地球科学进展 ›› 2025, Vol. 40 ›› Issue (7): 704 -724. doi: 10.11867/j.issn.1001-8166.2025.048

综述与评述 上一篇    下一篇

盐岩沉积对盐构造控制作用研究进展
李威1,2,3(), 葛智渊1,2,3()   
  1. 1.中国石油大学(北京) 海南研究院,海南 三亚 572025
    2.油气资源与工程全国重点实验室,中国石油大学(北京),北京 102249
    3.中国石油大学(北京) 地球科学学院,北京 102249
  • 收稿日期:2025-05-12 修回日期:2025-06-16 出版日期:2025-07-10
  • 通讯作者: 葛智渊 E-mail:liwei.time@foxmail.com;gezhiyuan@cup.edu.cn
  • 基金资助:
    国家自然科学基金项目(42472183)

Research Progress on the Controlling Effect of Salt Deposition on Salt Tectonics

Wei LI1,2,3(), Zhiyuan GE1,2,3()   

  1. 1.Hainan Institute of China University of Petroleum (Beijing), Sanya Hainan 572025, China
    2.National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing 102249, China
    3.College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, China
  • Received:2025-05-12 Revised:2025-06-16 Online:2025-07-10 Published:2025-09-15
  • Contact: Zhiyuan GE E-mail:liwei.time@foxmail.com;gezhiyuan@cup.edu.cn
  • About author:LI Wei, research area includes salt-bearing basins. E-mail: liwei.time@foxmail.com
  • Supported by:
    the National Natural Science Foundation of China(42472183)

盐岩沉积作为盐构造发育的物质基础,对盐构造的差异演化具有重要的控制作用。通过梳理盐岩沉积模式的发展,厘清控制盐构造发育的关键沉积特征,阐明了盐岩沉积如何控制盐层特征进而影响盐盆演化和盐构造样式。盐岩的沉积特征受沉积模式控制,可分为台地型和盆地型两大类。其中,台地型沉积模式以现代盐湖沉积机制为基础,所形成的盐岩厚度有限;盆地型沉积模式被广泛用于解释古代巨厚层盐岩的沉积过程。传统观点认为,盐岩沉积对盐构造最显著的影响体现在其沉积厚度和纯度2个方面。最新研究表明,盐岩其他沉积特征对盐构造也具有明显的控制作用,主要包括盐岩沉积位置和层状蒸发岩序列的发育,前者影响了盐岩与盐上沉积系统的空间关系,后者促进了盐岩流动并触发同盐沉积期的盐构造。因此,盐岩沉积的厚度、纯度、空间位置以及沉积序列等盐岩沉积特征,均受盐岩沉积模式控制;这些特征不仅对盐构造的样式及发育过程具有强烈的控制作用,其影响还贯穿了盐盆的整个演化周期。后续研究中,需进一步明确盐岩沉积在盐盆演化过程中的作用,这有助于厘清盐相关复杂构造的演化机制。

Salt flowability complicates the patterns and evolutionary processes of salt-related tectonics. Current research has predominantly focused on the deformation processes of salt flows driven by tectonic stresses and the resulting salt tectonic types, with less attention paid to the influence of the inherent processes of salt deposition on the evolution of salt tectonics. In this study, we focused on the relationship between salt deposition and evolution of salt tectonics. By reviewing the development of salt depositional patterns, we clarified the key depositional characteristics that control the development of salt tectonics and elaborated on how salt deposition controls salt mobility and influences the evolutionary style of salt-bearing basins. Salt deposition can be categorized into two main types based on the development of salt tectonics: platform margin and basin-wide. Within this classification, a platform-margin-type sedimentary model with limited salt thickness has been established for the sedimentary mechanism of modern salt lakes, and the basin-wide type has been widely used to explain the depositional processes of giant salt deposits. Traditionally, the most significant influences of salt deposition on salt tectonics have been considered to be thickness and purity, where thickness affects mobility through boundary drag effects, and purity affects mobility through viscosity differences among various components. Recent studies have shown that salt deposition also exerts important controls on salt tectonics, including the depositional location of the salt and the development of layered evaporite sequences. The former affects the spatial relationship between salt and overlying sedimentary systems, whereas the latter promotes salt mobility and triggers syndepositional salt tectonics. Therefore, the thickness, purity, location, and depositional sequence of salt layers, which are controlled by salt depositional patterns, strongly influenced the style of salt tectonics throughout the evolutionary processes of salt-bearing basins. Further clarification of the role of salt deposition in basin evolution will contribute to a better understanding of the mechanisms underlying the complex evolution of salt-related tectonics.

中图分类号: 

图1 盐岩沉积的模式(据参考文献[716]修改)
(a)台地型盐岩沉积模式;(b)盆地型盐岩沉积模式;(c)~(e)3种不同的盆地型沉积模式。
Fig. 1 Patterns of salt depositionmodified after references7, 16])
(a) Platform-margin type of salt deposition;(b) Basinwide type of salt deposition;(c)~(e) Three different patterns of basinwide type deposition.
表1 全球部分典型含盐盆地的沉积模式和盐构造特征(据参考文献[1741-67]修改)
Table 1 Depositional patterns and salt tectonic characteristics of some typical salt-bearing basins worldwidemodified after references1, 7, 41-67])
盆地名称位置盆地类型蒸发岩层系蒸发岩沉积模式盐层厚度/m典型盐构造
库车中国新疆前陆古新统库姆格列木组局限台地80~500盐枕、盐背斜和盐推覆
四川中国四川前陆三叠系嘉陵江组和雷口坡组潟湖萨布哈10~200盐枕和盐推覆
思茅中国云南陆内断陷中侏罗统和平乡组潟湖80盐席和褶皱
鄂尔多斯中国陕甘宁等克拉通内凹陷中奥陶统马家沟组潟湖70~150近水平盐层
羌塘中国西藏前陆中侏罗统雀莫错和布曲和夏里组潟湖潮坪10~190盐枕、盐丘和逆冲推覆
呵叻泰国东北部和老挝南部克拉通内凹陷中上白垩统马哈萨拉堪组潟湖内陆湖盆1~220近水平盐层
黎凡特地中海东部被动陆缘中新统墨西拿阶(Messinian)深水深盆浅水深盆2 000盐滚和盐焊接
苏伊士湾非洲与阿拉伯板块之间裂谷中新统伯佳里布组(Gharib)浅水深盆200~900盐席、盐脊和盐墙
加蓬非洲西海岸被动陆缘下白垩统阿普特阶(Aptian)浅水深盆600~1 500盐丘、盐株、盐底辟和盐墙
桑托斯巴西东南部被动陆缘下白垩统阿普特阶(Aptian)浅水深盆深水深盆2 000~2 500盐窗、盐枕、盐焊接和盐墙
斯科舍北美洲东部被动陆缘三叠系阿尔戈组(Argo)浅水深盆深水深盆地热1 800盐滚、盐株和异地盐
墨西哥湾北美洲东南沿海被动陆缘中侏罗统芦安组(Louann)

浅水深盆

深水深盆

900~3 000刺穿型盐底辟和异地盐篷
扎格罗斯阿拉伯与欧亚板块交接处前陆新近系加奇萨兰组(Gachsaran)萨布哈400~600盐枕、盐背斜和逆冲推覆
北海欧洲大陆和大不列颠岛之间裂谷二叠系泽希斯坦统(Zechstein)浅水深盆1 100塌陷底辟和豆荚状微盆地
滨里海里海北部克拉通下二叠统孔谷阶(Kunguria)深水深盆浅水深盆1 500微盆地、龟背和盐底辟
塔尔法亚摩洛哥南部被动陆缘上三叠统瑞提阶(Rhaetian)浅水浅盆浅水深盆1 000~1 500盐株和盐篷
图2 蒸发岩的体积、面积以及不同地质时期大火成岩省的数量(据参考文献[84]修改)
Fig. 2 Volumearea of evaporite and number of large igneous provinces in different geological periodsmodified after reference84])
图3 盐盆与盐后沉积系统叠置关系模式图(据参考文献[32]修改)
(a)大陆边缘常见的盐层与沉积楔负载关系;(b)Zucker等32提出的盐层和沉积楔之间的重叠比以前研究中理论上考虑的要小。
Fig. 3 Schematic diagram of overlap relationship between salt layer and post-salt sedimentary wedgemodified after reference32])
(a) Commonly used model for salt flow in response to differential loading along continental margins;(b) Zucker et al.32 proposed that the overlap between the salt wedge and sedimentary wedge that is smaller than theoretically considered in previous studies.
