地球科学进展 ›› 2020, Vol. 35 ›› Issue (7): 661 -677. doi: 10.11867/j.issn.1001-8166.2020.055

所属专题: 火星风沙地貌

综述与评述    下一篇

火星独特风沙地貌之横向沙脊
董治宝( ),吕萍,李超,胡光印   
  1. 陕西师范大学行星风沙科学研究院, 陕西 西安 710119
  • 收稿日期:2020-05-16 修回日期:2020-06-20 出版日期:2020-07-10
  • 基金资助:
    国家自然科学基金项目“塔里木盆地周围干燥剥蚀山地风化速率研究”(41930641);“沙丘动力学数值模型时间与空间尺度的确定”(41871011)

Unique Aeolian Bedforms of Mars: Transverse Aeolian Ridges

Zhibao Dong( ),Lü Ping,Chao Li,Guangyin Hu   

  1. Planetary Aeolian Research Institute, Shaanxi Normal University, Xi’an 710119, China
  • Received:2020-05-16 Revised:2020-06-20 Online:2020-07-10 Published:2020-08-21
  • About author:Dong Zhibao (1966-), male, Hengshan County, Shaanxi Province, Professor. Research areas include aeolian geomorphology and physics of blown sand. E-mail: zbdong@snnu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “Weathering rate of the dry denudated mountains surrounding the Tarim Basin”(41930641);“Determination of time and length scales of dune dynamical model”(41871011)

横向沙脊是火星独特风沙地貌类型之一,近20年来研究者们借助高分辨率火星遥感探测资料开展了系列研究。总结了横向沙脊的分布规律、形态特征、沉积物组成、形成过程及其形成时代等方面的研究成果。火星横向沙脊是高度为米级,间距为10 m级的风成床面形态类型,主要分布于赤道和低纬度地区,而且南半球较北半球多。高反照率和对称的截面形态是其突出的特征,与地球上的巨型沙波纹和反向沙丘的截面形态类似。横向沙脊沉积物粒度组成一般具有双峰型特征,表层为粗沙覆盖,但热惯性较低。目前关于横向沙脊的形成过程有3种假说:巨型沙波纹假说、反向沙丘假说和粉尘胶结假说,但支持巨型沙波纹假说的证据最多。火星横向沙脊与沙丘一样,属于新近的火星地貌类型,但其形成时间一般较沙丘早,多形成于近几百万年以来,所以常被胶结或岩化,不具流动性,但也有少数现代时期形成的活动性横向沙脊。横向沙脊的独特性使其成为最令人困惑的火星风沙地貌类型之一,以至于研究者们对其在风沙地貌分类系统中的归属尚有争议。针对横向沙脊研究的需要,未来火星探测亟需提供两个方面的高分辨率遥感信息,即横向沙脊沉积物组成和若干区域的综合集成勘测。

Transverse Aeolian Ridges (TARs) are among the unique aeolian bedforms of Mars, which witnessed a series of investigation for the last two decades thanks to the high-resolution remote sensing data. This paper summarized the understanding with respect to distribution, morphology, sedimentology, formation hypotheses and formation time of TARs. It is suggested that TARs are a kind of aeolian bedforms with meter-scale height and decameter-scale wavelength. TARs are primarily distributed in the equator and low-latitude regions, being rare in high and mid-latitude regions, and more popular in the south hemisphere than in the north hemisphere. Higher albedo and symmetric cross-sections are the most outstanding features of TARs, being analogous to the megaripples and reversing dunes on the Earth. The grain-size distribution of TARs’ sediments is generally bimodal, with granule cover and low thermal inertia. Three formation hypotheses were proposed for TARs: Megaripple hypothesis, reversing dune hypothesis and dust induration hypothesis, with more evidences supporting the megaripple hypothesis. Similar to dunes, TARs are geologically recent morphology on Mars, but generally predate dunes, formed in the last few million years so that most TARs are indurated or lithified and are immobile. However, contemporary mobileTARs are also developed in some regions. The unique features of TARs make them the mostenigmatic aeolian bedforms of Mars. It is proposed that high-resolution information on TARs sedimentology and integrated regional surveying should be listed in the priorities of future Mars exploration with respect to TARs study.

