. Soil Biology and Biochemistry, 1993, 25: 1 189-1 196.

[27] Swinnen J. Evaluation of the use of a model rhizodeposition technique to separate root and microbial respiration in soil [J]. Plant Soil, 1994, 165(1): 89-104.

[28] Johansson G. Release of organic C from growing roots of meadow fescue(Festuca pratensis L.)[J]. Soil Biology and Biochemistry, 1992, 24:427-433.

[29] Avice J C, Ourry A, Lemaire G, et al. Nitrogen and carbon flows estimated by 15N and 13C pulse-chase labeling during regrowth of alfalfa [J]. Plant Physiology, 1996, 112: 281-290.

[30] Xu J G, Juma N G. Carbon kinetics in a Black Chernozem with roots in situ [J]. Canadian Journal of Soil Sciences, 1995, 75:299-305.

[31] Kuhns M R, Gjerstad D H. Distribution of 14C-labeled photosynthate in loblolly pine(Pinus taeda) seedlings as affected by season and time of exposure [J]. Tree Physiology, 1991, 8: 259-271.

[32] Keith H, Oades J M, Martin J K. Input of carbon to soil from wheat plants [J]. Soil Biology and Biochemistry, 1986, 18:445-449.

[33] Gregory P J, Atwell B J. The fate of carbon in pulse-labelled crops of barley and wheat [J]. Plant Soil, 1991, 136: 205-213.

[34] Meharg A A. A critical review of labelling techniques used toquantify rhizosphere carbon-flow [J]. Plant Soil, 1994, 166:55-62.

[35] Vogel J C, Uhlitzsch I. Carbon-14 as an indicator of CO2 pollution in cities [A]. In: Isotope Ratios as Pollutant Source and Behaviour Indicators[C]. Vienna: International Atomic Energy Agency, 1975, 153-152.

[36] D9rr H, Münnich K O. Annual variations in the 14C content of soil CO2[J]. Radiocarbon, 1986, 28: 338-345.

[37] D9rr H, Münnich K O. Annual variation in soil respiration in selected areas of the temperate zone [J]. Tellus, 1987, 39B:114-121.

[38] O’Leary M H. Carbon isotopes in photosynthesis [J]. Bioscience, 1988, 38: 328-336.

[39] Robinson D, Scrimgeour C M. The contribution of plant C to soil CO2 measured using 13C [J]. Soil Biology and Biochemistry,1995, 27: 1 653-1 656.

[40] Cerling T E, Solomon D K, Quade J, et al. On the isotopic composition of carbon in soil carbon dioxide [J]. Geochimica et Cosmochimica Acta, 1991,55: 3 403-3 405.

[41] Dudziak A, Halas S. Diurnal cycle of carbon-isotope ratio in soil CO2 in various ecosystems [J]. Plant Soil, 1996, 183: 291-299.

[42] Swinnen J, Van Veen J A, Merckx R.14C pulse-labelling of field-grown spring wheat: An evaluation of its use in rhizosphere carbon budget estimations [J]. Soil Biology Biochemistry, 1994, 26: 161-170.

[43] Rochette P, Angers D A, Flanagan L B. Maize residue decomposition measurement using soil-surface CO2 fluxes and natural abundance of 13C [J]. Soil Science Society of America Journal, 1999, l 63: 1 385-1 396.

[1] 邓琦,刘世忠,刘菊秀,孟泽,张德强. 南亚热带森林凋落物对土壤呼吸的贡献及其影响因素[J]. 地球科学进展, 2007, 22(9): 976-986.
[2] 周涛,史培军. 土地利用变化对中国土壤碳储量变化的间接影响[J]. 地球科学进展, 2006, 21(2): 138-143.
[3] 张东秋;石培礼;张宪洲. 土壤呼吸主要影响因素的研究进展[J]. 地球科学进展, 2005, 20(7): 778-785.
[4] 孟磊;丁维新;蔡祖聪;钦绳武. 长期定量施肥对土壤有机碳储量和土壤呼吸影响[J]. 地球科学进展, 2005, 20(6): 687-692.
[5] 彭少麟,李跃林,任海,赵平. 全球变化条件下的土壤呼吸效应[J]. 地球科学进展, 2002, 17(5): 705-713.