图4 盐岩沉积厚度对盐构造的控制作用(据参考文献[97-99]修改)
(a)盐层厚度变化对薄皮伸展盐构造的影响;(b)盐层厚度变化对薄皮挤压盐构造的影响;(c)基底拉张环境下不同盐层厚度的解耦能力;(d)基底挤压环境下不同盐层厚度的解耦能力。
Fig. 4 Control effect of salt deposition thickness on salt tectonicsmodified after references97-99])
(a) The influence of salt thickness variation on the thin-skinned extensional salt tectonics;(b) The influence of salt layer thickness variation on the thin-skinned compression salt tectonics;(c) Decoupling ability of different salt thickness under basement extension environment;(d) Decoupling ability of different salt thickness under basement compression environment.
图5 蒸发岩岩相平面分布及盐岩成分对盐岩流动性的控制作用(据参考文献[130105-106]修改)
(a)封闭盐盆的岩相分布及典型剖面;(b)半封闭盐盆的岩相分布及典型剖面;(c)中欧盆地富含硫酸盐离子的硬石膏在地震剖面上的构造样式;(d)宽扎盆地富含氯化钠的盐岩在地震剖面上的构造样式;(e)波兰科达瓦富含钾离子的光卤石在露头的构造样式。
Fig. 5 Lithofacies plane distribution of evaporite and control effect of salt composition on salt fluiditymodified after references1, 30, 105-106])
(a) Lithofacies distribution and typical profiles of the closed salt basin; (b) Lithofacies distribution and typical profiles of semi-enclosed salt basins;(c) Tectonic styles of sulphate-rich anhydrite in the Central European basin on seismic profiles;(d) Tectonic styles of sodium chloride rich salt rocks in the Kwanza Basin on seismic profiles;(e) Structural styles of potassium-rich carnallite in outcrops at Kłodawa, Poland.
图6 盐内层状蒸发岩序列岩性简化模式图及地震剖面实例(据参考文献[263335119-121128]修改)
(a)不同含盐盆地层状蒸发岩序列的岩性变化模式;(b)北海盆地Zechstein时期发育4个主要的沉积旋回,数字表示对应的旋回时期;(c)巴西桑托斯盆地的盐层下部以岩盐为主,上部沉积层状蒸发岩序列。
Fig. 6 Simplified lithologic diagram and seismic section example of layered evaporite sequencesmodified after references26, 33, 35, 119-121, 128])
(a) Lithologic change patterns of layered evaporite sequences in different saline basins;(b) Four major sedimentary cycles developed during the Zechstein period in the North Sea Basin, with numbers indicating the corresponding cycle periods;(c) The lower salt layer of the Santos Basin is dominated by halite, and the upper is deposited with layered evaporite sequences.
图7 盐岩沉积模式对盐构造演化的控制作用框架
Fig. 7 The framework of the controlling effect of salt deposition patterns on the evolution of salt tectonics
图8 盐构造与油气聚集的关系(据参考文献[1-27134]修改)
Fig. 8 The relationship between salt tectonics and oil and gas accumulationmodified after references1-2, 7, 134])
图9 中生代巨型含盐盆地演化示意图(据参考文献[149-150]修改)
(a)加蓬盆地现今典型剖面;(b)墨西哥湾盆地现今典型剖面。
Fig. 9 Schematic diagram of the evolution of the Mesozoic giant salt-bearing basinmodified after references149-150])
(a)The current typical section of the Gabon Basin;(b)The current typical section of the Gulf of Mexico.
[1] LI Jianghai, WANG Honghao, ZHOU Xiaobei. Salt tectonics[M]. Beijing:Science Press, 2015.
李江海, 王洪浩, 周肖贝. 盐构造[M]. 北京:科学出版社, 2015.
[2] YU Yixin, ZHOU Xinhuai, PENG Wenxu, et al. An overview on salt structures[J]. Geotectonica et Metallogenia201135(2): 169-182.
余一欣, 周心怀, 彭文绪, 等. 盐构造研究进展述评[J]. 大地构造与成矿学201135(2): 169-182.
[3] DAVISON I, ALSOP I, BLUNDELL D. Salt tectonics: some aspects of deformation mechanics[J]. Geological Society, London, Special Publications1996100(1): 1-10.
[4] HUDEC M R, JACKSON M P A. Terra infirma: understanding salt tectonics[J]. Earth-Science Reviews200782(1/2): 1-28.
[5] CARTWRIGHT J, JACKSON M, DOOLEY T, et al. Strain partitioning in gravity-driven shortening of a thick, multilayered evaporite sequence[J]. Geological Society, London, Special Publications2012363(1): 449-470.
[6] GE Z Y, ROSENAU M, WARSITZKA M, et al. Overprinting translational domains in passive margin salt basins: insights from analogue modelling[J]. Solid Earth201910(4): 1 283-1 300.
[7] JACKSON M P A, HUDEC M R. Salt tectonics: principles and practice[M]. Cambridge: Cambridge University Press, 2017.
[8] STEWART S A. Salt tectonics in the north sea basin: a structural style template for seismic interpreters[J]. Geological Society, London, Special Publications2007272(1): 361-396.
[9] VENDEVILLE B C. Salt tectonics driven by sediment progradation: part I: mechanics and kinematics[J]. AAPG Bulletin200589(8): 1 071-1 079.
[10] WU Zhenyun, YANG Xiulei, YIN Hongwei, et al. Characteristics and influencing factors of salt structure evolution in Awate Transfer Zone, western Kuqa Depression[J]. Earth Science202348(4): 1 271-1 287.
吴珍云, 杨秀磊, 尹宏伟, 等. 库车坳陷西段阿瓦特构造转换带盐构造演化特征及影响因素[J]. 地球科学202348(4): 1 271-1 287.