中图分类号: 

图1 风积地貌的 3种尺度类型(据参考文献[ 13 ]修改)
(a)风积地貌间距面积频率N=d p/dlog λ;(b)组成物质的颗粒粒径(粗粒累计百分比20%所对应的颗粒直径)—间距散点图;A:沙波纹;B:沙丘;C:沙山
Fig.1 Three dimensional types of aeolian bedforms modified after reference 13 ])
(a)The areal frequency of different wavelengths of aeolian bedforms;(b)Scatter plot of grain-size(P20-the coarse twenty percentile) against wavelength;A:Ripples;B:Sands;C:Draas
图2 火星萨瑞南高地( Terra Sirenum)的典型横向沙脊(据参考文献[ 24 ]修改)
λWL分别为横向沙脊波长、宽度及其长度;HiRISE影像 PSP_001684_1410,中心点位置:38.9°S, 196.0°E;来源:NASA/JPL/U of A
Fig.2 Typical TARs in Terra Sirenum ( modified after reference 24 ])
λW and L are the ridge to ridge space, width and length of TARS respectively; HiRISE image PSP_001684_1410, center point: 38.9°S, 196.0°E; Source: NASA/JPL/U of A
图3 火星 Gamboa陨击坑中央峰南—东南地段展示的横向沙脊( T)与沙丘( D)、巨型沙波纹( M)以及大沙波纹( R)之间的关系(据参考文献[ 11 ]修改)
HiRISE影像:PSP_002721_2210;来源:NASA/JPL/U of A
Fig.3 The relationship between TARs( T) and dunes( D), mega-ripples( M) and large-ripples( R) in the south-southeast of the central peak of Gamboa crater modified after reference 11 ])
HiRISE image: PSP_002721_2210; Source: NASA/JPL/U of A
图4 火星 Ius Chasma谷底横向沙脊截面图(据参考文献[ 32 , 38 ]修改)
A和E为横向沙脊底部的两点, C为顶点, B和D是顶点附近的两点
Fig.4 Sectional profile across TARs on the floor of Ius Chasmamodified after references32, 38])
A and E are two points at the bottom of TARs, C is the central point at the crest,B and D are two points from either side of the crest
图5 5种横向沙丘顶部脊线形状(据参考文献[ 24 ]修改)
(a)简单型(中心点位置:21.3°N, 39.3°E; MOC NA M1104208);(b)分叉型(中心点位置:20.7°N, 41.3°E; MOC NA M0303703);(c)蜿蜒型(中心点位置:45.5°S, 28.7°E; MOC NA R0802177);(d)新月型(中心点位置:0.2°N, 0.1°E; MOC NA M1800277);(e)格网型(中心点位置:0.1°S, 5.3°E; MOC NA R2300801); 来源:NASA/JPL/MSSS
Fig.5 Examples of each of the five TAR crest-ridge morphologiesmodified after reference 24 ])
(a) Simple (center point: 21.3°N, 39.3°E. MOC NA M1104208); (b) Forked (center point: 20.7°N, 41.3°E. MOC NA M0303703); (c) Sinuous (center point: 45.5°S, 28.7°E. MOC NA R0802177); (d) Barchan-like (center point: 0.2°N, 0.1°E. MOC NA M1800277); (e) Networked (center point: 0.1°S, 5.3°E. MOC NA R2300801); Source: NASA/JPL/MSSS
图6 地形影响横向沙脊的 4种类型(据参考文献[ 24 ]修改)
(a)围限型(中心点位置:0.4°N, 5.4°E; MOC NA S0100833);(b)控制型(中心点位置:25.9°N, 10.4°E; MOC NA E1601902); (c)影响型(中心点位置:23.2°N, 7.2°E; MOC NA M1200437); (d)独立型(中心点位置:42.7°N, 43.9°E; MOC NA M1003676); 来源:NASA/JPL/MSSS
Fig.6 Four types of TARs by topographic influence (modified after reference [ 24 ])
(a) Confined (center point: 0.4°N, 5.4°E. MOC NA S0100833); (b) Controlled (center point: 25.9°N, 10.4°E. MOC NA E1601902); (c) Influenced (center point: 23.2°N, 7.2°E. MOC NA M1200437); (d) Independent (center point: 42.7°N, 43.9°E. MOC NA M1003676); Source: NASA/JPL/MSSS
图7 火星 90°N~90°S180°~240°E地带横向沙脊影像所占百分比的纬向变化(据参考文献[ 26 ]修改)
Fig.7 Percentage of examined images with TARs in latitude bins from 90°N to 90°S latitude between 180°E and 240°E(modified after reference [ 26 ])
图8 火星 90°N~90°S180°~240°E地带不同海拔高度横向沙脊影像百分比及其数量(据参考文献[ 26 ]修改)
Fig.8 Percentage and number of examined images with TARs in elevation bins from 90°N to 90°S latitude between 180°E and 240°E (modified after reference [ 26 ])
