地球科学进展 ›› 2016, Vol. 31 ›› Issue (9): 919 -925. doi: 10.11867/j.issn.1001-8166.2016.09.0919

上一篇    下一篇

EMD模态分量的谱相关分析法及其对重力固体潮信号的解调分析
全海燕( ), 刘艳 *( )   
  1. 昆明理工大学信息工程与自动化学院, 云南 昆明 650500
  • 收稿日期:2016-06-05 修回日期:2016-07-20 出版日期:2016-09-20
  • 通讯作者: 刘艳 E-mail:quanhaiyan@163.com;liuyan8785@163.com
  • 基金资助:
    国家自然科学基金项目“提取重力固体潮信号中地球物理信息和地震前兆信息的关键信号处理算法研究”(编号:41364002)资助

The Cyclic Spectrum Analysis of IMFs of EMD and Its Application to Gravity Tide

Haiyan Quan( ), Yan Liu( )   

  1. Kunming University of Science and Technology, Faculty of Information Engineering and Automation, Kunming 650500,China
  • Received:2016-06-05 Revised:2016-07-20 Online:2016-09-20 Published:2016-09-20
  • About author:

    First author:Quan Haiyan(1970-), male, Shiping County, Yunnan Province, Associate Professor. Research areas include signal processing, intelligent optimization algorithm.E-mail:quanhaiyan@163.com

  • Supported by:
    Project supported by the National Natural Science Foundation of China“Research of algorithms of extracting both the geophysical information and the seismic precursory information from Gavity Tide” (No.41364002)

EMD方法分解得到的模态信号分量一般为调频调幅波。提出利用循环相关谱对EMD分解的模态分量进行解调,以分解出模态分量中的载波成分和被调制成分,从而实现对信号的加性分解和乘性解调,揭示信号中各成分分量的物理意义。在应用实验中,将该方法用于重力固体潮信号分析,完整提取出半日波分量、日波分量和半月波分量,并揭示出:在重力固体潮信号中,日波和半日波是加性叠加关系,半月波以乘性调制方式被同时调制到半日波分量和日波分量中,而且,它们之间的调制方式为抑制载波调制方式。

IMFs sifted out by EMD are the FM-AM components. In the paper, by the cyclic spectrum analysis, IMFs are demodulated as the two periodic components which are identical to the intrinsic physical concepts. Using the method, the half-day-tide M2, the day-tide O1, and the half-month-tide Mf are extracted from the gravity tide signal, and a conclusion is drawn that the half-day-tide M2 and the day-tide O1 are primary components of gravity tide signal, and the half-month-tide Mf is modulated in the half-day-tide M2 and the day-tide O1.

中图分类号: 