[11] YANG Shufeng, JIA Chengzao, CHEN Hanlin, et al. Core theories of sedimentary basin structure and the related key research techniques: frontiers and development directions[J]. Earth Science Frontiers202229(6): 10-23.
杨树锋, 贾承造, 陈汉林, 等. 沉积盆地构造核心理论和关键技术方法:前沿与发展方向[J]. 地学前缘202229(6): 10-23.
[12] ARCHER S G, ALSOP G I, HARTLEY A J, et al. Salt tectonics, sediments and prospectivity: an introduction[J]. Geological Society, London, Special Publications2012363(1):1-10.
[13] JIA Chengzao, ZHAO Wenzhi, WEI Guoqi, et al. Salt structures and exploration of oil and gas[J]. Petroleum Exploration and Development200330(2): 17-19.
贾承造, 赵文智, 魏国齐, 等. 盐构造与油气勘探[J]. 石油勘探与开发200330(2): 17-19.
[14] ZHANG Guangya, MA Feng, LIANG Yingbo, et al. Domain and theory-technology progress of global deep oil & gas exploration[J]. Acta Petrolei Sinica201536(9): 1 156-1 166.
张光亚, 马锋, 梁英波, 等. 全球深层油气勘探领域及理论技术进展[J]. 石油学报201536(9): 1 156-1 166.
[15] HE Jiaxiong, WU Shiguo, YAO Yongjian, et al. Types of conventional/unconventional oil and gas reservoir combinations and their migration and accumulation patterns in China’s offshore basins[J]. Advances in Earth Science202540(3):271-288.
何家雄,吴时国,姚永坚,等. 中国近海盆地常规/非常规油气成藏组合类型及运聚富集规律[J].地球科学进展202540(3):271-288.
[16] WARREN J K. Evaporites: sediments, resources, and hydrocarbons[M]. Berlin: Springer, 2006.
[17] MU Longxin, JI Zhifeng. Technological progress and development directions of petroChina overseas oil and gas exploration[J]. Petroleum Exploration and Development201946(6): 1 027-1 036.
穆龙新, 计智锋. 中国石油海外油气勘探理论和技术进展与发展方向[J]. 石油勘探与开发201946(6): 1 027-1 036.
[18] TRUSHEIM F. Mechanism of salt migration in northern Germany[J]. AAPG Bulletin196044(9): 1 519-1 540.
[19] GE H X, JACKSON M P A. Kinematics and dynamics of salt tectonics driven by progradation[J]. AAPG Bulletin199781:1-20.
[20] JACKSON M. Structural dynamics of salt systems[J]. Annual Review of Earth and Planetary Sciences200322: 93-117.
[21] VENDEVILLE B C, JACKSON M P A. The rise of diapirs during thin-skinned extension[J]. Marine and Petroleum Geology19929(4): 331-354.
[22] WEN Zhixin, WANG Jianjun, WANG Zhaoming, et al. Analysis of the world deepwater oil and gas exploration situation[J]. Petroleum Exploration and Development202350(5): 924-936.
温志新, 王建君, 王兆明, 等. 世界深水油气勘探形势分析与思考[J]. 石油勘探与开发202350(5): 924-936.
[23] WARREN J K. Evaporites: a geological compendium[M]. Berlin: Springer International Publishing, 2016.
[24] ZHONG Yisi, WANG Licheng, DONG Haowei. Evaporite sedimentary characteristics and environment: a review[J]. Acta Sedimentologica Sinica202240(5): 1 188-1 214.
钟逸斯, 王立成, 董浩伟. 蒸发岩沉积特征及环境综述[J]. 沉积学报202240(5): 1 188-1 214.
[25] BRUN J P, FORT X. Salt tectonics at passive margins: geology versus models[J]. Marine and Petroleum Geology201128(6): 1 123-1 145.
[26] CÉLINI N, PICHAT A, RINGENBACH J C. Salt tectonics synchronous with salt deposition in the Santos Basin (Ariri Formation, Brazil)[J]. Earth and Planetary Science Letters2024, 641. DOI: 10.1016/j.epsl.2024.118853 .
[27] ALLKEN V, HUISMANS R S, FOSSEN H, et al. 3D numerical modelling of graben interaction and linkage: a case study of the Canyonlands grabens, Utah[J]. Basin Research201325(4): 436-449.
[28] GE Z Y, WARSITZKA M, ROSENAU M, et al. Progressive tilting of salt-bearing continental margins controls thin-skinned deformation[J]. Geology201947(12): 1 122-1 126.
[29] PICHEL L M, HUISMANS R S, GAWTHORPE R, et al. How post-salt sediment flux and progradation rate influence salt tectonics on rifted margins: insights from geodynamic modelling[J]. Basin Research202335(6): 2 364-2 380.
[30] HSÜ K J, RYAN W B F, CITA M B. Late Miocene desiccation of the Mediterranean[J]. Nature1973242(5 395):240-244.
[31] GE Zhiyuan. Advances of salt tectonics in salt-bearing passive margins[J]. Geological Review202167(1): 159-172.
葛智渊. 被动大陆边缘盐构造研究进展[J]. 地质论评202167(1): 159-172.
[32] ZUCKER E, GVIRTZMAN Z, STEINBERG J, et al. Salt tectonics in the eastern Mediterranean Sea: where a giant delta meets a salt giant[J]. Geology202048(2): 134-138.
[33] BOSE S, SULLIVAN M. Structural analysis of layered evaporites using internal deformation patterns: examples from Santos and Campos basins, Brazil[J]. Journal of Structural Geology2022, 161. DOI: 10.1016/j.jsg.2022.104661 .
[34] CLARK J A, STEWART S A, CARTWRIGHT J A. Evolution of the NW margin of the north Permian basin, UK north sea[J]. Journal of the Geological Society1998155(4): 663-676.
[35] JOFFE A, JACKSON C A L, PICHEL L M. Syn-depositional halokinesis in the Zechstein Supergroup (Lopingian) controls Triassic minibasin genesis and location[J]. Basin Research202335(2): 784-801.
[36] CORNELIUS S. Comparison of the characteristics of Cretaceous salt deposition in Brazil with the Jurassic Salt Deposition in the Gulf of Mexico[C]. Houston, Texas, USA: 2023 AAPG Gulf Coast Section GCAGS, 2023.
[37] HOVLAND M, RUESLÅTTEN H, JOHNSEN H K. Large salt accumulations as a consequence of hydrothermal processes associated with ‘Wilson cycles’: a review. Part 1: towards a new understanding[J]. Marine and Petroleum Geology201892: 987-1 009.
[38] JOHNSEN H K, HOVLAND M T, RUESLATTEN H. A challenged evaporite paradigm?[J]. Minerals202414(5). DOI: 10.3390/min14050527 .
[39] LI Fengfeng, GUO Rui, LIU Lifeng, et al. Genesis of reservoirs of Lagoon in the Mishrif Formation, M Oilfield, Iraq[J]. Earth Science202146(1): 228-241.