图9 火星 90°N~90°S180°~240°E地带不同地貌单元横向沙脊影像所占百分比(据参考文献[ 26 ]修改)
Fig.9 Percentage of examined images with TARs in each geomorphic unit versus image density from 90°N to 90°S latitude between 180° and 240°E (modified after reference [ 26 ])
图10 利比亚环绕瓦乌纳穆斯陨击坑的巨型沙波纹 [ 53 ]
Fig.10 Mega-ripples around Wau-an-Namus crater in Libya [ 53 ]
图11 布鲁诺沙地反向沙丘截面特征(据参考文献[ 56 ]修改)
括号中的数字为每种沙丘特征宽度,单位:m
Fig.11 Cross-sectional profiles of Bruneau reversing dunes (modified after reference[ 56 ])
Feature width values in m for each dune are listed in parentheses,unit:m
图12 火星归—化风沙床面形态截面特征(据参考文献[ 60 ]修改)
Fig.12 Normalized cross-sectional profiles of dunes and mega-ripples (modified after reference [ 60 ])
图13 火星横向沙脊形态几何参数相对频率分布直方图(据参考文献[ 35 ]修改)
(a)长度;(b)宽度;(c)高度;(d)间距;(e)对称系数;(f)累计概率曲线
Fig.13 Relative frequency histograms of morphologic parameters of TARs (modified after reference [ 35 ])
(a) Length;(b) Width;(c) Height;(d) Elongation;(e) Crestlines;(f) Cumulative probability
图14 火星横向沙脊的高度与宽度与地球巨型沙波纹和反向沙丘的对比(据参考文献[ 64 ]修改)
Fig.14 Ranges in height and width of Martian TARs and terrestrial mega-ripples (modified after reference [ 64 ])
1 Mccauley J F, Carr M H, Cutts J A, et al. Preliminary mariner 9 report on the geology of Mars [J]. Icarus, 1972, 17( 2): 289- 327.
2 Cutts J, Smith R S U. Eolian deposits and dunes on Mars [J]. Journal of Geophysical Research, 1973, 78( 20): 4 139- 4 154.
3 Cutts J A, Blasius K R, Briggs G A, et al. North polar region of Mars: Imaging results from viking 2 [J]. Science, 1976, 194( 4 271): 1 329- 1 337.
4 Tsoar H, Greeley R, Peterfreund A R. MARS: The North Polar Sand Sea and related wind patterns [J]. Journal of Geophysical Research, 1979, 84( B14): 8 167.
5 Thomas P. North-south asymmetry of Eolian features in martian polar regions: Analysis based on crater-related wind markers [J]. Icarus, 1981, 48( 1): 76- 90.
6 Greeley R, Iversen J D. Wind as a Geological Process: On Earth, Mars, Venus and Titan [M]. New York: Cambridge University Press, 1985.
7 Thomas P C, Malin M C, Carr M H, et al. Bright dunes on Mars [J]. Nature, 1999, 397( 6 720): 592- 594.
8 Malin M C, Edgett K S. Mars global surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission [J]. Journal of Geophysical Research: Planets, 2001, 106( E10): 23 429- 23 570.
9 Mcewen A S, Eliason E M, Bergstrom J W, et al. Mars reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) [J]. Journal of Geophysical Research, 2007, 112( E5): E05S 02.
10 Zimbelman J R. Spatial resolution and the geologic interpretation of martian morphology: Implications for subsurface volatiles [J]. Icarus, 1987, 71( 2): 257- 267.
11 Zimbelman J R. The transition between sand ripples and megaripples on Mars [J]. Icarus, 2019, 333( 15): 127- 129.
12 Bagnold R A. The Physics of Blown Sand and Desert Dunes [M]. New York: Springer Netherlands, 1941.
13 Wilson I G. Aeolian bedforms-their development and origins [J]. Sedimentology, 1972, 19( 3/4): 173- 210.
14 Dong Z B, Qian G Q, Luo W Y, et al. Geomorphological hierarchies for complex mega-dunes and their implications for mega-dune evolution in the Badain Jaran Desert [J]. Geomorphology, 2009, 106( 3/4): 180- 185.
