地球科学进展 ›› 2020, Vol. 35 ›› Issue (6): 568 -580. doi: 10.11867/j.issn.1001-8166.2020.050

综述与评述 上一篇    下一篇

海洋中尺度涡旋表面特征和三维结构研究进展
张永垂 1, 2( ),王宁 1,周林 1,刘科峰 1,汪浩笛 1   
  1. 1.国防科技大学气象海洋学院,江苏 南京 211101
    2.南方海洋科学与工程 广东省实验室(珠海),广东 珠海 519082
  • 收稿日期:2020-04-21 修回日期:2020-05-22 出版日期:2020-06-10
  • 基金资助:
    国家重点研发计划项目“高分辨率海洋模式关键物理过程参数化方案的研发”(2017YFA0604100);国家自然科学基金项目“北太平洋副热带东西部海平面反相变化趋势和气候模态的相关关系研究”(41406003)

The Surface and Three-dimensional Characteristics of Mesoscale Eddies: A Review

Yongchui Zhang 1, 2( ),Ning Wang 1,Lin Zhou 1,Kefeng Liu 1,Haodi Wang 1   

  1. 1.College of Meteorology and Oceanography, National University of Defense Technology, Nanjing 211101, China
    2.Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai Guangdong 519082, China
  • Received:2020-04-21 Revised:2020-05-22 Online:2020-06-10 Published:2020-07-06
  • About author:Zhang Yongchui (1982-), male, Shuyang County, Jiangsu Province, Associate professor. Research areas include ocean circulation dynamics, mesoscale eddies. E-mail: zyc@nudt.edu.cn
  • Supported by:
    the National Key Research and Development Program of China “The development of parameterization of key physical processes in high-resolution ocean models”(2017YFA0604100);The National Natural Science Foundation of China ”Relationship between the reverse trend of sea level change in the western and eastern subtropical North Pacific and climate modes”(41406003)

海洋中广泛存在的中尺度涡旋对动量、能量、热量和物质传输起着至关重要的作用。详细介绍了利用卫星高度计资料识别中尺度涡的闭合等值线、Okubo-Weiss数、绕角和流矢量的方法。结果表明,绝大部分涡旋都呈近刚性旋转的非线性特征,生命周期大于等于16周涡旋的平均寿命、传播距离、振幅和半径分别为32周、550 km、8 cm和90 km。重点介绍了结合卫星高度计和Argo浮标资料合成中尺度涡三维结构的方法。受生成地和移动到当地海洋温盐背景场的共同作用,涡旋呈现不同的三维结构。从演变角度简单介绍了墨西哥湾的回流环和大西洋的地中海涡旋的基本特征。最后,对中尺度涡研究的难点问题,如次中尺度过程、中尺度涡能量耗散和次表层涡旋等进行讨论,并提出今后应从中尺度涡立体化、机动性观测,中尺度涡多学科融合式观测以及多尺度相互作用等方面开展突破性研究。

Mesoscale eddies, which are widely found in the oceans, play a vital role in momentum, energy, heat and mass transport. The Euler method for identifying mesoscale eddies using satellite altimeter data was presented in detail, including closed SLA contours, OW numbers, Winding-Angle and flow vector methods. The results show that mesoscale eddies are almost nonlinear and solid-body rotation. The long-lived eddies with lifetimes ≥16 weeks have an average lifetime of 32 weeks and an average propagation distance of 550 km. Their mean amplitude and a speed-based radius scale as defined by the automated procedure are 8 cm and 90 km, respectively. The method combining with SLA and Argo profiles to composite the three-dimensional structure were addressed. Due to the different temperature and salt structure in the various oceans of the world, the eddies in different oceans show different three-dimensional structures, which are influenced by both the generation and local temperature and salinity. Two special types of eddies were introduced from the perspective of generation, evolution and dissipation processes, namely the Loop Current Ring in the Gulf of Mexico and Mediterranean eddy in the Atlantic Ocean. Finally, issues including submesoscale processes, dissipation of eddies and subthermocline eddies were discussed, and some future research directions were proposed.

