地球科学进展 ›› 2006, Vol. 21 ›› Issue (12): 1339 -1349. doi: 10.11867/j.issn.1001-8166.2006.12.1339

研究论文 上一篇    下一篇

冻土模式的改进和发展
李倩,孙菽芬   
  1. 中国科学院大气物理研究所,LASG,北京 100029
  • 收稿日期:2006-10-11 修回日期:2006-11-09 出版日期:2006-12-15
  • 通讯作者: 孙菽芬(1940-),男,上海人,研究员,主要从事陆面过程模型发展研究. E-mail:ssf@lasg.iap.ac.cn
  • 基金资助:

    国家自然科学基金重点项目“有中国区域特色的新型陆面过程模型——CNISM的研制”(编号:40233034);面上项目“与陆面过程有重要相互作用的大尺度水文模型的发展研究”(编号:40575043)资助.

Development of Frozen Soil Model  

Li Qian, Sun Shufen   

  1. LASG, Institute of Atmospheric Physics, CAS, Beijing 100029, China
  • Received:2006-10-11 Revised:2006-11-09 Online:2006-12-15 Published:2006-12-15

本研究首先对当今常用的冻土模式进行了改进。以土壤总焓和土壤水总质量替代原来的温度和体积水含量作为方程预报量,使冰水相变速率项变为诊断量,避免了原冻土模式计算过程中由于冰水相变速率项预估的误差造成计算过程中的温度偏差。同时对该新形式模式所发展的诊断量方程组设计了合理省时的数值计算方案。实验表明,改进后模式的模拟结果与观测值有较好的吻合。此外,分析比较了目前常用的3种冻融方案的理论基础及模拟结果,发现基于热力学平衡态推导得到的包含土壤水势影响的参数化方案能很好地模拟土壤的冻融变化过程,不同的冻融方案会对土壤内的温度、水量及表面的感热和潜热模拟结果产生较大的影响。

In this paper, firstly, new version of frozen soil model is presented, in which the enthalpy and total volumetric water equivalent content in soil is used as predictive variables to replace the predictive variables of soil temperature and volumetric liquid water content in the current models respectively. It makes the required estimation of liquid-ice phase change rate in the current models unnecessary, and therefore avoids the introduction of the error in estimation of the phase change rate into the new model and in turn will improve the new version model in both speeding convergence of numerical iterative process and enhancing the model performance. At the same time, a numerical scheme is also developed for the diagnostic equations in the new version, which is very efficient for finding the true solution with a few iteration times. It's proved the numerical simulation results of the new version model are in good agreement with two field observed data. Besides, based on analyzing three schemes for soil freezing-thaw from theoretical view and comparing the numerical simulation results, it is found that the parameterization scheme, which takes the relation between moisture potential and temperature in soil derived from the equilibrium thermodynamics theory into consideration, can describe the freezing-thaw processes well. Numerical results have shown that different freezing-thaw parameterizations have greater influence on simulated soil temperature, water content, and latent and sensible heat fluxes at soil surface.

中图分类号: 

[1] Sun Shufen. Parameterization study of physical and biochemical mechanism in land surface process[M]. Beijing:China Meterology Press,2005.[孙菽芬.陆在过程的物理、生化机理和参数化模型[M].北京:气象出版社,2005.]

[2] Jame Y W, Norum D I. Heat and mass transfer in a freezing unsaturated porous medium[J]. Water Resources Research, 1980, 16(4):811-819.

[3] Elberling B, Brandt K K. Uncoupling of microbial CO2 production and release in frozen soil and its implications for field studies in arctic C cycling[J]. Soil Biology and Biochemistry, 2003, 35:263-272.

[4] Poutou E, Krinner G, Genthon C, et al. Role of soil freezing in future boreal climate change[J]. Climate Dynamics, 2004, 23(6):621-639.

[5] Xue Y, Zeng F J, Schlosser C A. SSiB and its sensitivity to soil properties—A case study using HAPEX-Mobilhy data [J]. Global and Planetary Change,1996,13:183-194.

[6] Dickinson R E, Henderson-Sellers A, Kennedy P J. Biosphere-Atmosphere Transfer Scheme (BATS) version le as coupled to the NCAR community Climate Model[R].Technique Note. NCAR/TN387+STR, National Center for Atmospheric Research, Boulder, CO,1993.