15 Livingstone I, Wiggs G F S, Weaver C M. Geomorphology of desert sand dunes: A review of recent progress [J]. Earth-Science Reviews, 2007, 80( 3/4): 239- 257.
16 Andreotti B, Fourriere A, Ould-Kaddour F, et al. Giant aeolian dune size determined by the average depth of the atmospheric boundary layer [J]. Nature, 2009, 457( 7 233): 1 120- 1 123.
17 Pelletier J D. Controls on the height and spacing of eolian ripples and transverse dunes: A numerical modeling investigation [J]. Geomorphology, 2009, 105( 3): 322- 333.
18 Dong Zhibao, Su Zhizhu, Qian Guangqiang, et al. Aeolian Geomorphology of the Kumtagh Desert [M]. Beijing: Science Press, 2011.
董治宝, 苏志珠, 钱广强, 等. 库姆塔格沙漠风沙地貌 [M]. 北京: 科学出版社, 2011].
19 Pye K, Tsoar H. Aeolian Sand and Sand Dunes [M]. Leipzig: Springer Berlin Heidelberg, 2009.
20 Sharp R P. Wind ripples [J]. The Journal of Geology, 1963, 71( 5): 617- 636.
21 Fryberger S G, Hesp P, Hastings K. Aeolian granule ripple deposits, Namibia [J]. Sedimentology, 1992, 39( 2): 319- 331.
22 Yang Gensheng, Cong Zili. Granule ripples—A geomorphic sign to identify the wind [J]. Environmental Protection of Xinjiang, 1984, 4: 33- 37.
杨根生, 丛自立. 鉴别风力的一种地貌标志——砾浪 [J]. 新疆环境保护, 1984, 4: 33- 37.
23 Lancaster N. Geomorphology of Desert Dunes [M]. New York: Routledge, 1995.
24 Balme M, Berman D C, Bourke M C, et al. Transverse Aeolian Ridges (TARs) on Mars [J]. Geomorphology, 2008, 101( 4): 703- 720.
25 Bourke M C, Wilson S A, Zimbelman J R. The variability of transverse aeolian ridges in troughs on Mars [C]// 34th Lunar and Planetary Science Conference. League, Texas, 2003: 2090.
26 Wilson S A, Zimbelman J R. Latitude-dependent nature and physical characteristics of transverse aeolian ridges on Mars [J]. Journal of Geophysical Research: Planets, 2004, 109( E10): E10003.
27 Zimbelman J R. Non-active dunes in the Acheron Fossae Region of Mars between the Viking and Mars Global Surveyor eras [J]. Geophysical Research Letters, 2000, 27( 7): 1 069- 1 072.
28 Wilson S A, Zimbelman J R. Large ripple-like bedforms: Examples from the Mars Orbiter Camera [J]. Geological Society of America Abstract Programs, 2002, 34: 77- 8.
29 Williams S H, Zimbelman J R. Large ripple-like bedforms: Examples from Earth [J]. Geological Society of America Abstract Programs, 2002, 34: abstract 77- 7.
30 Wilson S A, Zimbelman J R, Williams S H. Large Aeolian Ripples: Extrapolations from Earth to Mars [C]// 34th Annual Lunar and Planetary Science Conference, League, Texas, 2003: abstract 1862.
31 Bourke M C, Blame M, Beyer R A, et al. How high is that dune? A comparison of methods used to constrain the morphometry of aeolian bedforms on Mars [C]// 35th Lunar and Planetary Science Conference. League, Texas, 2004: abstract 1713.
32 Shockey K M, Zimbelman J R. Analysis of transverse aeolian ridge profiles derived from HiRISE images of Mars [J]. Earth Surface Processes and Landforms, 2013, 38( 2): 179- 182.
33 Clark S C, Berman D C. Regional analyses of transverse aeolian ridges on Mars: Orientation, morphology, and morphometry [C]// Geological Society of America Annual Meeting. Baltimore, Maryland, 2015.