中图分类号: 

图 1 卫星观测海表面高度变化示意图
卫星利用雷达高度计向海面发射微波信号,并通过接受反射信号测量海表面高度,海面高度(Sea Surface Height,SSH)为海表面距离地球椭球体的距离,动力地形(Dynamic Topography,DT)为海表面距离大地水准面(Geoid)距离,海表面高度异常(Sea Level Anomaly,SLA或Sea Surface Height Anomaly,SSHA)可表示为SLA(SSHA)=SSH-MSSH=DT-Geoid=SLA-MDT-Geoid,其中MSSH为平均海表面高度,MDT为平均动力地形
Fig.1 Schematic diagram of sea level anomaly observed by altimetry satellite
The satellite uses a radar altimeter through radiating microwave signals to the sea surface and measure the Sea Surface Height (SSH) by receiving the reflected signals. SSH is the distance from the sea surface to the Earth ellipsoid, Dynamic Topography (DT) is the distance from the sea surface to the geoid, Sea Level Anomaly(SLA) or SSH Anomaly (SSHA) can be expressed as SLA (SSHA) = SSH-MSSH = DT-Geoid = SLA-MDT-Geoid, where MSSH is the average SSH and MDT is the average DT
图2 中尺度涡旋分类示意图[ 7 ]
Fig.2 Schematic diagram of classifications of mesoscale eddies[ 7 ]
图3 Argo浮标分布与中尺度涡位置关系
横、纵坐标为Argo浮标距涡中心东西向、南北向的相对距离,(0,0)坐标为涡旋中心,黑色圆为涡旋1倍半径;每个圆点代表1个Argo浮标,颜色表示浮标距涡旋中心的距离
Fig.3 Location of Argo floats in and outside of the mesoscale eddy
The horizontal and vertical coordinates are the relative distances of Argo floats from the eddy center along the east-west and north-south directions, respectively. The(0,0)coordinates are the center of the eddy,and the black circles are one times the radius of the eddy. Each dot represents an Argo float, and the color represents the distance from the center of the eddy
图4 墨西哥湾回流环示意图
墨西哥湾回流环形成过程:回流向北突起、脱落后形成回流环;使用2019年7月28日HYCOM海表流场资料绘制
Fig.4 Schematic diagram of Loop Current ring in Gulf of Mexico
The processes of a Loop Current ring in Gulf of Mexico: The ring is formed when circumfluence rises to the north and then falls off; The figure is drawn by HYCOM surface flow field on July 28, 2019
图5 地中海涡旋(Meddy)分布示意图
数值代表盐度(单位:PSU);地中海通过直布罗陀海峡沿地形向大西洋溢流高盐、高密度海水,在大西洋中等深度形成反气旋式涡旋(据参考文献[ 74 ]修改)
Fig.5 Schematic diagram of a Mediterranean eddy
The numerical values are the salinity (unit: PSU). Through the strait of Gibraltar, the Mediterranean Sea flooded the Atlantic Ocean with high-salt and high-density water, forming an anticyclonic eddy in the middle depth of the Atlantic Ocean(modified after reference [ 74 ])
1 Feng Shizuo, Li Fengqi, Li Shaoqing. An Inctroduction to Marine Science [M]. Beijing: Higher Education Press, 1999.
冯士筰, 李凤岐, 李少菁. 海洋科学导论 [M]. 北京: 高等教育出版社, 1999.
2 Rhines P B. Mesoscale eddies [M]// Cochran J K, Bokuniewicz H, Yager P. Encyclopedia of Ocean Sciences(3rd Edition). London:Academic Press,2019.
3 Swallow J C. Some further deep current measurements using neutrally-buoyant floats [J]. Deep Sea Research, 1957, 4: 93-104.
4 Crease J. Velocity measurements in the deep water of the western North Atlantic: Summary [J]. Journal of Geophysical Research, 1962, 67(8): 3 173-3 176.
5 Group M. The mid-ocean dynamics experiment [J]. Deep Sea Research, 1978, 25(10): 859-910.
6 Brekhovskikh L, Fedorov K, Fomin L, et al. Large-scale multi-buoy experiment in the tropical Atlantic [C]//Proceedings of the Deep Sea Research and Oceanographic Abstracts. Elsevier, 1971.
