地球科学进展 ›› 2017, Vol. 32 ›› Issue (1): 15 -20. doi: 10.11867/j.issn.1001-8166.2017.01.0015

上一篇    下一篇

比较行星空间物理
魏勇 1, 4( ), 戎昭金 1, 钟俊 1, 柴立晖 1, 乐新安 1, 刘立波 1, 于晟 2, 朱日祥 3, 万卫星 1   
  1. 1.中国科学院地球与行星物理重点实验室,中国科学院地质与地球物理研究所,北京 100029
    2.国家自然科学基金委员会地球科学部,北京 100085
    3. 岩石圈演化国家重点实验室,中国科学院地质与地球物理研究所,北京 100029
    4.地球科学学院 中国科学院大学,北京 100049
  • 收稿日期:2016-09-22 修回日期:2016-12-02 出版日期:2017-01-20
  • 基金资助:
    *国家杰出青年科学基金项目“行星空间物理学”(编号: 41525016);国家自然科学基金面上项目“利用金星快车数据进行金星离子逃逸率的参数化”(编号: 41474155)资助.

Comparative Planetary Space Physics

Yong Wei 1, 4( ), Zhaojin Rong 1, Jun Zhong 1, Lihui Chai 1, Xin’an Yue 1, Libo Liu 1, Sheng Yu 2, Rixiang Zhu 3, Weixing Wan 1   

  1. 1.Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    2.Department of Earth Sciences, National Natural Science Foundation of China, Beijing 100085,China
    3.State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    4.College of Earth Sciences, University of Chinese Academy of Sciences,Beijing 100049, China
  • Received:2016-09-22 Revised:2016-12-02 Online:2017-01-20 Published:2017-01-10
  • About author:

    First author:Wei Yong (1981-), male, Pingyu County, He’nan Province, Professor. Research areas include planetary space physics and geomagnetism.E-mail:weiy@mail.iggcas.ac.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Planetary space physics”(No.41525016);the National Natural Science Foundation of China “Parameterization of venusian ion escape rate based on Venus Express data”(No.41474155).

空间物理学日趋成熟,既丰富了人类对地球和行星空间的认识,也引申出更具挑战性的问题。一些涉及行星演化问题的解决倚赖与其他学科的交叉探索,要求研究者从行星地球的视角出发,把地球视为一个从地核到磁层的多圈层耦合系统。作为系统外层环节的空间环境,其中的问题可通过比较行星研究的思路找到突破口。基于学科交叉的比较行星空间物理研究将是未来空间物理学的一个重要发展方向。阐述比较行星空间物理研究的思路和必要性,梳理研究现状,并展望研究前景。

It has been 60 years since the space physics as new branch of geophysics started to grow in 1957 when the space age was opened by a small satellite called sputnik. The knowledge of Earth and planetary space has been significantly extended and deepened, but the questions we are facing today are more challenging. A consensus reached is that we have to regard the Earth (planet) as an integrated system including all spheres from the inner core to the magnetosphere, and we should try to investigate some questions standing on the ground of interdisciplinary study, especially those questions related to Earth’s (planetary) evolution. Space environment as the outer part of a planetary system, commonly exists in all planets but also exhibits strong diversity. Here, we introduce the short history of basic ideas and methods of comparative study, the advantages on understanding of some issues of global scale, and the prospect from comparative perspective.

中图分类号: 