李峰峰, 郭睿, 刘立峰, 等. 伊拉克M油田白垩系Mishrif组潟湖环境碳酸盐岩储集层成因机理[J]. 地球科学202146(1): 228-241.
[40] DENG Erxin. Gypsum and anhydrite deposits of sabha origin[J]. Journal of Chengdu University of Technology19818(2): 31-38.
邓尔新. 关于萨布哈成因的石膏和硬石膏矿床[J]. 成都地质学院学报19818(2): 31-38.
[41] HE Dengfa, NIU Xiaobing, ZHENG Na, et al. Tectonic differentiation and distribution of Early Paleozoic Ordos Basin[J]. Acta Geologica Sinica202498(12): 3 601-3 618.
何登发, 牛小兵, 郑娜, 等. 鄂尔多斯盆地早古生代构造分异类型与分布特征[J]. 地质学报202498(12): 3 601-3 618.
[42] LIN Zongman. Query on the neocathaysian from the contrast with Sichuan basin and Jianghan subsidence area[J]. Journal of Geomechanics201420(3): 205-221.
林宗满. 从四川盆地与江汉沉降区的对比提出对新华夏系的质疑[J]. 地质力学学报201420(3): 205-221.
[43] TANG Liangjie, JIN Zhijun, JIA Chengzao, et al. Multi-phase salt structures and hydrocarbon accumulation in Tarim Basin [J]. Science China: Earth Sciences200434(): 89-97.
汤良杰, 金之钧, 贾承造, 等. 塔里木盆地多期盐构造与油气聚集[J]. 中国科学: 地球科学200434(): 89-97.
[44] QIN Zhanjie. Geochemical research on the provenance and sedimentary characteristics of potash deposits in the Khorat Plateau[D]. Xining: Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 2019.
秦占杰. 呵叻高原钾盐矿床物源及其沉积演化的地球化学研究[D]. 西宁: 中国科学院青海盐湖研究所, 2019.
[45] QIN Zhanjie, LI Qingkuan, SHAN Junjie, et al. Spatial distribution characteristics and genesis of the potash deposit and its impact on the abnormal enrichment of potassium salts in the Khorat Plateau[J]. Acta Geologica Sinica202498(10): 2 883-2 901.
秦占杰, 李庆宽, 山俊杰, 等. 呵叻高原钾盐矿床空间分布特征与成因及其对钾盐异常富集的影响[J]. 地质学报202498(10): 2 883-2 901.
[46] GONG Daxing, ZHOU Jiayun, WU Chihua, et al. Lithofacies paleogeography and salt-forming model of lower-Middle Triassic in the Sichuan Basin[J]. Acta Geologica Sinica201589(11): 2 075-2 086.
龚大兴, 周家云, 吴驰华, 等. 四川盆地早中三叠世成盐期岩相古地理及成盐模式[J]. 地质学报201589(11): 2 075-2 086.
[47] XU Yang. Provenance, ancient water temperature, degree of evaporation of paleogene salt lake and evaluation of potassium-forming perspective in the Kuga Basin, Xinjiang[D]. Beijing: Chinese Academy of Geological Sciences, 2018.
徐洋. 新疆库车盆地古近纪盐湖物源、古水温、蒸发程度及其成钾远景评价[D]. 北京:中国地质科学院, 2018.
[48] ZHANG Xiying, MA Haizhou, HAN Yuanhong. Recent status and prospects on potash deposits on Thailand-Laos Khorat plateau[J]. Advances in Earth Science201227(5): 549-556.
张西营, 马海州, 韩元红. 泰国—老挝呵叻高原钾盐矿床研究现状及展望[J]. 地球科学进展201227(5): 549-556.
[49] XU Qihui. Comparative study on isotopic characteristics of Mesozoic evaporites in Qiangtang and Simao Basins[D].Beijing: China University of Geosciences (Beijing), 2023.
徐其辉. 羌塘和思茅盆地中生代蒸发岩同位素特征对比研究[D]. 北京:中国地质大学(北京), 2023.
[50] YAN Maodu, ZHANG Dawen, LI Minghui. Research progress and new views on the potash deposits in the Simao and Khorat Basins[J]. Earth Science Frontiers202128(6): 10-28.
颜茂都, 张大文, 李明慧. 思茅和呵叻盆地钾盐矿研究新进展和新认识[J]. 地学前缘202128(6): 10-28.
[51] ZUO Fanfan, ZHANG Yongsheng, GUI Baoling, et al. Sulfur isotope geochemistry of Lower Triassic evaporites and its indicative significance in Puguang area, northeast Sichuan Basin[J]. Acta Geologica Sinica202498(10): 2 860-2 872.
左璠璠, 张永生, 桂宝玲, 等. 川东北普光地区下三叠统蒸发岩硫同位素地球化学特征及其指示意义[J]. 地质学报202498(10): 2 860-2 872.
[52] LIU Chenglin, WU Chihua, WANG Licheng, et al. Advance in the study of forming condition and prediction of potash deposits of marine basins in China’s small blocks: review[J]. Acta Geoscientica Sinica201637(5): 581-606.
刘成林, 吴驰华, 王立成, 等. 中国陆块海相盆地成钾条件与预测研究进展综述[J]. 地球学报201637(5): 581-606.
[53] WANG Jian, FU Xiugen. Sedimentary evolution of the Qiangtang Basin[J]. Geology in China201845(2): 237-259.
王剑, 付修根. 论羌塘盆地沉积演化[J]. 中国地质201845(2): 237-259.
[54] FANG Long. Study on the process of ore-forming fluid evolution of Non Sung potash deposit in Khorat Basin, Thailand[D]. Xining: Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 2024.
方龙. 泰国呵叻盆地暖颂钾盐矿成矿流体演化过程研究[D]. 西宁:中国科学院青海盐湖研究所, 2024.
[55] LI Yalin, YI Haisheng, WANG Chengshan, et al. Salt-related structural characteristics and hydrocarbon accumulation in Qiangtang basin, Tibet, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition)200431(6): 586-591.
李亚林, 伊海生, 王成善, 等. 西藏羌塘盆地盐相关构造特征与油气聚集[J]. 成都理工大学学报(自然科学版)200431(6): 586-591.
[56] HUDEC M R, NORTON I O, JACKSON M P A, et al. Jurassic evolution of the gulf of Mexico salt Basin[J]. AAPG Bulletin201397(10): 1 683-1 710.
[57] DUPRÉ S, BERTOTTI G, CLOETINGH S. Tectonic history along the south Gabon Basin: anomalous early post-rift subsidence[J]. Marine and Petroleum Geology200724(3): 151-172.
[58] CARLOCK E, STEWART J, SITGREAVES J. Implications of variations in salt geometry for exploration in the Brazil salt basins[C]// AAPG Annual Convention and Exhibition, 2019.
[59] TARI G, MOLNAR J, ASHTON P, et al. Salt tectonics in the Atlantic margin of Morocco[J]. The Leading Edge200019(10): 1 074-1 078.
[60] DAVISON I. Central Atlantic margin basins of north west Africa: geology and hydrocarbon potential (Morocco to Guinea)[J]. Journal of African Earth Sciences200543(1/2/3): 254-274.
