地球科学进展 ›› 2005, Vol. 20 ›› Issue (1): 49 -056. doi: 10.11867/j.issn.1001-8166.2005.01.0049

综述与评述 上一篇    下一篇

空间数据:性质、影响和分析方法
应龙根 1,宁越敏 2   
  1. 1.华东师范大学教育部地理信息科学重点实验室,上海 200062;
    2.华东师范大学中国现代城市研究中心,上海 200062
  • 收稿日期:2003-04-03 修回日期:2004-03-31 出版日期:2005-01-25
  • 通讯作者: 应龙根 E-mail:lgying@geo.ecnu.edu.cn
  • 基金资助:

    国家自然科学基金项目“中国地区经济增长的空间统计分析”(编号: 40271033);教育部科学技术重点研究项目“GIS空间数据的现代分析” (编号: 03074)资助.

Spatial Data: Its Nature, Effects and Ananlysis

YING Longgen 1, NING Yuemin 2   

  1. 1. Key Lab of GIScience (Ministry of Education), East China Normal University, Shanghai 200062, China; 
    2.China's Center for Modern City Studies, East China Normal University, Shanghai 200062, China
  • Received:2003-04-03 Revised:2004-03-31 Online:2005-01-25 Published:2005-01-25

20世纪90年代以来,以信息技术为主要标志的科学进步日新月异,正深刻地改变着人类社会的生产和生活方式。人类活动所涉及的信息80%以上属空间信息,可由地理坐标确定其空间区位,美国已将发展空间信息科学视为提升其国家竞争力水平的重要途径之一。2000年美国国家地理信息与分析中心(Nat ionalCenterforGeo graphicInformat ionandAnalysis,NCGIA)在其跨世纪的研究规划中提出了发展地理信息科学的Varenius计划。Varenius计划要求研究空间信息的不确定性理论,并开发处理这种不确定性的空间数据分析技术。鉴于空间数据的两维多方向性,空间数据所包含的误差远比单一方向性的时间序列数据来得复杂。最近发展起来的空间统计学和空间计量经济学不仅解决了标准统计方法在处理空间数据时的失误问题,更重要的是为测量这种空间联系及其性质、并在建模时明确地引入空间联系变量以估算与检验其贡献提供了全新的手段。基于美国地理信息科学的发展动态,重点阐释空间统计学和空间计量经济学的理论基础,包括空间数据的性质、空间信息的误差理论、空间数据分析的类型和内容。

    With the exponentially growing use of geographic information systems (GIS) to store, manipulate and visualize geocoded information, it is increasingly important to understand the particular nature of geographic data and the specialized statistical techniques required for its spatial analysis. Spatial analysis is often broadly defined as a “set of methods useful when the data are spatial”. More specifically, it encompasses a collection of techniques to add value to data contained in a geographic information system. As such, spatial analysis forms an important component of the evolving discipline of Geographic Information Science.
    Aggregate spatial data are characterized by dependence (spatial autocorrelation) and heterogeneity (spatial structure). These spatial effects are important in applied statistical analysis, in that they may invalidate certain standard methodological results, demand adaptations to others, and in some contexts, necessitate the development of a specialized set of techniques. These issues are typically ignored by classical statistics and now are vigorously approached in the separate field of spatial statistics.
    In this paper, some general ideas on fundamental issues are outlined, related to the distinctive characteristics of spatial data analysis, as opposed to data analysis in general. The emphasis is on the relevance for spatial data analysis of the ongoing debate about methodology in the disciplines of statistics and econometrics, and on the role of spatial errors in modeling and analysis. First, some general remarks are formulated on two opposing viewpoints regarding spatial analysis and spatial data: a datadriven approach versus a model-driven approach. This is followed by a review of a number of competing inferential frameworks that can be used as the basis for spatial data analysis. Next, the focus shifts to spatial errors and to the implications of various forms of spatial errors for spatial data analysis. Finally, some concluding remarks are formulated on future research directions in spatial statistics and spatial econometrics.