7 Mcgillicuddy Jr D J. Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale [J]. Annual Review of Marine Science, 2016, 8:125-159.
8 Wolfe C L, Cessi P, Mcclean J L, et al. Vertical heat transport in eddying ocean models [J]. Geophysical Research Letters, 2008, 35: L23605. DOI:10.1029/2008GL036138.
doi: 10.1029/2008GL036138    
9 Fu L-L, Chelton D B, Le Traon P-Y, et al. Eddy dynamics from satellite altimetry [J]. Oceanography, 2010, 23(4): 14-25.
10 Chelton D B, Schlax M G, Samelson R M. Global observations of nonlinear mesoscale eddies [J]. Progress in Oceanography, 2011, 91(2): 167-216.
11 Mason E, Pascual A, Mcwilliams J C. A new sea surface height-Based code for oceanic mesoscale eddy tracking [J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(5): 1 181-1 188.
12 Isern-Fontanet J, García-Ladona E, Font J. Identification of marine eddies from altimetric maps [J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(5): 772-778.
13 Okubo A. Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences [C]// Proceedings of the Deep Sea Research and Oceanographic Abstracts. Elsevier, 1970.
14 Weiss L A. Bankruptcy resolution: Direct costs and violation of priority of claims [J]. Journal of Financial Economics, 1990, 27(2): 285-314.
15 Chelton D B, Schlax M G, Samelson R M, et al. Global observations of large oceanic eddies [J]. Geophysical Research Letters, 2007, 34: L15606. DOI:10.1029/2007GL030812.
doi: 10.1029/2007GL030812    
16 Robinson S K. Coherent motions in the turbulent boundary layer [J]. Annual Review of Fluid Mechanics, 1991, 23(1): 601-639.
17 Chaigneau A, Gizolme A, Grados C. Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns [J]. Progress in Oceanography, 2008, 79(2/4): 106-119.
18 Nencioli F, Dong C, Dickey T, et al. A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight [J]. Journal of Atmospheric and Oceanic Technology, 2010, 27(3): 564-579.
19 Dong Changming, Jiang Xingliang, Xu Guangjun, et al. Automated eddy detection using geometric approach, eddy datasets and their application [J]. Advances in Marine Science, 2017, 35(4): 439-453.
董昌明, 蒋星亮, 徐广珺, 等. 海洋涡旋自动探测几何方法, 涡旋数据库及其应用 [J]. 海洋科学进展, 2017, 35(4): 439-453.
20 Lumpkin R, Pazos M. Measuring surface currents with Surface Velocity Program drifters: The instrument, its data, and some recent results [M]// Griffa A, Kirwan A D, Mariano A, et al. Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics, Chapter: 2. Cambridge:Cambridge University Press, 2007.
21 Dong C, Liu Y, Lumpkin R, et al. A scheme to identify loops from trajectories of oceanic surface drifters: An application in the Kuroshio extension region [J]. Journal of Atmospheric and Oceanic Technology, 2011, 28(9): 1 167-1 176.
22 Dong Changming. Oceanic Eddy Detection and Analysis [M]. Beijing: Science Press, 2015.
董昌明. 海洋涡旋探测与分析 [M]. 北京: 科学出版社, 2015.
23 Chelton D B, Schlax M G. Global observations of oceanic Rossby waves [J]. Science, 1996, 272(5 259): 234.
24 Zhang Yongchui, Zhang Lifeng. Rossby waves in the North Pacific Ocean: A review [J]. Advances in Earth Science, 2009, 24(11): 1 219-1 228.
张永垂, 张立凤. 北太平洋 Rossby 波研究进展 [J]. 地球科学进展, 2009, 24(11): 1 219-1 228.
25 Mcgillicuddy Jr D J, Robinson A, Siegel D, et al. Influence of mesoscale eddies on new production in the Sargasso Sea [J]. Nature, 1998, 394(6 690): 263.
26 Chelton D B, Gaube P, Schlax M G, et al. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll [J]. Science, 2011, 334(6 054): 328-332.
27 Zhang Z, Wang W, Qiu B. Oceanic mass transport by mesoscale eddies [J]. Science, 2014, 345(6 194): 322-324.
28 Dong C M, Mcwilliams J C, Liu Y, et al. Global heat and salt transports by eddy movement [J]. Nature Communications, 2014, 5:3294.