[1] Huang Yinong.Ten Lectures on the History of Social Astronomy[M]. Shanghai: Fudan University Press, 2004.
[黄一农. 社会天文学史十讲[M]. 上海: 复旦大学出版社, 2004.]
[2] Eddy J A.The maunder minimum[J]. Science, 1976, 192(4 245): 1 189-1 202.
[3] Wang Shui.Review and prospect of space physics[J].Advances in Earth Science, 2001, 16(5): 664-670.
[王水. 空间物理学的回顾和展望[J]. 地球科学进展, 2001, 16(5): 664-670.]
[4] Gubbins D, Jones A L, Finlay C C.Fall in Earth’s magnetic field is erratic[J].Science, 2006, 312(5 775): 900-902.
[5] Yue Xin’an,Liu Libo,Wan Weixing, et al.Modeling the effects of secular variation of geomagnetic field orientation on the ionospheric long term trend over the past century[J].Journal of Geophysical Research,2008,113:A10301,doi:10.1029/2007JA012995.
[6] Tarduno J A, Cottrell R D, Davis W J,et al. A Hadean to Paleoarchean geodynamo recorded by single zircon crystals[J]. Science, 2015, 349(6 247): 521-524.
[7] Macouin M, Valet J P, Besse J.Long-term evolution of the geomagnetic dipole moment[J].Physics of the Earth and Planetary Interiors, 2004, 147(2/3): 239-246.
[8] Uffen R.Influence of the Earth’s core on the origin and evolution of life[J].Nature, 1963, 198: 143-144,doi:10.1038/19814360.
[9] Wei Yong, Wan Weixing.Fifty-year investigation of the causal relation between geomagnetic reversal and mass extinction[J].Chinese Journal of Geophysics, 2014, 57(11): 3 841-3 850.
[魏勇, 万卫星.地磁倒转与生物灭绝因果关系研究五十年[J]. 地球物理学报, 2014, 57(11): 3 841-3 850.]
[10] Withers P.A review of observed variability in the dayside ionosphere of Mars[J].Advances in Space Research, 2009, 44(3): 277-307.
[11] Zhong Jun, Wan Weixing, Wei Yong, et al. Increasing exposure of geosynchronous orbit in solar wind due to decay of Earth’s dipole field[J].Journal of Geophysical Research, 2014, 119(12): 9 816-9 822.
[12] Wei Yong, Pu Zuyin, Zong Qiugang, et al. Oxygen escape from the Earth during geomagnetic reversals: Implications to mass extinction[J]. Earth and Planetary Science Letters, 2014, 394: 94-98.
[13] Zhang Zhigang, Zhang Chi, Geng Ming.Equations of state for aqueous solutions under mantle conditions[J]. Science in China(Series D),2016, 59(6):1 095-1 106.
[张志刚, 张驰, 耿明. 地幔条件下富水流体状态方程[J]. 中国科学:D辑, 2016, 46(5): 569-581.]
[14] Acuña M, Connerney J, Ness N, et al. Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment[J]. Science, 1999, 284(5 415): 790-793.
[15] Glassmeier K H, Musmann G, Vocks C, et al. Mars—A planet in magnetic transition?[J].Planetary and Space Science,2000, 48(12/14): 1 153-1 159.
[16] Marcq E, Bertaux J L, Montmessin F, et al. Variations of sulphur dioxide at the cloud top of Venus’s dynamic atmosphere[J]. Nature Geoscience, 2013, 6(1): 25-28.
[17] Zheng Yongfei, Chen Renxu, Xu Zheng, et al. The transport of water in subduction zones[J]. Science in China(Series D),2016, 59(4): 651-681.
[郑永飞, 陈仁旭, 徐峥, 等. 俯冲带中的水迁移[J].中国科学:D辑, 2016, 46(3): 253-286.]
[18] Lammer H, Kasting J F, Chassefiere E, et al. Atmospheric escape and evolution of terrestrial planets and satellites[J]. Space Science Reviews, 2008, 139(1/4): 399-436.
[19] Heyner D, Wicht J, Gomez-Perez N, et al. Evidence from numerical experiments for a feedback dynamo generating mercury’s magnetic field[J]. Science, 2011, 334(6 063): 1 690-1 693.
[20] Zhong Jun, Wan Weixing, Wei Yong, et al. Compressibility of Mercury’s dayside magnetosphere[J]. Geophysical Research Letters, 2015, 42(23): 10 135-10 139.
[1] 董治宝, 李超, 吕萍, 胡光印. 侵蚀型沙丘:来自火星的启示[J]. 地球科学进展, 2021, 36(2): 125-138.
[2] 程惠红,孙长青,王聪. 2020年度地球物理学和空间物理学学科基金项目评审与资助成果分析[J]. 地球科学进展, 2020, 35(11): 1163-1170.
[3] 郭进义,程惠红,杨昉. 2019年度地球物理学和空间物理学学科基金项目评审与成果分析[J]. 地球科学进展, 2019, 34(11): 1185-1188.
[4] 郭进义, 程惠红, 杨昉. 2018年度地球物理学和空间物理学学科报告 *[J]. 地球科学进展, 2018, 33(12): 1292-1296.
[5] 胡永云, 田丰, 钟时杰, 肖龙. 比较行星学研究进展——第三届地球系统科学大会比较行星学分会场综述[J]. 地球科学进展, 2014, 29(11): 1298-1302.
[6] 于晟,宋长青. “暴时东亚中低纬电离层不规则体变化特性研究”研究成果介绍[J]. 地球科学进展, 2013, 28(9): 1059-1061.
[7] 于晟,马晓冰,张冬丽. 2013年度地球物理与空间物理学科项目评审与资助成果[J]. 地球科学进展, 2013, 28(12): 1378-1381.
[8] 于晟,马晓冰,张冬丽. 2012年度地球物理与空间物理学科项目评审与资助成果[J]. 地球科学进展, 2012, 27(12): 1399-1402.
[9] 于晟,马晓冰,张冬丽. 2011年度地球物理与空间物理学科项目评审与资助成果[J]. 地球科学进展, 2011, 26(12): 1330-1332.
[10] 于晟,马晓冰,蔡晓刚. 2010年度地球物理与空间物理学科项目评审与资助成果[J]. 地球科学进展, 2010, 25(12): 1398-1401.
[11] 陈文,魏科. 大气准定常行星波异常传播及其在平流层影响东亚冬季气候中的作用[J]. 地球科学进展, 2009, 24(3): 272-285.
[12] 郄秀书,吕达仁,卞建春,杨 静. 中高层大气瞬态发光事件(TLEs)及可能的影响[J]. 地球科学进展, 2009, 24(3): 286-296.
[13] 刘毅,刘传熙,陆春晖. 平流层爆发性增温中平流层环流及化学成分变化过程研究[J]. 地球科学进展, 2009, 24(3): 297-307.
[14] 陈泽宇,吕达仁. 利用卫星数据考察平流层传播性行星波活动特征[J]. 地球科学进展, 2009, 24(3): 320-330.
[15] 汪品先. 地球深部与表层的相互作用[J]. 地球科学进展, 2009, 24(12): 1331-1338.
阅读次数
全文


摘要