图1 调幅信号 x( t)的循环谱
Fig.1 The cyclic spectrum of x( t) modulated signal
图2 α=0, ±fb, ±2 fb处的循环谱分布放大图
Fig.2 The distribution of the circular spectrum distribution at a=0, ±fb, ±2 fb
图3 α=2 fa,2 fa±fb,2 fa±2 fb处的循环谱分布放大图
Fig.3 The distribution of the circular spectrum distribution at α=2 fa,2 fa±fb,2 fa±2 fb
图4 重力固体潮信号
Fig.4 Gravity solid tidal signal
图5 信号IMF1及其时频分布、时能分布
Fig.5 Signal IMF1 and time frequency distribution
图6 IMF2及其时频分布、时能分布
Fig.6 Signal IMF2 and time frequency distribution
图7 IMF1的循环相关谱
Fig.7 Cyclic correlation spectra of IMF1
图8 IMF1的循环相关谱在 α=0 Hz处分布
Fig.8 The cyclic correlation spectra of IMF1 are distributed at α=0 Hz
图9 IMF1的循环相关谱在 α=4.56×10 -5 Hz
Fig.9 Cyclic correlation spectrum of IMF1 at α=4.56×10 -5 Hz
图10 IMF2的循环相关谱
Fig.10 Cyclic correlation spectrum signal of IMF2
图11 IMF2的循环相关谱在 α=0 Hz处分布
Fig.11 Cyclic correlation spectrum of IMF2 at α=0 Hz
图12 IMF2的循环相关谱在 α=2.24×10 -5 Hz处分布
Fig.12 Cyclic correlation spectrum of IMF2 at α=2.24×10 -5 Hz
[1] Xu Houze.The Tides of the Solid Earth[M].Wuhan: Hubei Science and Technology Press,2010.
许厚泽.固体地球潮汐[M].武汉:湖北科学技术出版社,2010.]
[2] Cui Yueju, Li Jing,Wang Yanyan,et al.Application of gas remote sensing technique to earthquake monitoring[J]. Advances in Earth Science, 2015,30(12):284-294.
[崔月菊,李静,王燕艳,等.遥感气体探测技术在地震监测中的应用[J].地球科学进展,2015,30(12):284-294.]
[3] Wu Qingchang, Zhou Zhi, Liang Hong,et al.AM-FM model of gravity tide IMF and its non-linear data fitting[J]. Computer Engineering and Applications,2009,45(30):138-142.
[吴庆畅,周挚,梁虹,等. 重力固体潮IMF的AM-FM模型及其非线性拟合[J].计算机工程与应用,2009,45(30): 138-142.]
[4] Zhou Zhi,Shan Xiuming, Zhang Li,et al.The gravity tide of Kunming & Xiaguan based on the HHT[J].Chinese Journal of Geophysics,2008,51(3):836-844.
[周挚,山秀明,张立,等.基于HHT提取昆明、下关重力固体潮的地震前兆信息[J]. 地球物理学报,2008,51(3):836-844.]
[5] Huang N E, Zheng Shen, Long S R, et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society,1998, 454: 903-995,doi:10.1098/rspa.1998.0193.
[6] Zhao Hua, Huang N E.A study of the characteristics of white noise using the empirical mode decomposition method[J].Proceedings of the Royal Society,2004,460(2 046):1 594-1 611.
[7] Huang N E, Man-Li C Wu, Long S R, et al.A confidence limit for the empirical mode decomposition and Hilbert spectral analysis[J].Proceedings of the Royal Society,2003,459:2 317-2 345,doi:10.1098/rcpa.2003.1123.
[8] Huang N E, Shen Z, Long S R, et al.A new view of nonlinear water waves: The Hilbert spectrum[J].Annual Review of Fluid Mechanics,1993, 31:417-457.
[9] Zhao Jinping, Huang Daji.Mirror extend and circular spline function for empirical mode decomposition Method[J]. Journal of Zhejiang University (Science),2001,2(3): 247-252.
[10] Gardner W A.Statistical Spectral Analysis: A Non-probabilistic Theory[M]. New Jersey: Prentice-Hall, 1987.
[11] Garden W A.Spectral correlation of modulated signals:Part 1-analog modulation[J]. IEEE Transactions on Communication,1987,35(6):584-594.
[12] Garden W A.Exploitation of spectral redundancy in cyclostationary signals[J].IEEE Signal Processing Magazine,1991,8(2):14-36.
[13] Gardner W A.The spectral correlation theory of cyclostaionary time-series[J]. Signal Processing,1986, 11(1): 13-16.
[14] Huang Zhitao.The Processing and Application of Cyclic Stationary Signals[M].Beijing:Science Press,2006:23-26.
[黄知涛. 循环平稳信号处理及应用[M].北京:科学出版社,2006:23-26.]
[15] Gardner W A.Introduction to Random Processing with Applications to Signals and Systems(Second Edition)[M].New York: McGraw-Hill, 1990.
[1] 矣昕宝,魏巍,全海燕. 基于单形进化优化算法的重力固体潮信号解混及谱相关分析[J]. 地球科学进展, 2019, 34(2): 148-155.
[2] 邢德钊,全海燕. 基于 ICA的引潮力互相关谱分析[J]. 地球科学进展, 2019, 34(1): 103-112.
[3] 许厚泽,孙和平. 我国重力固体潮实验研究进展[J]. 地球科学进展, 1998, 13(5): 415-422.
阅读次数
全文


摘要