[61] BAHROUDI A, KOYI H A. Tectono-sedimentary framework of the Gachsaran Formation in the Zagros foreland basin[J]. Marine and Petroleum Geology200421(10): 1 295-1 310.
[62] FARIAS F, SZATMARI P, BAHNIUK A, et al. Evaporitic carbonates in the pre-salt of Santos Basin-Genesis and tectonic implications[J]. Marine and Petroleum Geology2019105: 251-272.
[63] DECALF C C, HEYN T. Salt geometry in the Central Basin of the Nova Scotia passive margin, offshore Canada based on new seismic data[J]. Marine and Petroleum Geology2023, 149.DOI: 10.1016/j.marpetgeo.2022.106065 .
[64] MINEZAKI T, HISADA K I, HARA H, et al. Tectono-stratigraphy of late Carboniferous to Triassic successions of the Khorat Plateau basin, Indochina Block, northeastern Thailand: initiation of the indosinian orogeny by collision of the Indochina and South China blocks[J]. Journal of Asian Earth Sciences2019170: 208-224.
[65] URANGA R M, FERRER O, ZAMORA G, et al. Salt tectonics of the offshore Tarfaya Basin, Moroccan Atlantic margin[J]. Marine and Petroleum Geology2022, 138. DOI: 10.1016/j.marpetgeo.2021.105521 .
[66] DUAN L, WANG P, LIU C Y, et al. Deposition of a saline giant in the Jurassic Qiangtang Basin[J]. Science Bulletin202469(19): 2 997-3 000.
[67] ZHENG Jianfeng, SHEN Anjiang, MO Niya, et al. Genesis and feature identification of Cambrian-lower Ordovician dolostone in Tarim Basin[J]. Marine Origin Petroleum Geology201015(1): 6-14.
郑剑锋, 沈安江, 莫妮亚, 等. 塔里木盆地寒武系—下奥陶统白云岩成因及识别特征[J]. 海相油气地质201015(1): 6-14.
[68] BAO Hongping, YANG Chengyun, HUANG Jiansong. “Evaporation drying” and “reinfluxing and redissolving”: a new hypothesis concerning formation of the Ordovician evaporites in eastern Ordos Basin[J]. Journal of Palaeogeography20046(3): 279-288.
包洪平, 杨承运, 黄建松. “干化蒸发” 与“回灌重溶”: 对鄂尔多斯盆地东部奥陶系蒸发岩成因的新认识[J]. 古地理学报20046(3): 279-288.
[69] CHEN Liqiong, SHEN Zhaoguo, HOU Fanghao, et al. Formation environment of Triassic evaporate rock basin and dolostone reservoirs in the Sichuan Basin[J]. Petroleum Geology & Experiment201032(4): 334-340, 346.
陈莉琼, 沈昭国, 侯方浩, 等. 四川盆地三叠纪蒸发岩盆地形成环境及白云岩储层[J]. 石油实验地质201032(4): 334-340, 346.
[70] LIANG Guanghe. Metallogenic prediction of Mesozoic potash deposits in Qiangtang Basin[J]. Journal of Salt Lake Research202230(2): 110-117.
梁光河. 羌塘盆地中生代钾盐矿成矿预测[J]. 盐湖研究202230(2): 110-117.
[71] LIU Chenglin, YU Xiaocan, YUAN Xueyin, et al. Characteristics, distribution regularity and formation model of brine-type Li deposits in salt lakes in the world[J]. Acta Geologica Sinica202195(7): 2 009-2 029.
刘成林, 余小灿, 袁学银, 等. 世界盐湖卤水型锂矿特征、分布规律与成矿动力模型[J]. 地质学报202195(7): 2 009-2 029.
[72] ZHENG Mianping, YUAN Heran, ZHANG Yongsheng, et al. Regional distribution and prospects of potash in China[J]. Acta Geologica Sinica201084(11): 1 523-1 553.
郑绵平, 袁鹤然, 张永生, 等. 中国钾盐区域分布与找钾远景[J]. 地质学报201084(11): 1 523-1 553.
[73] LIU Hefu, LI Jingming, LI Xiaoqing, et al. Evolution of cratonic basins and carbonate-evaporite sedimentary sequence hydrocarbon systems in China[J]. Geoscience200620(1): 1-18.
刘和甫, 李景明, 李晓清, 等. 中国克拉通盆地演化与碳酸盐岩—蒸发岩层序油气系统[J]. 现代地质200620(1): 1-18.
[74] HAQ B, GORINI C, BAUR J, et al. Deep Mediterranean’s messinian evaporite giant: how much salt?[J]. Global and Planetary Change2020, 184. DOI:10.1016/j.gloplacha.2019.103052 .
[75] SMITH J E, SANTAMARINA J C. Red sea evaporites: formation, creep and dissolution[J]. Earth-Science Reviews2022, 232. DOI: 10.1016/j.earscirev.2022.104115 .
[76] SCHMALZ R F. Deep-water evaporite deposition: a genetic model[J]. AAPG Bulletin196953(4):798-823.
[77] RYAN W B F. Messinian badlands on the southeastern margin of the Mediterranean Sea[J]. Marine Geology197827(3): 349-363.
[78] PINDELL J, HEYN T. Dynamo-thermal subsidence and sag-salt section deposition as Magma-rich rifted margins move off plume centres along incipient lines of break-up[J]. Journal of the Geological Society2022179(5). DOI:10.1144/jgs2021-095 .
[79] ALOISI G, MONERON J, GUIBOURDENCHE L, et al. Chlorine isotopes constrain a major drawdown of the Mediterranean Sea during the Messinian salinity crisis[J]. Nature Communications202415(1). DOI: 10.1038/s41467-024-53781-6 .
[80] CHRISTELEIT E C, BRANDON M T, ZHUANG G S. Evidence for deep-water deposition of abyssal Mediterranean evaporites during the Messinian salinity crisis[J]. Earth and Planetary Science Letters2015427: 226-235.
[81] SCRIBANO V, CARBONE S, MANUELLA F C, et al. Origin of salt giants in abyssal serpentinite systems[J]. International Journal of Earth Sciences2017106(7): 2 595-2 608.
[82] LIOU J G, TSUJIMORI T, YANG J S, et al. Recycling of crustal materials through study of ultrahigh-pressure minerals in collisional orogens, ophiolites, and mantle xenoliths: a review[J]. Journal of Asian Earth Sciences201496: 386-420.
[83] DRIESNER T, HEINRICH C A. The system H2O-NaCl. part I: correlation formulae for phase relations in temperature-pressure-composition space from 0 to 1000℃, 0 to 5000bar, and 0 to 1 XNaCl [J]. Geochimica et Cosmochimica Acta200771(20): 4 880-4 901.
[84] QIN Z J, TANG C N, LIU L J, et al. Large evaporite provinces: warming from above or heating from below?[J]. The Innovation Geoscience20231(1). DOI: 10.59717/j.xinn-geo.2023.100008 .
[85] ELFASSI Y, GVIRTZMAN Z, KATZ O, et al. Chronology of post-Messinian faulting along the Levant continental margin and its implications for salt tectonics[J]. Marine and Petroleum Geology2019109: 574-588.
