[1] World Meteorological Organization (WMO). Scientific Assessment of Ozone Depletion: 1994[R]. Geneva :Report No. 37,1995. [2] Farman J C, Gardiner B G, Shanklin J D. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction[J]. Nature,1985,315: 207-210.[3] Solomon S. Stratospheric ozone depletion: A review of concepts and history[J]. Reviews of Geophysics, 1999,37:275-316. [4] Newchurch M J, Yang E S, Cunnold D M. Evidence for slowdown in stratospheric ozone loss: First stage of ozone recovery[J].Journal of Geophysical Research,2003, 108 (D16): 4507, doi:10.1029/2003JD003471. [5] Austin J, Butchart N. Coupled chemistry-climate model simulations for the period 1980 to 2020: Ozone depletion and the start of ozone recovery[J].Quarterly Journal of the Royal Meteorological Society Part B, 2003,129:3 225-3 249. [6] Chen Limin, Duan Yang,Yue Zhiwei, et al. Study on the trends of atmospheric CFCs[J]. Enviromental Science,1999,20(1):27-29.[陈立民,段杨,乐致威,等.大气中氯氟烃类物质浓度变化的研究[J].环境科学, 1999, 20(1):27-29.] [7] Duan Yang,Hou Huiqi,Zhu Shaolong, et al. Photodissociation of CF2ClBr at 185nm of ultraviolet radiation[J].Enviromental Science,1996, 17(6):24-26.[段杨,侯惠奇,朱绍龙,等.CF2ClBr在短紫外光照射下光解离过程的研究[J].环境科学,1996,17(6):24-26.] [8] Chen Zhongming,Li Jinlong,Tang Xiaoyan. Study of atmospheric chemistry of CFC substitutes[J]. Enviromental Science, 1997,18(4):85-89.[ 陈忠明,李金龙,唐孝炎.氯氟烃替代物大气化学研究[J].环境化学, 1997,18(4):85-89.] [9] Wang Gengchen , Kong Qinxin, Chen Hongbin,et al.Characteristics of ozone vertical distribution in the atmosphere over Beijing [J]. Advances in Earth Science,2004,19(5):743-748.[王庚辰,孔琴心,陈洪滨,等.北京上空大气臭氧垂直分布的特征[J].地球科学进展,2004,19(5):743-748.] [10] Wang Huijun,Xu Yongfu, Zhou Tianjun, et al. Atmospheric science:A vigorous frontier science [J] .Advances in Earth Science, 2004, 19 (4): 525- 532.[王会军,徐永福,周天军,等.大气科学:一个充满活力的前沿科学[J].地球科学进展,2004,19(4):525-532.] [11] Hausmann M, Platt U. Spectroscopic measurement of bromine oxide and ozone in the high Arctic during Polar Sunrise Experiment 1992[J].Journal of Geophysical Research,1994, 99:25 399-25 414. [12] Stutz J, Ackerman R, Barrie L, et al. Atmospheric reactive chlorine and bromine at the Great SaltLake,Utah[J]. Geophysical Research Letters, 2002, 29(10): 1380, 10.1029/ 2002GL014812. [13] Vogt R, Crutzen P J, Sander R.A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer[J]. Nature,1996, 383: 327-330. [14] Bobrowski N, Galle B, Platt U,et al. Detection of bromine monoxide in a volcanic plume[J].Nature, 2003,423: 273-276. [15] Lary D J. Halogens and the chemistry of the free Troposphere[J]. Atmospheric Chemistry and Physics Discussions,2004,4: 5 367-5 380. [16] Wagner T, Platt U. Observation of tropospheric BrO from the GOME satellite[J]. Nature,1998,395:486-490. [17] Fitzenberger R, Boesch H, Harder H,et al. First profile measurements of tropospheric BrO[J].Geophysical Research Letters,2000, 27: 2 921-2 924. [18] McElroy C T, McLinden C A, MCConnell J C. Evidence for bromine monoxide in the free troposphere during Arctic polar sunrise[J]. Nature, 1999,397: 338-340. [19] Foster K L, Finlayson-Pitts B J, Spicer C W, et al. The role of Br2 and BrCl in surface ozone destruction at polar sunrise [J].Science,2001 ,291: 471-474. [20] Wennberg P O. Bromine explosion [J].Nature,1999,397:299-301. [21] Hebestreit K. Halogen oxides in the mid-latitude marine boundary laye[D]. Institut fuer Umweltphysik, Universitaet Heidelberg, 2001. [22] Burnett E B, Burnett C R. Enhanced production of stratospheric OH from methane oxidation at elevated reactive chlorine levels in Northern midlatitudes[J].Journal of Atmospheric Chemistry,1995,21: 13-41. [23] Tuckermann M, Ackermann R, Platt U, et al. DOAS-observation of halogen radical-catalysed Arctic boundary layer ozone destruction during the ARCTOC campaigns 1995 and 