29 Nof D. On the β-induced movement of isolated baroclinic eddies [J]. Journal of Physical Oceanography, 1981, 11(12): 1 662-1 672.
30 Cushman-Roisin B, Tang B, Chassignet E P. Westward motion of mesoscale eddies [J]. Journal of Physical Oceanography, 1990, 20(5): 758-768.
31 Bretherton F. Reminiscences of MODE [M]// Physical Oceanography. New York: Springer, 2006: 15-27.
32 Robinson A R, Leslie W G. Estimation and prediction of oceanic eddy fields [J]. Progress in Oceanography, 1985, 14: 485-510.
33 Steinberg D K, Carlson C A, Bates N R, et al. Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): A decade-scale look at ocean biology and biogeochemistry [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2001, 48(8/9): 1 405-1 447.
34 Flierl G, Mcgillicuddy D J. Mesoscale and submesoscale physical-biological interactions [J]. The Sea, 2002, 12: 113-185.
35 Mcgillicuddy D J, Anderson L A, Bates N R, et al. Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms [J]. Science, 2007, 316(5 827): 1 021-1 026.
36 Dong C, Lin X, Liu Y, et al. Three‐dimensional oceanic eddy analysis in the Southern California Bight from a numerical product [J]. Journal of Geophysical Research: Oceans, 2012, 117(C7): C00H14. DOI:10.1029/2011JC007354.
doi: 10.1029/2011JC007354    
37 Hu J, Gan J, Sun Z, et al. Observed three‐dimensional structure of a cold eddy in the southwestern South China Sea [J]. Journal of Geophysical Research: Oceans, 2011, 116: C05016. DOI:10.1029/2010JC006810.
doi: 10.1029/2010JC006810    
38 Holte J, Straneo F, Moffat C, et al. Structure and surface properties of eddies in the southeast Pacific Ocean [J]. Journal of Geophysical Research: Oceans, 2013, 118(5): 2 295-2 309.
39 Kurczyn J, Beier E, Lavín M, et al. Anatomy and evolution of a cyclonic mesoscale eddy observed in the northeastern Pacific tropical‐subtropical transition zone [J]. Journal of Geophysical Research: Oceans, 2013, 118(11): 5 931-5 950.
40 Mao H, Feng M, Phillips H E, et al. Mesoscale eddy characteristics in the interior subtropical southeast Indian Ocean, tracked from the Leeuwin Current system [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2019, 161: 52-62.
41 Zhang Y, Chen X, Dong C. Anatomy of a cyclonic eddy in the kuroshio extension based on high-resolution observations [J]. Atmosphere, 2019, 10(9): 553.
42 Roemmich D, Johnson G C, Riser S, et al. The Argo program: Observing the global ocean with profiling floats [J]. Oceanography, 2009, 22(2): 34-43.
43 Sun Wenjin. Oceanic Eddies in the Kuroshio Extension Region and Eddy Induced Dual Mixing [D]. Nanjing: Hohai University, 2017.
孙文金. 黑潮延续体区域伴随涡旋的垂向分布及涡致双重混合[D]. 南京:河海大学,2017.
44 Sun W, Dong C, Wang R, et al. Vertical structure anomalies of oceanic eddies in the Kuroshio Extension region [J]. Journal of Geophysical Research: Oceans, 2017, 122(2): 1 476-1 496.
45 Dong D, Brandt P, Chang P, et al. Mesoscale eddies in the Northwestern Pacific Ocean: Three‐dimensional eddy structures and heat/salt transports [J]. Journal of Geophysical Research: Oceans, 2017, 122. DOI: 10.1002/2017JC013303.
doi: 10.1002/2017JC013303    
46 Yang G, Wang F, Li Y, et al. Mesoscale eddies in the northwestern subtropical Pacific Ocean: Statistical characteristics and three‐dimensional structures [J]. Journal of Geophysical Research: Oceans, 2013, 118(4): 1 906-1 925.
47 Wang Ru, Li Haiyan, Meng Lei. Mesoscale eddies energy characteristic in the Kuroshio Extension and north Pacific subtropical countercurrent region [J]. Acta Oceanologica Sinica, 2019, 41(11): 1-14.
