Please wait a minute...
img img
高级检索
地球科学进展  2005, Vol. 20 Issue (5): 499-504    DOI: 10.11867/j.issn.1001-8166.2005.05.0499
研究论文     
DEM空间分辨率的初步分析
郝振纯1;池宸星1;王 玲2;王跃奎1
1.河海大学水文水资源与水利工程科学国家重点实验室,江苏 南京 210098;2.黄河水文水资源科学研究所,河南 郑州 450004
A PRELIMINARY ANALYSIS OF DEM SPACE DATA RESOLUTION
HAO Zhenchun1; CHI Chenxing1; WANG Ling2;WANG Yuekui1
(1.State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China; 2.Yellow River Hydrology and Water Resources Institute, Zhengzhou 450004,China)
 全文: PDF(98 KB)  
摘要:

分布式模型的输入及其参数具有时空变异性,模型的校正也依赖于网格单元的大小,因此需要确定适当的空间分辨率来描述和控制空间变化。随着分辨率的不同,DEM的精度以及由此提取的流域特征值(如高程、坡度、地形指数、河网长度)在统计特性上也会随之变化。对50 m分辨率的DEM平均取样获得150~950 m的9组DEM,对不同分辨率下提取的流域特征值进行了统计分析,并采用信息熵度量不同分辨率的信息量。

关键词: DEM空间分辨率流域特征统计分析信息量    
Abstract:

Distributed hydrological model is used to explain the effect of information (such as terrain, soil, vegetation and climate) on every points of the study basin. The inputs and parameters of distributed hydrological model change with space and time. The model's calibration depends on the resolution of grid. In order to describe and control the space change, it is important to make sure right resolution. Distributed hydrological modeling is base on the watershed characteristics extracted from digital elevation model (DEM). Watershed characteristics extracted from different DEM resolution will be statistically different. This paper statistically analyses the watershed character values (such as elevation, gradient, length of watershed network, topographic index) extracted from various resolutions. The concept of entropy has been considered a promising method in this study as it quantitatively measures the information produced by an object (watershed). Large entropy means plenty of information. We find that the coarser the resolution is, the more smoother the terrain is. Mostly, with the DEM grid size increasing, maximal elevation and various of elevation decrease, average elevation and minimal elevation increases; maximal gradient and average gradient and various of gradient decrease; maximal topographic index and various of topographic index decrease; minimal topographic index and average of topographic index increases; length of watershed network decreases. This shows the smoothness effect of resample. With the DEM grid size increasing, entropy becomes smaller and smaller. This means DEM with coarser resolution has less information. Decrease of information is in consistent with change of watershed character values. We compare the relative change of average gradient with relative change of entropy. We find that they have approximately exponential relation. The smoothness of terrain may slower the conflux, but decrease of length of watershed network will shorten conflux time, some analyses of their effects on the velocity of flow have been done.

Key words: Digital elevation model    Space resolution    Watershed characteristic    Statistic analysis    Entropy.
收稿日期: 2004-02-24 出版日期: 2005-05-25
:  P208  
基金资助:

国家自然科学基金重点项目“黄河流域典型支流水循环机理研究”(编号:50239050);治黄专项“黄土高原典型支流小理河流域产流特性变化研究”(编号:2003Z01)资助.

通讯作者: 郝振纯   
作者简介: 郝振纯(1958-),男,山西翼城人,教授,博士生导师,主要从事水文水资源研究. E-mail:hzchun@hhu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
池宸星
王跃奎
王玲
郝振纯

引用本文:

郝振纯;池宸星;王玲;王跃奎. DEM空间分辨率的初步分析[J]. 地球科学进展, 2005, 20(5): 499-504.

HAO Zhenchun;CHI Chenxing;WANG Ling;WANG Yuekui. A PRELIMINARY ANALYSIS OF DEM SPACE DATA RESOLUTION. Advances in Earth Science, 2005, 20(5): 499-504.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2005.05.0499        http://www.adearth.ac.cn/CN/Y2005/V20/I5/499