[86] HARDIE L A, LOWENSTEIN T K. Did the Mediterranean Sea dry out during the Miocene? A reassessment of the evaporite evidence from DSDP legs 13 and 42A cores[J]. Journal of Sedimentary Research200474(4): 453-461.
[87] ROVERI M, MANZI V. The Messinian salinity crisis: looking for a new paradigm?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology2006238(1/2/3/4): 386-398.
[88] DALE M S, MARÍN-MORENO H, FALCON-SUAREZ I H, et al. The messinian salinity crisis as a trigger for high pore pressure development in the western Mediterranean[J]. Basin Research202133(4): 2 202-2 228.
[89] SONNENFELD P. The significance of upper Miocene (messinian) evaporites in the Mediterranean sea[J]. The Journal of Geology197583(3): 287-311.
[90] WITHJACK M O, CALLAWAY S. Active normal faulting beneath a salt layer: an experimental study of deformation patterns in the cover sequence[J]. AAPG Bulletin200084(5):627-651.
[91] GE Z Y, GAWTHORPE R L, ZIJERVELD L, et al. Spatial and temporal variations in minibasin geometry and evolution in salt tectonic provinces: lower Congo Basin, offshore Angola[J]. Basin Research202133(1): 594-611.
[92] SHI Lizhi, WANG Zhuozhuo, ZHANG Yongsheng, et al. Sedimentary facies and evolution of the Ordovician Majiagou Formation in Salt Basin of northern Shaanxi[J]. Acta Geologica Sinica201589(11): 2 122-2 133.
施立志, 王卓卓, 张永生, 等. 陕北盐盆奥陶系马家沟组沉积相特征与沉积演化[J]. 地质学报201589(11): 2 122-2 133.
[93] ZHANG Xiang, QI Zhuangzhuang, DING Xiaoqi, et al. Tectonic-sedimentary differentiation in the Ordovician Majiagou Formation, northern Ordos Basin[J]. Natural Gas Exploration and Development202548(1): 1-10.
张翔, 祁壮壮, 丁晓琪, 等. 鄂尔多斯盆地北部奥陶系马家沟组构造: 沉积分异特征[J]. 天然气勘探与开发202548(1): 1-10.
[94] WALTHAM D. Why does salt start to move?[J]. Tectonophysics1997282(1/2/3/4): 117-128.
[95] WAGNER B H, JACKSON M P A. Viscous flow during salt welding[J]. Tectonophysics2011510(3/4): 309-326.
[96] NELSON R A. Geologic analysis of naturally fractured reservoirs [M]. 2nd ed. Boston: Gulf Professional Publishing, 2001.
[97] MAXWELL S A. Deformation styles of allochthonous salt sheets during differential loading conditions: insights from discrete element models[D]. Houston, Texas: Rice University, 2009.
[98] HUDEC M R, JACKSON M P A. The salt mine: a digital atlas of salt tectonics[M]. Austin, TX: The University of Texas at Austin, Bureau of Economic Geology, 2011.
[99] LEWIS M M, JACKSON C A, GAWTHORPE R L. Salt-influenced normal fault growth and forced folding: the Stavanger Fault System, North Sea[J]. Journal of Structural Geology201354: 156-173.
[100] WANG Xin, WANG Zhaoming, XIE Huiwen, et al. Cenozoic salt structure analysis and deformation simulation in Kuqa Depression, Tarim Basin[J]. Science China: Earth Sciences201040(12): 1 655-1 668.
汪新, 王招明, 谢会文, 等. 塔里木库车坳陷新生代盐构造解析及其变形模拟[J]. 中国科学: 地球科学201040(12): 1 655-1 668.
[101] JACKSON M P A, VENDEVILLE B C. Regional extension as a geologic trigger for diapirism[J]. Geological Society of America Bulletin1994106(1): 57-73.
[102] WU Zhenyun. Structural analysis and analogue modeling of salt structures in the salt-bearing sedimentary sasin[D]. Nanjing: Nanjing University, 2014.
吴珍云. 含盐沉积盆地盐构造分析和物理模拟[D]. 南京:南京大学, 2014.
[103] URAI J L, SCHLÉDER Z, SPIERS C J, et al. Flow and transport properties of salt rocks[M]// LITTKE R, BAYER U, GAJEWSKI D, et al. Dynamics of complex intracontinental basins: the central European basin system. Berlin: Springer, 2008.
[104] PENG Wenxu, WANG Yingbin, WU Kui, et al. Recognition and classification of salt structure and relative to oil/gas[J]. Oil Geophysical Prospecting200843(6): 689-698, 609-610, 742.
彭文绪, 王应斌, 吴奎, 等. 盐构造的识别、分类及与油气的关系[J]. 石油地球物理勘探200843(6): 689-698, 609-610, 742.
[105] ERDI A, JACKSON C A L. Salt-detached strike-slip faulting, outer Kwanza basin, offshore Angola[J]. Tectonics202241(8). DOI: 10.1029/2022TC007428 .
[106] SŁOTWIŃSKI M, ADAMUSZEK M, BURLIGA S. Numerical study of tectonic structure evolution in a multi-layer evaporite sequence[J]. Journal of Structural Geology2020, 134. DOI:10.1016/j.jsg.2020.104011 .
[107] WEI Mingyang. The formation mechanism of carbonate-evaporite series and its implication for hydrocarbon accumulations in Craton Basins—a case study of the Middle-Lower Cambrian in Tarim Basin [D]. Beijing: China University of Petroleum (Beijing), 2021.
韦明洋. 克拉通盆地碳酸盐岩—蒸发岩系形成演化机制及控藏意义: 以塔里木盆地中下寒武统为例[D]. 北京: 中国石油大学(北京), 2021.
[108] ZHANG Benshu, ZHAO Zhui, HAN Chaoyang, et al. Research summary of sequence stratigraphy in salt-lake basin[J]. Northwestern Geology200538(1): 94-99.
张本书, 赵追, 韩朝阳, 等. 盐湖盆地层序地层学研究综述[J]. 西北地质200538(1): 94-99.
[109] JACKSON C A L, STEWART S A. Composition, tectonics, and hydrocarbon significance of Zechstein Supergroup salt on the United Kingdom and norwegian continental shelves: a review[M]// SOTO F J I, TARI G. Permo-triassic salt provinces of Europe, North Africa and the Atlantic Margins. Elsevier, 2017.
[110] PHILLIPS D, MONERON J, ROBERTS D, et al. Multi-layered evaporite flow induced by thick-skinned deformation[J]. Basin Research202537(2). DOI: 10.1111/bre.70022 .
[111] TUCKER M E. Sequence stratigraphy of carbonate-evaporite basins: models and application to the upper Permian (zechstein) of northeast England and adjoining north sea[J]. Journal of the Geological Society1991148(6): 1 019-1 036.
[112] HAMDANI I, AHARONOV E, OLIVE J A, et al. Initiating salt tectonics by tilting: viscous coupling between a tilted salt layer and overlying brittle sediment[J]. Journal of Geophysical Research: Solid Earth2021126(7). DOI: 10.1029/2020JB021503 .