中图分类号: 

[1]Cliff A, Ord J. Spatial Autocorrelation[M]. London: Pion, 1973.
[2]Tobler W. Cellular geography[A]. In: Gale S, Olsson G, eds. Philosophy in Geography [C].Dordrecht: Reidel Publishing, 1979. 379-386.
[3]Maron J, Harrison S. Spatial pattern formation in an insect host-parasitoid system[J].Science,1997, 278 (5 343): 1 619-1 621.
[4]Ranta E, Kaitala V, Lundberg P. The spatial dimension in population fluctuations[J].Science,1997, 278 (5 343): 1 621-1 623.
[5]Fan S, Gloor M, Mahlman J, et al.1998. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models[J].Science,1998,282(5 388): 442-446.
[6]Kunin W. Extrapolating species abundance across spatial scales[J].Science,1998, 281 (5 382): 1 513-1 515.
[7]Moser E, Krobert K, Moser M, et al. Impaired spatial learning after saturation of long-term potentiation[J].Science,1998, 281(5 385):2 038-2 042.
[8]Governato F, Baugh C, Frenk C, et al. The seeds of rich galaxy clusters in the  universe[J].Nature,1998, 392: 359-361.
[9]Hampson R, Simeral J, Deadwyler S. Distribution of spatial and nonspatial information in dorsal hippocampus[J].Nature,1999, 402(6 762): 610-614.
[10]Condit R, Ashton P, Baker P,et al. Spatial patterns in the distribution of tropical tree species[J].Science,2000,288(5 470):1 414-1 418.
[11]Young W, Roberts A, Stuhne G. Reproductive pair correlations and the clustering of organisms[J].Nature,2001, 412(6 844):328-331.
[12]Wang Jinfeng, Li Lianfa, Ge Yong,et al. A theoretic framework for geographic information analysis[J].Acta Geographica Sinica,2000, 55(1): 318-328.[王劲峰,李连发,葛咏,等.地理信息空间分析理论体系[J].地理学报,2000,55(1): 318-328].
[13]Anselin L. What is special about spatial data? Alternative perspectives on spatial data analysis[A]. In: Griffith D A, ed. Statistics, Past, Present and Future[C].Ann Arbor, MI: Institute of Mathematical Geography, 1990.
[14]Anselin L, Getis A. Spatial statistical analysis and geographic information systems[J].Annals of Regional Science,1992, 26: 19-33.
[15]Shi Wenzhong. Spatial Data Errors and Treatment: Theories and Application[M]. Beijing: Science Press, 2000.[史文中.空间数据误差处理的理论与方法[M].北京:科学出版社,2000.]
[16]Getis A, Ord J. The analysis of spatial association by use of distance statistics[J].Geographical Analysis,1992, 24: 189-206.
[17]Anselin L. Some further notes on spatial models and regional science [J].Journal of Regional Science,1986, 26: 799-802.
[18]Anselin L. Quantitative methods in regional science: Perspectives on research Directions [A].In: Paper Presented at a Plenary Session of the Third World Congress of the Regional Science Association [C].Jerusalem, Israel,1989.
[19]Odland J,Golledge R, Rogerson P. Recent developments in mathematical and statistical analysis in human geography [A].In: Gaile G,Wilmott C, eds. Geography in America [C].Columus, OH: Merrill, 1989:719-745.
[20]Griffith D. Toward a theory of spatial statistics: Another step forward [J].Geographical Analysis,1987, 19: 69-82.
[21]Cliff A, Ord J. Spatial Processes, Models and Applications [M]. London: Pion, 1981.
[22]Anselin L. Spatial Econometrics: Methods and Models[M]. Dordrecht, The Netherlands: Kluwer Academic Publisher, 1988.
[23]Griffith D. Advanced Spatial Statistics [M]. Dordrecht: Kluwer Academic Publishers, 1988.
[24]Haining R. Spatial Data Analysis: Theory and Practice [M]. London: Cambridge University Press,2003.
[25]Ohkouchi N, Eglinton T, Keigwin L,et al. Spatial and temporal offsets between proxy records in a sediment drift [J].Science,2002, 298: 1 224-1 227.
[26]Durbin J. Is a philosophical consensus for statistics attainable? [J].Journal of Econometrics,1988, 37: 51-61.
[27]Foster S, Gorr W. An adaptive filter for estimating spatially-varying parameters: Application to modeling police hours spent in response to calls for service[J].Management Science,1986, 32: 878-889.
[28]Getis A. Spatial filtering in a regression framework [A]. In: Anselin L, Florax R, eds. New Directions in Spatial Econometrics[C]. New York: Springer, 1995.
[29]Folmer H. Regional Economic Policy: Measurement of Its Effect [M]. Dordrecht: Martinus Nijhoff, 1986.
[30]Couclelis H. Requirements for planning-relevant GIS: A spatial perspective[J].Papers and Proceedings of the Regional Science Association,1991,70: 9-19.
[31]Hubert L. Combinatorial data analysis: Association and partial association [J].Psychometrika,1985, 50: 449-467.
[32]Hubert L, Golledge R, Costanzo C. Generalized procedures for evaluating spatial autocorrelation [J].Geographical Analysis,1981, 13: 224-233.
[33]Getis A. Spatial interaction and spatial autocorrelation: A cross-product approach [J].Environment and Planning A,1991, 23: 1 269-1 277.
[34]Anselin L. Local Indicators of Spatial Association-LISA[R]. West Virginia University, Regional Research Institute, 1994, Research Paper 9331.
[35]Moran P. The interpretation of statistical maps [J].Journal of the Royal Statistical Society,1948, 10: 243-251.
[36]Geary R. The contiguity ratio and statistical mapping [J].The Incorporated Statistician,1954, 5: 115-145.
[37]Dacey M. Analysis of central place and point patterns by a nearest neighbor method [J].Human Geography,1962, 24: 55-75.
[38]Goodchild M. A spatial analytical perspective on geographical information systems [J].International Journal of Geographical Information Systems,1987, 1: 327-334.
[39]Haining R. Spatial models and regional science: A comment on Anselin's paper and research directions [J].Journal of Regional Science,1986, 26: 793-798. 
[40]Boots B, Getis A. Point Pattern Analysis [M].Newbury Park, CA: Sage Publications,1988.
[41]Wartenberg D. Multivariate spatial correlation: A method for exploratory geographical analysis [J].Geographical Analysis,1985, 17: 263-283.
[42]Tukey J. Exploratory Data Analysis [M]. Reading: Addison-Wesley, 1977.
[43]Hooper P, Hewings G. Some properties of space-time processes [J].Geographical Analysis,1981, 13: 203-223.
[44]Getis A, Boots B. Models of Spatial Processes [M]. London: Cambridge University Press, 1978.
[45]Gould P. Letting the data speak for themselves [J].Annals of the Association of American Geographers,1981, 71: 166-176.
[46]Whittle P. On stationary processes in the plane [J].Biometrika,1954, 41: 434-449.
[47]Haining R. Testing a spatial interacting market hypothesis [J].The Review of Economics and Statistics,1984, 66: 576-583.
[48]Openshaw S, Taylor P. The modifiable areal unit problem [A]. In: Wrigley N, Bennet R, eds. Quantitative Geography, A British View[C]. London: Routledge and Kegan Paul, 1981:60-69.
[49]Griffith D. An evaluation of correction techniques for boundary effects in spatial statistical analysis: Contemporary methods [J].Geographical Analysis,1985, 17: 81-88.
[50]Nijkamp P,Leitner H, Wrigley N. Measuring the Unmeasurable [M]. Dordrecht: Martinus Nijhiff, 1985.
[51]Getis A. Spatial Statistics [R]. San Diego, California: The Stephen and Mary Birch Fellowship Foundation of Geographical Researches, San Diego State University, 1997.
[52]National Center for Geographic Information and Analysis (US). Varenius: NCGIA's Project to Advance GIScience[R]. NCGIA at the University of California, Santa Barbara, California, 2000.