34 Geissler P E, Wilgus J T. The morphology of transverse aeolian ridges on Mars [J]. Aeolian Research, 2017, 26: 63- 71.
35 Hugenholtz C H, Barchyn T E. A terrestrial analog for Transverse Aeolian Ridges (TARs): Environment, morphometry, and recent dynamics [J]. Icarus, 2017, 289: 239- 253.
36 Berman D C, Balme M R, Michalski J R, et al. High-resolution investigations of Transverse Aeolian Ridges on Mars [J]. Icarus, 2018, 312: 247- 266.
37 Bhardwaj A, Sam L, Martin-Torres F J, et al. Distribution and morphologies of Transverse Aeolian Ridges in ExoMars 2020 Rover Landing Site [J]. Remote Sensing, 2019, 11( 8): 912.
38 Zimbelman J R. Transverse Aeolian Ridges on Mars: First results from HiRISE images [J]. Geomorphology, 2010, 121( 1): 22- 29.
39 Edgett K S, Parker T J. "Bright" Aeolian dunes on Mars: Viking orbiter observations [C]// 29th Annual Lunar and Planetary Science Conference. Houston, Texas, 1998: 1338.
40 Fenton L K, Bandfield J L, Ward A W. Aeolian processes in Proctor Crater on Mars: Sedimentary history as analyzed from multiple data sets [J]. Journal of Geophysical Research: Planets, 2003, 108( E12): 5129.
41 Presley M A, Christensen P R. Thermal conductivity measurements of particulate materials 1. A review [J]. Journal of Geophysical Research: Planets, 1997, 102( E3): 6 535- 6 549.
42 Zimbelman J R. Decameter-scale ripple-like features in Nirgal Vallis as revealed in THEMIS and MOC imaging data [C]// Sixth International Conference on Mars. Pasadena, California, 2003: 3 028.
43 Balme M R, Bourke M C. Preliminary results from a new study of Transverse Aeolian Ridges (TARS) on Mars [C]// 36th Lunar and Planetary Science Conference. Houston, Texas, 2005: 1 892.
44 Fenton L K, Mellon M T. Thermal properties of sand from Thermal Emission Spectrometer (TES) and Thermal Emission Imaging System (THEMIS): Spatial variations within the Proctor Crater dune field on Mars [J]. Journal of Geophysical Research: Planets, 2006, 111( E6): E06014.
45 Greeley R. Terrestrial analogs to wind-related features at the Viking and Pathfinder landing sites on Mars [J]. Journal of Geophysical Research, 2002, 107( E1): 5 005.
46 Berman D C, Balme M R, Rafkin S C R, et al. Transverse Aeolian Ridges (TARs) on Mars II: Distributions, orientations, and ages [J]. Icarus, 2011, 213( 1): 116- 130.
47 Edgett K S, Malin M C. Eolian bedforms and erosional landforms at high altitudes on the martian tharsis volcanoes [C]// 31st Annual Lunar and Planetary Science Conference. Houston, Texas, 2000: 1072.
48 Head J W, Mustard J F, Kreslavsky M A, et al. Recent ice ages on Mars [J]. Nature, 2003, 426( 6 968): 797- 802.
49 Sullivan R, Banfield D, Bell J F, et al. Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site [J]. Nature, 2005, 436( 7 047): 58- 61.
50 Sullivan R, Arvidson R, Bell J F, et al. Wind‐driven particle mobility on Mars: Insights from Mars Exploration Rover observations at “El Dorado” and surroundings at Gusev Crater [J]. Journal of Geophysical Research: Planets, 2008, 113( E6): E06S 07.