王茹, 李海艳, 孟雷. 北太平洋黑潮延伸体区域和副热带逆流区域中尺度涡能量特征研究[J]. 海洋学报, 2019, 41(11): 1-14.
48 Keppler L, Cravatte S, Chaigneau A, et al. Observed characteristics and vertical structure of mesoscale eddies in the Southwest Tropical Pacific [J]. Journal of Geophysical Research: Oceans, 2018, 123(4): 2 731-2 756.
49 Chaigneau A, Le Texier M, Eldin G, et al. Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: A composite analysis from altimetry and Argo profiling floats [J]. Journal of Geophysical Research, 2011, 116(C11): C11025. DOI:10.1029/2011JC007134.
doi: 10.1029/2011JC007134    
50 Castelao R M. Mesoscale eddies in the South Atlantic Bight and the Gulf Stream recirculation region: Vertical structure [J]. Journal of Geophysical Research: Oceans, 2014, 119(3): 2 048-2 065.
51 Mason E, Pascual A, Gaube P, et al. Subregional characterization of mesoscale eddies across the Brazil‐Malvinas Confluence [J]. Journal of Geophysical Research: Oceans, 2017, 122(4): 3 329-3 357.
52 Amores A, Melnichenko O, Maximenko N. Coherent mesoscale eddies in the North Atlantic subtropical gyre: 3‐D structure and transport with application to the salinity maximum [J]. Journal of Geophysical Research: Oceans, 2017, 122(1): 23-41.
53 Dilmahamod A, Aguiar‐González B, Penven P, et al. SIDDIES Corridor: A major east‐west pathway of long‐lived surface and subsurface eddies crossing the subtropical south Indian Ocean [J]. Journal of Geophysical Research: Oceans, 2018, 123(8): 5 406-5 425.
54 Yang G, Yu W, Yuan Y, et al. Characteristics, vertical structures, and heat/salt transports of mesoscale eddies in the southeastern tropical Indian Ocean [J]. Journal of Geophysical Research: Oceans, 2015, 120(10): 6 733-6 750.
55 Frenger I, Münnich M, Gruber N, et al. Southern Ocean eddy phenomenology [J]. Journal of Geophysical Research: Oceans, 2015, 120(11): 7 413-7 449.
56 Zhen Quanan, Xie Lingling, Zheng Zhiwen, et al. Progress in research of mesoscale eddies in the South China Sea [J]. Advances in Marine Science, 2017, 35(2): 131-158.
郑全安, 谢玲玲, 郑志文, 等. 南海中尺度涡研究进展[J]. 海洋科学进展, 2017, 35(2): 131-158.
57 He Q, Zhan H, Cai S, et al. A new assessment of mesoscale eddies in the South China Sea: Surface features, three‐dimensional structures, and thermohaline transports [J]. Journal of Geophysical Research: Oceans, 2018, 123(7): 4 906-4 929.
58 Xie Xudan, Wang Jing, Chu Xiaoqing, et al. Three-dimensional thermohaline anomaly structures of mesoscale eddies in the South China Sea [J]. Haiyang Xuebao, 2018, 40(4): 1-14.
谢旭丹, 王静, 储小青, 等.南海中尺度涡温盐异常三维结构[J]. 海洋学报, 2018, 40(4): 1-14.
59 De Marez C, L’Hégaret P, Morvan M, et al. On the 3D structure of eddies in the Arabian Sea [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2019, 150. DOI: 10.1016/j.dsr.2019.06.003.
doi: 10.1016/j.dsr.2019.06.003    
60 Hassanzadeh P, Marcus P S, Le Gal P. The universal aspect ratio of vortices in rotating stratified flows: Theory and simulation [J]. Journal of Fluid Mechanics, 2012, 706: 46-57.
61 Liu Z, Liao G, Hu X, et al. Aspect ratio of eddies inferred from Argo floats and satellite altimeter data in the ocean [J]. Journal of Geophysical Research: Oceans, 2019: e2019JC015555. DOI: 10.1029/2019JC015555.
doi: 10.1029/2019JC015555    
62 Zheng Congcong, Yin Zhonghui, Liang Yongchun, et al. Analysis of the eddy vertical structure in different areas in the North Pacific [J]. Marine Forecasts, 2017, 34(3): 10-16.
