地球科学进展 ›› 2005, Vol. 20 ›› Issue (1): 81 -088. doi: 10.11867/j.issn.1001-8166.2005.01.0081

综述与评述 上一篇    下一篇

现代海底热水活动的系统性研究及其科学意义
付伟,周永章,杨志军,张澄博,杨小强,何俊国,杨海生,罗春科   
  1. 中山大学地球环境与地球资源研究中心,中山大学地球科学系,广东 广州 510275
  • 收稿日期:2003-09-12 修回日期:2004-03-29 出版日期:2005-01-25
  • 通讯作者: 付伟 E-mail:fuway59@163.com
  • 基金资助:

    国家重点基础研究发展规划项目“藏南伸展与拆离系统贵金属和稀散金属成矿作用”(编号:2002CB412600-VI);国家自然科学基金项目“华南三层位硅岩建造地球化学多样性深度分析”(编号:40073010)资助.

Modern Seafloor Hydrothermal System and Its Sientific Implications 

FU Wei, ZHOU Yongzhang, YANG Zhijun, ZHANG Chengbo, YANG Xiaoqiang, HE Junguo, YANG Haisheng, LUO Chunke   

  1. Center for Earth Environment & Resources, Zhongshan University, Deparment of Earth Science, Zhongshan University, Guangzhou  510275,China
  • Received:2003-09-12 Revised:2004-03-29 Online:2005-01-25 Published:2005-01-25

现代海底热水活动是当前地球系统科学研究的一个重要组成部分,它是研究海底地质作用体系中的一个关键环节。海底的构造作用、岩浆活动等因素制约了热水循环的发育和活动规律,而热水活动又直接或间接地产生了一些地质效应,如海底的热水喷流成岩成矿效应,此外它还与海底的热能输导与转化、海洋化学组分特征、海洋生命和生命起源等现象有着密切的成因联系。开展现代海底热水活动的系统性研究,应注重将热水循环的内部动力学机制和热水活动所引发的外部环境效应相结合,为此我们把它初步展开为:热水循环的空间组构研究、热量输导作用研究、热水流体的化学成分研究、热水活动与极端生命的关系研究以及热水活动的生命周期研究等 5个方面,分别解析其内部特征以及引发的环境效应。最后初步探讨了开展海底热水活动的系统性研究的科学意义。

The modern seafloor hydrothermal activities play great roles in the earth system. It is characteristic of the high-effective interaction among the geological processes concerning the sea, the oceanic crust, and the upper mantle. The hydrothermal circulation is constrained by magmatic activities and tectonic movements. On the other hand, the expel of the hydrothermal fluids results in many geological effects, such as the seafloor mineralization, the heat anomaly of regional seawater, the life depending on the hydrothermal vents, which occur as an integral system and it is necessary to study the hydrothermal activities and the effected environments systematically. In order to study the internal dynamic characteristics and its external effects, especially their relations, four parts are analyzed about the hydrothermal system: the spatial structure of the hydrothermal circulation, the heat transmitting process, the chemical composition of the hydrothermal fluids, the implication between hydrothermal activities and the extreme life. In the end, the significance and prospect of the hydrothermal system study are introduced.

中图分类号: 