[1] Wang Zhonggen, Liu Changming, Wu Xianfeng. A review of the studies on distributed hydrological model based on DEM[J]. Journal of Natural Resources, 2003, 18(2):168-173. [王中根, 刘昌明, 吴险峰. 基于DEM的分布式水文模型研究综述[J].自然资源学报, 2003, 18(2):168-173.]
[2] Tang Guoan, Zhao Mudan, Li Tianwen, et al. Modeling slope uncertainty derived from DEMs in Loess Plateau[J]. Acta Geographica Sinica, 2003, 58(6):824-830. [汤国安,赵牡丹,李天文,等. DEM提取黄土高原地面坡度的不确定性[J].地理学报, 2003, 58(6):824-830.]
[3] Zhang Yong, Tang Guoan, Peng Qi. A mathematical simulation of DEM terrain representation error—A case study in the Loess Hill-gully areas of China [J]. Journal of Mountain Science, 2003, 21(2):252-256. [张勇, 汤国安, 彭奇. 数字高程模型地形描述误差的量化模拟——以黄土丘陵沟壑区的实验为例[J]. 山地学报, 2003, 21(2):252-256.]
[4] Chen Rensheng, Kang Ersi, Yang Jianping. Application of Topmodel to simulate runoff from Heihe mainstream mountainous basin[J]. Journal of Desert Research, 2003, 23(4):428-434. [陈仁升, 康尔泗, 杨建平,等. Topmodel模型在黑河干流出山径流模拟中的应用[J]. 中国沙漠, 2003, 23(4):428-434.] 
[5] Georges-Marie Saulnier. Digital elevation analysis for distributed hydrological modeling: Reducing scale dependence in effective hydraulic conductivity value[J]. Water Resources Research, 1997, 33(9): 2 097-2 101.
[6] David M Wolock,Curtis V Price. Effects of digital elevation model map scale and data resolution on a topography-based watershed model[J].Water Resources Research, 1994, 30(11): 3 041-3 052.
[7] Baxter E Vieux. Distributed Hydrologic Modeling Using GIS[M]. Netherlands: Kluwer Academic Publishers, 2001.
[8] Wang Junde. Statistic of Hydrology[M]. Nanjing: Hehai Unversity Press,1993.[王俊德. 水文统计[M] .南京:河海大学出版社, 1993.]
[9] Hou Ruzhen, Zheng Kesheng. A theoretical study of raingauge network evaluation using information entropy[J]. Journal of Taiwan Water Conservancy, 2003,51(2):10-20. [侯如真, 郑克声. 讯息熵应用于雨量站网评估之理论探讨[J]. 台湾水利, 2003, 51(2):10-20.]
[10] Chen Zhihua, Ding Guoping. Entropy-based approach to remove  redundant monitoring wells in regional-scale groundwater system in Hebei plain, China[J].Earth Science—Journal of China University of Geosciences,2001,26(5):517-523.[陈植华, 丁国平. 应用信息熵方法对区域地下水观测网的优化研究[J]. 中国地质大学学报, 2001 , 26(5):517-523.]
[11] Wang Dong, Zhu Yuansheng. Principle of maximum entropy and its application in hydrology and water resources[J]. Advances in Water Science, 2001, 12(3):424-430.[王栋, 朱元甡. 最大熵原理在水文水资源科学中的应用[J]. 水科学进展, 2001, 12(3): 424-430.]
[12] Zhang Jiguo, Liu Xinren. Information entropy analysis on nonuniformity of precipitation distribution in time-space, I, basic concept and data analysis[J]. Advances in Water Science, 2000, 11(2):133-137.[张继国, 刘新仁. 降水时空分布不均匀性的信息熵分析(I)——基本概念与数据分析[J].水科学进展, 2000, 11(2): 133-137.]
[13] Nilgun B Harmancioglu, Necdet Alpaslan. Water quality monitoring network design:A problem of multi-objective decision making[J]. Water Resources Bulletin,  1992,  28(1): 179-192.
[14] Sevinc Ozkul,Nilgun B Harmnaciou, Vijay P Singh. Entropy-based assessment of water quality monitoring networks[J].Journal of Hydrologic Engineering,  2000,  5(1): 90-100.
[15] Zhang Xuewen. Entropy of physical field and iIts self-minish[J]. Journal of Natural, 1986, 9(11):847-850.[张学文. 物理场的熵及其自发减小现象[J]. 自然杂志, 1986, 9(11):847-850.]

[1] 权凌, 周纪, 李明松, 代冯楠, 李国全. 基于时间序列建模的城市热岛时间尺度成分分离方法与应用[J]. 地球科学进展, 2014, 29(6): 723-733.
[2] 邱新法,仇月萍,曾燕. 重庆山地月平均气温分布式模拟研究[J]. 地球科学进展, 2009, 24(6): 621-628.
[3] 李梦洁,郑建飞,曾燕,邱新法,杨羡敏. 浙江省高分辨率太阳直接辐射图的计算和绘制[J]. 地球科学进展, 2008, 23(3): 299-305.
[4] 曾燕,邱新法,潘敖大,刘昌明. 地形对黄河流域太阳辐射影响的分析研究[J]. 地球科学进展, 2008, 23(11): 1185-1193.
[5] 吴巧新,吴殿廷,刘睿文,宋金平. 美国地理学百年发展脉络分析[J]. 地球科学进展, 2007, 22(11): 1118-1128.
[6] 刘睿文,吴殿廷,吴巧新. 中国近现代地理学发展脉络研究——基于《地理学报》学术论文的统计分析[J]. 地球科学进展, 2006, 21(9): 938-947.
[7] 应龙根;宁越敏. 空间数据:性质、影响和分析方法[J]. 地球科学进展, 2005, 20(1): 49-056.
[8] 张志强,徐中民,程国栋. 条件价值评估法的发展与应用[J]. 地球科学进展, 2003, 18(3): 454-463.
[9] 李丽,郝振纯. 基于DEM的流域特征提取综述[J]. 地球科学进展, 2003, 18(2): 251-256.
[10] 李硕,曾志远,张运生. 数字地形分析技术在分布式水文建模中的应用[J]. 地球科学进展, 2002, 17(5): 769-775.
[11] 梁进社. 中国建设用地省际分布的统计分析[J]. 地球科学进展, 2002, 17(2): 195-200.
[12] 傅国斌;李丽娟;刘昌明. 遥感水文应用中的尺度问题[J]. 地球科学进展, 2001, 16(6): 755-760.