[113] WANG Jixuan, HU Zhonggui, YUAN Guanghui, et al. Sedimentary characteristics and evolution model of carbonate-evaporite symbiotic system: a case study of Gaotai Formation in eastern Sichuan Basin[J/OL]. Acta Sedimentologica Sinica20241-25 (2024-03-07)[2025-05-13]. .
王纪煊, 胡忠贵, 远光辉, 等. 碳酸盐岩—蒸发岩共生体系沉积特征及演化模式——以四川盆地东部高台组为例[J/OL]. 沉积学报20241-25 (2024-03-07)[2025-05-13]. .
[114] FAN F, MENG F, ZHANG Y, et al. Differences in evaporite geochemistry of the greater Ordos Ordovician salt basin, China: evidence from the M56 submember of the Majiagou Formation[J]. Carbonates and Evaporites2020, 35. DOI: 10.1007/s13146-020-00632-2 .
[115] MENG F W, ZHANG Y S, GALAMY A R, et al. Ordovician seawater composition: evidence from fluid inclusions in halite[J]. Acta Geologica Sinica2014, 88(Suppl. 1). DOI: 10.1111/1755-6724.12265_11 .
[116] MONERON J. Major heterogeneity in evaporitic depositional systems: the genesis of kilometre-scale gypsum networks in the Zechstein Basin[J]. Global and Planetary Change2025, 246. DOI: 10.1016/j.gloplacha.2025.104710 .
[117] DAVISON I, ANDERSON L, NUTTALL P. Salt deposition, loading and gravity drainage in the Campos and Santos salt basins[J]. Geological Society, London, Special Publications2012363(1): 159-174.
[118] RODRIGUEZ C R, JACKSON C A, ROTEVATN A, et al. Dual tectonic-climatic controls on salt giant deposition in the Santos Basin, offshore Brazil[J]. Geosphere201814(1): 215-242.
[119] FERNANDEZ N, DUFFY O B, HUDEC M R, et al. The origin of salt-encased sediment packages: observations from the SE Precaspian Basin (Kazakhstan)[J]. Journal of Structural Geology201797: 237-256.
[120] MITCHELL N C, HERNANDEZ K, PREINE J, et al. Early stage diapirism in the Red Sea deep-water evaporites: origins and length-scales[J]. Tectonophysics2022, 831. DOI: 10.1016/j.tecto.2022.229331 .
[121] GVIRTZMAN Z, RESHEF M, BUCH-LEVIATAN O, et al. Intense salt deformation in the levant basin in the middle of the messinian salinity crisis[J]. Earth and Planetary Science Letters2013379: 108-119.
[122] JACKSON C A, JACKSON M P A, HUDEC M R, et al. Enigmatic structures within salt walls of the santos basin: part 1: geometry and kinematics from 3D seismic reflection and well data[J]. Journal of Structural Geology201575: 135-162.
[123] EPIN M E, MANATSCHAL G, SAPIN F, et al. The tectono-magmatic and subsidence evolution during lithospheric breakup in a salt-rich rifted margin: insights from a 3D seismic survey from southern Gabon[J]. Marine and Petroleum Geology2021, 128. DOI: 10.1016/j.marpetgeo.2021.105005 .
[124] ZWAAN F, ROSENAU M, MAESTRELLI D. How initial basin geometry influences gravity-driven salt tectonics: insights from laboratory experiments[J]. Marine and Petroleum Geology2021, 133. DOI: 10.1016/j.marpetgeo.2021.105195 .
[125] GAO Hongcan, CHEN Faliang, LIU Guangrui, et al. Advances, problems and prospect in studies of origin of salt rocks of the Paleogene Shahejie Formation in Dongpu Sag[J]. Journal of Palaeogeography200911(3): 251-264.
高红灿, 陈发亮, 刘光蕊, 等. 东濮凹陷古近系沙河街组盐岩成因研究的进展、问题与展望[J]. 古地理学报200911(3): 251-264.
[126] TEIXEIRA L, LUPINACCI W M, MAUL A. Quantitative seismic-stratigraphic interpretation of the evaporite sequence in the Santos Basin[J]. Marine and Petroleum Geology2020, 122. DOI: 10.1016/j.marpetgeo.2020.104690 .
[127] BRACKENRIDGE R E, RUSSELL L J, HARTLEY A J, et al. Late Permian evaporite facies variation in the Forth Approaches Basin, North Sea: implications for hydrogen storage[J]. Geoenergy2023, 1. DOI: 10.1144/geoenergy2023-008 .
[128] JACKACKSON C A, DUFFY O B, FERNANDEZ N, et al. The stratigraphic record of minibasin subsidence, Precaspian Basin, Kazakhstan[J]. Basin Research202032(4): 739-763.
[129] JIAO Jian. Study on salt formation and potassium exploration in Jurassic Region of Simao Basin[D]. Beijing: China University of Mining & Technology (Beijing), 2013.
焦建. 思茅盆地侏罗纪区域成盐找钾研究[D]. 北京: 中国矿业大学(北京), 2013.
[130] PILCHER R S, KILSDONK B, TRUDE J. Primary basins and their boundaries in the deep-water northern Gulf of Mexico: origin, trap types, and petroleum system implications[J]. AAPG Bulletin201195(2): 219-240.
[131] ROWAN M G. Passive-margin salt basins: hyperextension, evaporite deposition, and salt tectonics[J]. Basin Research201426(1): 154-182.
[132] HUDEC M R, JACKSON M P A. Regional restoration across the Kwanza basin, Angola: salt tectonics triggered by repeated uplift of a metastable passive margin[J]. AAPG Bulletin200488(7): 971-990.
[133] PICHEL L M, HUUSE M, REDFERN J, et al. The influence of base-salt relief, rift topography and regional events on salt tectonics offshore Morocco[J]. Marine and Petroleum Geology2019103: 87-113.
[134] TANG Liangjie, YU Yixin, CHEN Shuping, et al. Major developments of research on salt tectonics in oil-gas-bearing basins[J]. Earth Science Frontiers200512(4): 375-383.
汤良杰, 余一欣, 陈书平, 等. 含油气盆地盐构造研究进展[J]. 地学前缘200512(4): 375-383.
[135] LIU Shaowen, YANG Xiaoqiu, QIU Nansheng, et al. Geothermal effects of salt structures on marine sedimentary basins and implications for hydrocarbon thermal evolution[J]. Chinese Science Bulletin201762(15): 1 631-1 644, 1 551.
刘绍文, 杨小秋, 邱楠生, 等. 沉积盆地盐构造热效应及其油气地质意义[J]. 科学通报201762(15): 1 631-1 644, 1 551.
[136] HU Jianning, NENG Yuan, JIANG Shuai, et al. The control of paleo-uplift and salt layer on subsalt thrust belt in Bozi Section of Kelasu Tectonic Belt[J]. Journal of Northeast Petroleum University202347(4): 57-69, 8-9.
胡建宁, 能源, 姜帅, 等. 克拉苏构造带博孜段古隆起及盐层对盐下冲断带的控制[J]. 东北石油大学学报202347(4): 57-69, 8-9.