[1] 何彬彬,崔莹,陈翠华,陈建华. 基于地质空间数据挖掘的区域成矿预测方法[J]. 地球科学进展, 2011, 26(6): 615-623.
[2] 孙嘉,裴韬,龚玺,周成虎. Web时空数据挖掘研究进展[J]. 地球科学进展, 2011, 26(4): 449-459.
[3] 张勇,史学正,于东升,王洪杰,赵永存,孙维侠. 属性数据与空间数据连接对土壤有机碳储量估算的影响[J]. 地球科学进展, 2008, 23(8): 840-847.
[4] 明冬萍,骆剑承,周成虎,沈占锋,梁清翰,盛昊. 基于特征基元的空间数据计算模式及其地学应用[J]. 地球科学进展, 2006, 21(1): 14-23.
[5] 范新生;应龙根. 中国SARS疫情的探索性空间数据分析[J]. 地球科学进展, 2005, 20(3): 282-291.
[6] 袁艳斌, 韩志军, 刘 刚, 汪新庆. 基于GIS 的1∶5 万区调野外空间数据快速采集技术[J]. 地球科学进展, 2000, 15(3): 348-352.
[7] 李 新,程国栋,卢 玲. 空间内插方法比较[J]. 地球科学进展, 2000, 15(3): 260-265.
[8] 李德仁,李清泉. 地球空间信息学与数字地球[J]. 地球科学进展, 1999, 14(6): 535-540.
阅读次数
全文


摘要