51 De Silva S L, Spagnuolo M G, Bridges N T, et al. Gravel-mantled megaripples of the Argentinean Puna: A model for their origin and growth with implications for Mars [J]. Geological Society of America Bulletin, 2013, 125( 11/12): 1 912- 1 929.
52 Foroutan M, Zimbelman J R. Mega-ripples in Iran: A new analog for transverse aeolian ridges on Mars [J]. Icarus, 2016, 274: 99- 105.
53 Foroutan M, Steinmetz G, Zimbelman J R, et al. Megaripples at Wau-an-Namus, Libya: A new analog for similar features on Mars [J]. Icarus, 2019, 319: 840- 851.
54 Bridges N T, Spagnuolo M G, De Silva S L, et al. Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experiments [J]. Aeolian Research, 2015, 17: 49- 60.
55 Jackson J A, Bates R L. Glossary of Geology [M]. Alexandria, Viriginia: American Geological Institute, 1997: 769.
56 Zimbelman J R, Scheidt S P. Precision topography of a reversing sand dune at Bruneau Dunes, Idaho, as an analog for Transverse Aeolian Ridges on Mars [J]. Icarus, 2014, 230: 29- 37.
57 Geissler P E. The birth and death of transverse aeolian ridges on Mars [J]. Journal of Geophysical Research: Planets, 2014, 119( 12): 2 583- 2 599.
58 Greeley R, Williams S. Dust deposits on Mars the 'parna' analog [J]. International Journal of Solar System Studies, 1994, 110( 110): 165- 177.
59 Kerber L, Head J W. A progression of induration in Medusae Fossae Formation transverse aeolian ridges: Evidence for ancient aeolian bedforms and extensive reworking [J]. Earth Surface Processes and Landforms, 2012, 37( 4): 422- 433.
60 Zimbelman J R, Williams S H, Johnston A K. Cross-sectional profiles of sand ripples, megaripples, and dunes: A method for discriminating between formational mechanisms [J]. Earth Surface Processes and Landforms, 2012, 37( 10): 1 120- 1 125.
61 Ewing R C, Kocurek G, Lake L W. Pattern analysis of dune-field parameters [J]. Earth Surface Processes and Landforms, 2006, 31( 9): 1 176- 1 191.
62 Ely J C, Clark C D, Spagnolo M, et al. Do subglacial bedforms comprise a size and shape continuum?[J]. Geomorphology, 2016, 257: 108- 119.
63 Yizhaq H, Katra I. Longevity of aeolian megaripples [J]. Earth and Planetary Science Letters, 2015, 422: 28- 32.
64 Hugenholtz C H, Barchyn T E, Boulding A. Morphology of Transverse Aeolian Ridges (TARs) on Mars from a large sample: Further evidence of a megaripple origin?[J]. Icarus, 2017, 286: 193- 201.
65 Lapotre M G, Ewing R C, Lamb M P, et al. Large wind ripples on Mars: A record of atmospheric evolution [J]. Science, 2016, 353( 6 294): 55- 58.
66 Yizhaq H, Bel G, Silvestro S, et al. The origin of the transverse instability of aeolian megaripples [J]. Earth and Planetary Science Letters, 2019, 512: 59- 70.
67 Reiss D, Van Gasselt S, Neukum G, et al. Absolute dune ages and implications for the time of formation of gullies in Nirgal Vallis, Mars [J]. Journal of Geophysical Research: Planets, 2004, 109( E6): E06007.
[1] 董治宝,吕萍,李超,胡光印. 火星风条痕特征及其形成机制[J]. 地球科学进展, 2020, 35(9): 902-911.
[2] 董治宝, 吕萍, 李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[3] 董治宝,吕萍,李超,胡光印. 火星大沙波纹特征及其形成机制[J]. 地球科学进展, 2020, 35(10): 1006-1015.
阅读次数
全文


摘要