[137] YANG Xiongbing, WANG Hongyu, SU Yushan, et al. Source rock characteristics and its accumulation contribution in the lower Congo Basin, south Atlantic[J]. Geoscience202337(5): 1 369-1 384.
杨雄兵, 王宏语, 苏玉山, 等. 南大西洋下刚果盆地烃源岩特征与成藏贡献[J]. 现代地质202337(5): 1 369-1 384.
[138] JACKSON C A L, ZHANG Y, HERRON D A, et al. Subsurface expression of a salt weld, gulf of Mexico[J]. Petroleum Geoscience201925(1): 102-111.
[139] KONG Lingwu, ZHAO Hongyan, HAN Wenming, et al. Difference of hydrocarbon accumulation conditions in Senegal Basin in west Africa[J]. Marine Geology Frontiers201935(5): 66-72.
孔令武, 赵红岩, 韩文明, 等. 西非毛塞几比盆地油气成藏差异性分析[J]. 海洋地质前沿201935(5): 66-72.
[140] WANG Li, WU Zhenyun, YIN Hongwei, et al. Compressional salt structures of salt-bearing sedimentary basins and its significance to hydrocarbon accumulation[J]. Bulletin of Geological Science and Technology202140(5): 136-150.
王莉, 吴珍云, 尹宏伟, 等. 含盐沉积盆地挤压盐构造及其对油气成藏的意义[J]. 地质科技通报202140(5): 136-150.
[141] CURRY M E, HUDEC M R, PEEL F J, et al. Structural restorations of the complete conjugate US-Mexico eastern gulf of Mexico margin[J]. Tectonics202443(1). DOI: 10.1029/2023TC007897 .
[142] HEINE C, ZOETHOUT J, MÜLLER R D. Kinematics of the south Atlantic rift[J]. Solid Earth20134(2): 215-253.
[143] PICHAT A, DELHAYE-PRAT V, GUIRAUD M, et al. Palaeogeography and tectono-stratigraphic evolution of the Aptian Ezanga-Loémé evaporites along the proximal domain of the south Gabon-Congo-Cabinda margin[J]. Basin Research202436(4).DOI: 10.1111/bre.12893 .
[144] HIRLEMAN G, JAILLARD L. Paléogéographie et diagraphies. Reconstitution de la série salifère de la Loémé, Congo à partir des diagraphies disponibles[J]. Géologues (Paris)1993(100/101): 55-58.
[145] SZATMARI P, de LIMA C M, FONTANETA G, et al. Petrography, geochemistry and origin of south Atlantic evaporites: the Brazilian side[J]. Marine and Petroleum Geology2021, 127. DOI:10.1016/j.marpetgeo.2020.104805 .
[146] TIMOFEEFF M N, LOWENSTEIN T K, Da SILVA M A M, et al. Secular variation in the major-ion chemistry of seawater: evidence from fluid inclusions in Cretaceous halites[J]. Geochimica et Cosmochimica Acta200670(8): 1 977-1 994.
[147] PINDELL J, VILLAGÓMEZ D, MOLINA-GARZA R, et al. A revised synthesis of the rift and drift history of the Gulf of Mexico and surrounding regions in the light of improved age dating of the Middle Jurassic salt[M]// DAVISON I, HULL J N F, PINDELL J. The basins, orogens, and evolution of the southern gulf of mexico and northern caribbean. Bath, UK: Geological Society, 2021.
[148] FORT X, BRUN J P, CHAUVEL F. Salt tectonics on the Angolan margin, synsedimentary deformation processes[J]. AAPG Bulletin200488(11): 1 523-1 544.
[149] PICHEL L M, LEGEAY E, RINGENBACH J C, et al. The West African salt-bearing rifted margin: regional structural variability and salt tectonics between Gabon and Namibe[J]. Basin Research202335(6): 2 217-2 248.
[150] SANFORD J C, SNEDDEN J W, GULICK S P S. The Cretaceous-Paleogene boundary deposit in the gulf of Mexico: large-scale oceanic basin response to the chicxulub impact[J]. Journal of Geophysical Research: Solid Earth2016121(3): 1 240-1 261.
[151] CHEN A Q, JIN C, LOU Z H, et al. Salt tectonics and basin evolution in the Gabon coastal basin, west Africa[J]. Journal of Earth Science201324(6): 903-917.
[152] ROWAN M G, PEEL F J, VENDEVILLE B C. Gravity-driven fold belts on passive margins[M]// MCCLAY K R. Thrust tectonics and hydrocarbon systems. Tulsa, Oklahoma, USA: AAPG, 2004.
[153] LI Xianhua, LI Yang, LI Qiuli, et al. Progress and prospects of radiometric geochronology[J]. Acta Geologica Sinica202296(1): 104-122.
李献华, 李扬, 李秋立, 等. 同位素地质年代学新进展与发展趋势[J]. 地质学报202296(1): 104-122.
[154] DAVISON I. Geology and tectonics of the South Atlantic salt basins[M]// RIES A C, BUTLER R W H, GRAHAM R H. Deformation of the continental crust: the legacy of mike coward. Bath, UK: The Geological Society, 2007.
[155] GUO Pei, LI Changzhi. Genesis of evaporites in petroliferous basins and the sedimentary and climatic significances[J]. Journal of Palaeogeography202224(2): 210-225.
郭佩, 李长志. 含油气盆地蒸发盐矿物成因类型及其地质意义[J]. 古地理学报202224(2): 210-225.
[156] NIKOLINAKOU M A, GOTETI R, HEIDARI M. Mechanics of salt systems: state of the field in numerical methods[J]. Petroleum Geoscience201925(3): 249-250.
[157] LI W, WANG J H, GE Z Y, et al. The topset-foreset rollover does not coincide with real shoreline positions in clinoforms over substrate deformation[J]. Geophysical Research Letters202552(9). DOI:10.1029/2024GL112369 .
[158] HE Jinqiu, LI Haipeng, HOU Mingcai. Advances in numerical simulation research of source-to-sink systems: comparison and application of multiple models[J]. Advances in Earth Science202439(11): 1 136-1 155.
何锦秋, 李海鹏, 侯明才. 沉积源: 汇系统数值模拟研究进展: 多模型比较与应用[J]. 地球科学进展202439(11): 1 136-1 155.
[159] FENG Zhendong, CHENG Xiushen, ZHANG Hongguo, et al. Comparison and combination of structure physical modeling and numerical simulation techniques[J]. Progress in Geophysics201429(2): 706-710.
冯阵东, 程秀申, 张宏国, 等. 构造物理模拟与数值模拟技术的对比与结合[J]. 地球物理学进展201429(2): 706-710.
[160] CUMBERPATCH Z A, FINCH E, KANE I A, et al. Halokinetic modulation of sedimentary thickness and architecture: a numerical modelling approach[J]. Basin Research202133(5): 2 572-2 604.
[1] 刘江艳, 张昌民, 尹太举, 朱锐, 侯国伟. 涌潮沉积研究现状及进展[J]. 地球科学进展, 2018, 33(1): 66-74.
[2] 时钟,K.Pye,陈吉余. 潮滩盐沼物理过程的研究进展综述[J]. 地球科学进展, 1995, 10(1): 19-30.
阅读次数
全文


摘要