[1]Miller A R, Densmore E T, Degens R,et al. Hot brines and recent iron deposits in deeps of the Red Sea[J].Geochimca et Cosmochimca Acta, 1966, 30:341-359.
[2]Weiss R F, Lonsdale P, Lupton J E,et al. Hydrothermal plumes in the Galapagos rift[J]. Nature, 1977,267: 600-603.
[3]Spiess F N, Macdonald K C, Miller S,et al. East Pacific Rise: Hot springs and geophysical experiments[J]. Science, 1980, 207:1 421-1 433. 
[4]Normark W R, Morton J L, Koski R A,et al. Active hydrothermal vents and sulfide deposits on the southern Juan de Fuca Ridge [J]. Geology, 1983, 11:158-163.
[5]Lonsdale P, Becker K. Hydrothermal plumes, hot springs, and convective heat flow in the southern trough of Guaymas Basin [J]. Earth and Planetary Science Letters, 1985, 73:211-225.
[6]Bach W, Banerjee N R, Dick H J,et al. Discovery of ancient and active hydrothermal systems along the ultra-slow spreading Southwest Indian Ridge 10°16′E [J]. Geochemistry, Geophysics, Geosystems, 2002,10.1029/2001GC0002796.
[7]Edmonds H N, Michael P J, Baker E T,et al. Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean[J]. Nature, 2003, 421: 252-256.
[8]Kelley D S, Karson J A, Blackman D K,et al. An off-axis hydrothermal vent field nears the Mid-Atlantic Ridge at 30°N[J]. Nature, 2001, 412: 145-149.
[9]De Ronde C E, Baker E T, Massoth G J,et al. Intra-oceanic subduction-related hydrothermal venting, Kermadec volcanic arc, New Zealand[J]. Earth and Planetary Science Letters, 2001, 193(3/4): 359-369.
[10]Baker E T. Geological indexes of hydrothermal venting [J]. Journal of Geophysical Research, 1996, 101(B6): 13 741-13 751.
[11]Baker E T, Massoth G J, Feely R A,et al. Cataclysmic hydrothermal venting on the Juan de Fuca Ridge [J]. Nature, 1987, 329: 149-151.
[12]Bischoff J L, Roserbauser R J. Salinity variations in submarine hydrothermal system by layered double-diffusive convection [J]. Journal of Geology, 1989, 97:613-623.
[13]Hou Zengqian, Mo Xuanxue. The present and future investigation of the modern seafloor hydrothermal processes and mineralization[J]. Earth Science Frontiers, 1996,3(3):263-272. [侯增谦, 莫宣学.现代海底热液成矿作用研究的现状及发展方向 [J]. 地学前缘, 1996,3(3): 263-272.]
[14]Zeng Zhigang, Qin Yunshan. Contribution of ocean drilling to the study of seafloor hydrothermal acitivities[J]. Advances in Earth Science, 2003,18(5):764-772.[曾志刚,秦蕴珊. 大洋钻探对海底热液活动研究的贡献[J]. 地球科学进展,2003,18(5):764-772.]
[15]Li Guanbao, Li Naisheng. Primary analysis on the heat flow mechanism of oknawa trough [J]. Marine Sciences, 2002, 26(9): 57-61. [李官保, 李乃胜. 冲绳海槽热流机制浅析[J]. 海洋科学, 2002, 26(9): 57-61.]
[16]Stein C A, Stein S. A model for the global variation in oceanic depth and heat flow with lithospheric age [J]. Nature, 1992, 359:123.
[17]Mckenzie D P. Some remarks on heat flow and gravity anomalies [J]. Journal of Geophysical Research, 1967,72: 6 261-6 273.
[18]Talwani M, Windisch C C, Langseth M G. Reykjanes Ridge crest: A detailed geophysical study [J]. Journal of Geophysical Research, 1971, 76: 473-517.
[19]Von Damm. Seafloor hydrothermal activity: Black smokers' chemistry and chimneys [J]. Annual Review of Earth Planetary Science, 1990, 18:173-204.
[20]Baker E T. Characteristics of hydrothermal discharge following a magmatic intrusion[A]. In: Parson L M, Walker C L, Dixom D R, eds. Hydrothermal Vents and Processes[C]. Geology Society Special Publication, 1995.65-76.
[21]Lu Huanzhang. Ore Forming Fluids [M]. Beijing: China Sciences and Technology Press, 1997. [卢焕章.成矿流体[M]. 北京:科学技术出版社,1997.]
[22]Baker E T, Lupton J E. Changes in submarine hydrothermal 3He/heat ratios as an indicator of magnetic/tectonic activity [J]. Nature, 1990, 346: 556-558.
[23]Lu Huanzhang. Ore forming fluids in recent ocean ridge seafloor mineralization: Samples from 21°N, Pacific Ocean[J]. Acta Petrologica Sinica, 2003,19(2): 235-241. [卢焕章.现代海底烟囱中流体包裹体的研究 [J].岩石学报, 2003, 19(2): 235-241.]
[24]Bowers T S, Campbell A C, Measures C I,et al. Chemical controls on the composition of vents fluids at 13-11°N and 21°N, East Pacific Rise [J]. Journal of Geophysical Research, 1988, 93: 4 522-4 536.
[25]Von Damm, Bischoff J L. Chemistry of hydrothermal solutions from the southern Juan de Fuca Ridge[J]. Journal of Geophysical Research, 1987, 92: 11 334-11 346.
[26]Li Cuizhong. Developments, hot spots and prospect for submarine hydrothermal mineralization acitivities[J].Advances in Earth Science, 1994,9(1): 14-19.[李粹中. 海底热液成矿活动研究的进展、热点和展望[J]. 地球科学进展,1994,9(1): 14-19.]