郑聪聪, 訚忠辉, 梁永春, 等.北太平洋中尺度涡温度垂直结构区域差别分析[J]. 海洋预报, 2017, 34(3): 10-16.
63 Zhang Z, Tian J, Qiu B, et al. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea [J]. Scientific Reports, 2016, 6(1): 24349.
64 Smith K S. The geography of linear baroclinic instability in Earth's oceans [J]. Journal of Marine Research, 2007, 65(5): 655-683.
65 Early J J, Samelson R, Chelton D B. The evolution and propagation of quasigeostrophic ocean eddies [J]. Journal of Physical Oceanography, 2011, 41(8): 1 535-1 555.
66 Zhai X, Johnson H L, Marshall D P. Significant sink of ocean-eddy energy near western boundaries [J]. Nature Geoscience, 2010, 3(9): 608-612.
67 Renault L, Marchesiello P, Masson S, et al. Remarkable control of western boundary currents by eddy killing, a mechanical air‐sea coupling process [J]. Geophysical Research Letters, 2019, 46(5): 2 743-2 751.
68 Von Storch J-S, Badin G, Oliver M. The interior energy pathway: Inertia-gravity wave emission by oceanic flows [M]// Energy Transfers in Atmosphere and Ocean. Chambridge:Springer, 2019: 53-85.
69 Danilov S, Juricke S, Kutsenko A, et al. Toward consistent subgrid momentum closures in ocean models [M]// Energy Transfers in Atmosphere and Ocean. Chambridge:Springer, 2019: 145-192.
70 Wang Meng, Zhang Yanwei, Liu Zhifei, et al. Temporal and spatial characteristics of mesoscale eddies in the Northern South China Sea: Statistics analysis based on altimeter data[J]. Advances in Earth Science, 2019, 34(10): 1 069-1 080.
王萌,张艳伟,刘志飞,等. 南海北部中尺度涡的时空分布特征:基于卫星高度计资料的统计分析[J]. 地球科学进展, 2019, 34(10): 1 069-1 080.
71 Lutjeharms J, Gordon A. Shedding of an Agulhas ring observed at sea [J]. Nature, 1987, 325(6 100): 138.
72 Zhang Z, Zhao W, Qiu B, et al. Anticyclonic eddy sheddings from Kuroshio loop and the accompanying cyclonic eddy in the northeastern South China Sea [J]. Journal of Physical Oceanography, 2017, 47(6): 1 243-1 259.
73 Bower A S, Rossby H T. Meddies and Sub-Surface Eddies [M]// Encyclopedia of Ocean Sciences. London UK: Academic Press,2018:107-114.
74 Price J F, Baringer M O N, Lueck R G, et al. Mediterranean outflow mixing and dynamics [J]. Science, 1993, 259(5 099): 1 277-1 282.
75 Garfield N, Collins C A, Paquette R G, et al. Lagrangian exploration of the California Undercurrent, 1992-95 [J]. Journal of Physical Oceanography, 1999, 29(4): 560-583.
76 Nof D, Paldor N, Van Gorder S. The reddy maker [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2002, 49(9): 1 531-1 549.
77 Mahadevan A. Submesoscale processes [M]// Encyclopedia of Ocean Sciences, 2018. DOI: 10.1016/B978-0-12-409548-9.10828-0.
doi: 10.1016/B978-0-12-409548-9.10828-0    
78 Thomas L N, Tandon A, Mahadevan A. Submesoscale processes and dynamics [J]. Ocean modeling in an Eddying Regime, 2008, (17). DOI:10.1029/177GM04.
doi: 10.1029/177GM04    
79 Mcwilliams J C. Submesoscale currents in the ocean [J]. Proceedings of the Royal Society A:Mathematical Physical and Engineering Sciences, 2016, 472(2 189). DOI:10.1098/rspa.2016.0117
doi: 10.1098/rspa.2016.0117    
80 Morrow R, Fu L-L, Ardhuin F, et al. Global observations of fine-scale ocean surface topography with the Surface Water and Ocean Topography (SWOT) Mission [J]. Frontiers in Marine Science, 2019. DOI: 10.3389/fmars.2019.00232.
doi: 10.3389/fmars.2019.00232    
81 Zhang Y, Dong C, Chen X, et al. Observation of submesoscale turbulence in a cyclonic eddy [J]. Ocean Dynamics, 2020,70:513-520.