[7] Cary J W, Mayland H F. Salt and water movement in unsaturated frozen soil [J]. Soil Science Society of America, Proceedings,1972, 36:549-555.

[8] Harlan R L. Analysis of coupled heat-fluid transport in partially frozen soil[J]. Water Resources Research,1973,9:1 314-1 323.

[9] Shoop S A, Bigl S R. Moisture migration during freeze and thaw of unsaturated soils: Modeling and large scale experiments[J]. Cold Regions Science and Technology,1997, 25(1):33-45.

[10] Slater A G, Pitman A J, Desborough C E. Simulation of freeze-thaw cycles in a general circulation model land surface scheme [J]. Journal of Geophysical Research, 1998, 103:11 303-11 312.

[11] Xu Laing, Eric F, Wood, Dennis P Lettenmaier. Modeling ground heat flux in land surface parameterization schemes[J]. Journal of Geophysical Research,1999,104(D8):9 581-9 600.

[12] Keith A Cherkauer, Dennis P Lettenmaier. Hydrologic effects of frozen soils in the upper Mississippi river basin[J]. Journal of Geophysical Research,1999,104(D16):19 599-19 610.

[13] Pauwels V R N, Wood E F. A soil-vegetation-atmosphere transfer scheme for the modeling of water and energy balance processes in high latitudes 1:Model improvements [J]. Journal of Geophysical Research,1999,104:27 811-27 822.

[14] Koren V, Schaake J, Mitchell K, et al. A parameterization of snowpack and frozen ground intended for NCEP weather and climate models [J]. Journal of Geophysical Research,1999,104(D16):19 569-19 585.

[15] Li Shuxun, Cheng Guodong. Problem of Heat and Moisture Tranfer in Freezing and Thawing Soils[M]. Lanzhou:Lanzhou University Press,1995.[李述训,程国栋.冻融土中的水热输运问题[M].兰州:兰州大学出版社,1995.]

[16] Xu Xuezu, Wang Jiacheng, Zhang Lixin. The Physics of Frozen Soil[M]. Beijing: Science Press, 2001.[徐学祖,王家澄,张立新.冻土物理学[M] .北京:科学出版社,2001.]

[17] Zhang Xia. The study of land surface processes occurs in the arid and frozen are—Model developing[D]. Beijing: Institute of Atmospheric Physics, Chinese Academy of Sciences, 2004.[张霞. 旱区及冻土区陆面过程研究——模式发展[D].北京:中国科学院大气物理研究所,2004.]

[18] Zhao L, Cray D M, Male D H. Numerical analysis of simultaneous heat and water transfer during infiltration into frozen ground [J]. Journal of Hydrology, 1997, 200:345-363.

[19] Clapp R B, Hormberger G M. Empirical equations for some soil hydraulic properties [J]. Water Resources Research, 1978, 14(4):601-604.

[20]  Dai Y, Zeng X, Dickinson R E, et al. The Common Land Model (CLM)[J]. Bulletin of the American Meteorological Society,2003,84(8):1 013-1 023.

[21] Takata K, Kimoto M. A numerical study on the impact of soil freezing on the continental-scale seasonal cycle[J]. Journal of the Meteorological Society of Japan, 2000, 78(3), 199-221.

[22] Mölders N, Walsh J E. Atmospheric response to soil-frost and snow in Alaska in March[J]. Theoretical and Applied Climatology,2004,77:77-115.

[1] 王澄海,靳双龙,吴忠元,崔洋. 估算冻结(融化)深度方法的比较及在中国地区的修正和应用[J]. 地球科学进展, 2009, 24(2): 132-140.
[2] 周剑,根绪,李新,杨永民,潘小多. 数据同化算法在青藏高原高寒生态系统能量—水分平衡分析中的应用[J]. 地球科学进展, 2008, 23(9): 965-973.
[3] 齐吉琳;程国栋;P.A.Vermeer. 冻融作用对土工程性质影响的研究现状[J]. 地球科学进展, 2005, 20(8): 887-894.
[4] 程国栋. 冻土力学与工程的国际研究新进展——2000年国际地层冻结和土冻结作用会议综述[J]. 地球科学进展, 2001, 16(3): 293-299.
阅读次数
全文


摘要