[27]Zhou Yongzhang, Liu Jianming, Chen Duofu. Thread and knowledge to fossils sea-floor hydrothermal sedimantation of South China [J]. Bullitin of Mineraligy, Petrology and Geochemistry, 2000,19(2):114-118.[周永章,刘建明,陈多福. 华南古海洋热水沉积作用研究概述及若干认识[J]. 矿物岩石地球化学通报, 2000,19(2):114-118.]
[28]Li Jianghai, Niu Xianglong, Feng Jun. The identification of the fossil black smoker chimney and its implication for scientific research [J]. Advances in Earth Science, 2004,19(1): 17-25.[李江海,牛向龙,冯军.海底黑烟囱的识别研究及其科学意义[J]. 地球科学进展,2004,19(1): 17-25.]
[29]Sun Xingli, Zheng Jianjing, Liu Wenhui, et al.The role of crustal hydrothermal fluids in oil-gas forming process[J]. Natural Gas Geoscience, 2004,15(5):519-523.[孙省利,郑建京,刘文汇,等.地壳热水流体在油气形成过程中的作用[J].天然气地球科学, 2004,15(5):519-523.]
[30]Chester Roy. Marine Chemistry[M]. London: Academic Division of Unwin Hyman Ltd, 1989.173-191.
[31]Von Damm. Controls in the chemistry and temporal variability of seafloor hydrothermal fluids[A]. In: Lupton J, Mullineaux L, Zierenberg R. Physical, Chemical, Biological Interactions within the Hydrothermal Systems[C]. Monogr: AGU, 1995, 91: 222-247.
[32]Du Tongjun, Zhai Shikui, Ren Jianguo. Studies on the seafloor hydrothermal activity and ocean science [J]. Jounal of Ocean University of Qingdao, 2002, 32(4): 597-602. [杜同军,翟世奎,任建国. 热液活动与海洋科学研究[J]. 青岛海洋大学学报,2002, 32(4): 597-602.]
[33]Reysenbach A L, Banta A B, Boone D R,et al. Biogeochemistry: Microbial essentials at hydrothermal vents [J]. Nature, 2000, 404(6 780): 835.
[34]Takai K, Kobayashi H, Nealson K H,et al. Deferribacter desulfuricans sp. nov., a novel sulfur-, nitrate- and arsenate-reducing thermopile isolated from a deep-sea hydrothermal vent[J]. International Journal of Systematic Bacteriology, 2003, 53: 839-846.
[35]David E, Craig L. Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi seamount hydrothermal vents and play a major Role in Fe Oxide Deposition [J]. Applied and Environmental Microbiology, 2002, 68(6): 3 085-3 093.
[36]Mandernack K W, Tebo B M. Manganese scavenging and oxidation at hydrothermal vents and in vent plumes [J]. Geochimca et Cosmochimca Acta, 1993, 57: 3 907-3 923.
[37]Christopher R, Natalia Y, Erko S J,et al. Isolation of tellurite- and selenite-resistant bacteria from hydrothermal vents of the Juan de Fuca Ridge in the Pacific Ocean [J]. Applied and Environmental Microbiology, 2002,68: 4 613-4 622.
[38]Jack D F. Hydrothermal systems doorways to early biosphere Evolution [J]. The Geological Society of America, 2000, 10: 7-14.
[39]Voglesonger K M, O'Day P A, Dunn E E,et al. Experimental synthesis of primary alcohols under seafloor hydrothermal conditions from hydrogen, carbon dioxide, and water [J]. Geological Society of America, 1999, 31(7): 488. 
[40]Oro J, Mills T V. Chemical evolution of primitive solar system bodies [J]. Advances in Space Research, 1989, 9: 105-120.
[41]Cady S L, Farmer J D. Fossilization processes in siliceous thermal springs: Trends in preservation along thermal gradients[A]. In: Bock G, Goode J, eds. Evolution of Hydrothermal Ecosystems on Earth (and Mars?) [C]: New York: John Wiley & Sons, 1996. 150-173.
[42]Rona P A. Hydrothermal mineralization at seafloor spreading centers [J]. Earth Science Reviews, 1984, 20 : 1-104.
[43]Campbell A C, Palmer M R, Klinkhammer G P,et al. Chemistry of hot springs on the Mid-Atlantic Ridge [J]. Nature, 1988, 335: 514-519.
[44]Von Damm,et al. Hydrothermal solutions at 9-10°N, Eas Pacific Rise: Big changes and still changing(abstract) [J]. EOS, Transactions AGU, Fall Meeting suppl, 1992, 73(43): 524.
[45]Von Damm, Edmond J M, Grant B,et al. Chemistry of submarine hydrothermal solutions at 21°N, East Pacific Rise [J]. Geochimca et Cosmochimca Acta, 1985, 49: 2 197-2 220.
[46]Rona P A. Global plate motion and mineral resources [J]. Geological Association of Canada Special Paper, 1980, 120: 607-622.
[47]Robert P D, Johnson H P. Hydrothermal systems, enhanced: Stirring the Oceanic incubator [J]. Science, 2002, 296: 1 406-1 407. 
[48]Chai Yucheng, Zhou Zuyi. Scientific drlling: Achievements and prospects [J]. Advances in Earth Science, 2003,18(5): 666-672.[柴育成,周祖翼. 科学大洋钻探: 成就与展望[J].地球科学进展,2003,18(5): 666-672.]

[1] 许恒超,彭晓彤. 地球系统中生物成因硫化物矿物:类型、形成机制及其与生命起源的关系[J]. 地球科学进展, 2013, 28(2): 262-268.
[2] 冯军;李江海;牛向龙. 现代海底热液微生物群落及其地质意义[J]. 地球科学进展, 2005, 20(7): 732-739.
[3] 党宏月;宋林生;李铁刚;秦蕴珊. 海底深部生物圈微生物的研究进展[J]. 地球科学进展, 2005, 20(12): 1306-1313.
[4] 李江海;牛向龙;冯军. 海底黑烟囱的识别研究及其科学意义[J]. 地球科学进展, 2004, 19(1): 17-025.
[5] 王将克,钟月明,廖金风,常弘. 关于生命起源研究的问题及其主攻方向的探讨[J]. 地球科学进展, 1995, 10(2): 196-201.
[6] 罗斌杰. 生物地质化学研究动态[J]. 地球科学进展, 1990, 5(1): 5-11.
阅读次数
全文


摘要