82 Whalen C, Mackinnon J, Talley L. Large-scale impacts of the mesoscale environment on mixing from wind-driven internal waves [J]. Nature Geoscience, 2018, 11(11): 842.
83 Kunze E. Near-inertial wave propagation in geostrophic shear [J]. Journal of Physical Oceanography, 1985, 15(5): 544-565.
84 Pegliasco C, Chaigneau A, Morrow R. Main eddy vertical structures observed in the four major Eastern Boundary Upwelling Systems [J]. Journal of Geophysical Research: Oceans, 2015, 120(9): 6 008-6 033.
85 Levin L A, Bett B J, Gates A R, et al. Global observing needs in the deep ocean [J]. Frontiers in Marine Science, 2019, 241. DOI: 10.3389/fmars.2019.00241.
doi: 10.3389/fmars.2019.00241    
86 Rudnick D L. Ocean research enabled by underwater gliders [J]. Annual Review of Marine Science, 2016, 8: 519-541.
87 Testor P, Deyoung B, Rudnick D L, et al. OceanGliders: A component of the integrated GOOS [J]. Frontiers in Marine Science, 2019, 6. DOI: 10.3389/fmars.2019.00422.
doi: 10.3389/fmars.2019.00422    
88 Shu Y, Chen J, Li S, et al. Field-observation for an anticyclonic mesoscale eddy consisted of twelve gliders and sixty-two expendable probes in the northern South China Sea during summer 2017 [J]. Science China Earth Sciences, 2019, 62(2): 451-458.
89 Shu Y, Xiu P, Xue H, et al. Glider-observed anticyclonic eddy in northern South China Sea [J]. Aquatic Ecosystem Health & Management, 2016, 19(3): 233-241.
90 Braun C D, Gaube P, Sinclair-Taylor T H, et al. Mesoscale eddies release pelagic sharks from thermal constraints to foraging in the ocean twilight zone [J]. Proceedings of the National Academy of Sciences, 2019, 116(35): 17 187-17 192.
91 Mahadevan A, D’Asaro E, Lee C, et al. Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms [J]. Science, 2012, 337(6 090): 54-58.
92 Li Weibiao, Liu Haoya, Fang Rong. Review of the atmospheric response to the ocean mesoscale eddies [J]. Advances in Earth Science, 2017, 32(10): 1 039-1 049.
黎伟标, 刘昊亚, 方容. 大气对海洋中尺度涡响应的研究进展 [J]. 地球科学进展, 2017, 32(10): 1 039-1 049.
93 Zhong Chao, Xiao Wupeng, Huang Bangqin. The response of phytoplankton to mesoscale eddies in Western South China Sea [J]. Advances in Marine Science, 2013, 31(2): 213-220.
钟超, 肖武鹏, 黄邦钦. 中国南海西部浮游植物对中尺度涡的响应 [J]. 海洋科学进展, 2013, 31(2): 213-220.
[1] 王凡, 刘传玉, 胡石建, 高山, 贾凡, 张林林, 汪嘉宁, 冯俊乔. 太平洋暖池冷舌交汇区盐度变异机制及气候效应研究[J]. 地球科学进展, 2018, 33(8): 775-782.
[2] 段静, 陈朝晖, 吴立新. 黑潮源区海流季节内变化观测分析[J]. 地球科学进展, 2014, 29(4): 523-530.
[3] 仲凌志,刘黎平,葛润生. 毫米波测云雷达的特点及其研究现状与展望[J]. 地球科学进展, 2009, 24(4): 383-391.
[4] 苏京志;王东晓;陈举;杜岩;谢强. 利用回归模型模拟卫星跟踪海洋漂流浮标轨迹[J]. 地球科学进展, 2005, 20(6): 607-617.
阅读次数
全文


摘要