1996 in Ny-Alesund, Spitsbergen[J].Tellus,1997, 49B:533-555. [24] Mart-nez M, Arnold T, Perner D. The role of bromine and chlorine chemistry for arctic ozone depletion events in Ny Alesund and comparison with model calculations[J].Annales Geophysicae,1999,17:941-956. [25] Hegels E, Crutzen P J, Burrows P J, et al. Global distribution of atmospheric bromine monoxide from GOME on Earth-observing satellite ERS-2[J].Geophysical Research Letters,1998,25:3 127-3 130. [26] Richter A, Wittrock F, Burrows J P, et al. GOME observations of tropospheric BrO in northern hemispheric spring and summer 1997[J].Geophysical Research Letters, 1998, 25:2 683-2 686. [27] Wagner T, Leue C, Platt U, et al. Spatial and temporal distribution of enhanced boundary layer BrO concentrations measured by the GOME instrument aboard ERS-2[J].Journal of Atmospheric Chemistry, 2001,106:24 225-24 235. [28] Lehrer E, Wagenbach D, Platt U.Chemical composition of the Aerosol during Arctic Spring in Svalbard[J]. Tellus,1997,49:486-495. [29] Hoeonninger G, Platt U. Observations of BrO and its vertical distribution during surface ozone depletion at alert[J]. Atmospheric Environment, 2002 ,36:2 481-2 489. [30] Barrie L A, Bottenheim J W, Crutzen P J, et al. Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere[J]. Nature, 1988, 334: 138-141. [31] Langendoeorfer U, Lehrer E, Platt U, et al. Observation of filterable bromine variabilities during arctic tropospheric ozone depletion events in high time resolution[J].Journal of Atmospheric Chemistry,1999,34:39-54. [32] Perner D, Arnold T, Crowley J, et al. The measurements of active chlorine in the atmosphere by chemical amplification[J]. Journal of Atmospheric Chemistry, 1999,34: 9-20. [33] Jobson B T, Niki H, Hopper F, et al. Measurements of C2-C6 hydrocarbons during the Polar Sunrise 1992 Experiment: Evidence for Cl atom and Br atom chemistry[J]. Journal of Atmospheric Chemistry,1994,99:25 355-25 368. [34] Ramacher B, Rudolph J, Koppmann R. Hydrocarbon measurements in the spring arctic troposphere during the ARCTOC 95 campaign[J]. Tellus(Series B), 1997,49(15):466-485. [35] Ramacher B, Rudolph J, Koppmann R. Hydrocarbon measurements during tropospheric ozone depletion events:Evidence for halogen atom chemistry[J]. Journal of Atmospheric Chemistry,1999,104,D3:3 633-3 653. [36] Spicer C W, Chapman E G, Finlayson-Pitts B J, et al. Unexpectedly high concentrations of molecular chlorine in coastal air[J]. Nature,1998,394:353-356. [37] Spicer C W, Plastridge R A, Finlayson -Pitts B J, et al. Molecular halogens before and during ozone depletion events in the Arctic at polar sunrise: Concentration and sources[J]. Atmospheric Environment, 2002, 36:2 721-2 731. [38] Stutz J, Hebestreit K, Platt U, et al. Chemistry of halogen oxides in the troposphere: Comparison of model calculations with recent field data[J]. Journal of Atmospheric Chemistry,1999,34: 65-85. [39] Carpenter L J, Hebestreit K, Platt U, et al. Coastal zone production of IO precursors: A 2-dimensional study[J]. Atmospheric Chemistry and Physics, 2001,1: 9-18. [40] Allan B J, McFiggans G, Plane J M C. Observation of iodine monoxide in the remote marine boundary layer[J]. Journal of Atmospheric Chemistry,2000, 105:14 363-14 369. [41] Frieβ U, Wagner T, Platt U, et al. Spectroscopic measurements of tropospheric iodine oxide at Neumayer station,Antartica[J].Geophysical Research Letters,2001, 28: 1 941-1 944. [42] McFiggans G, Plane J M C, Carpenter L J, et al. A modelling study of iodine chemistry in the marine boundary layer[J]. Journal of Atmospheric Chemistry, 2000,105:14 371-14 385. [43] Hebestreit K, Stutz J, Platt U, et al. First DOAS measurements of tropospheric BrO in mid-latitudes[J].Science, 1999,283: 55-57. [44] Matveev V, Peleg M, Platt U, et al. Bromine oxide ozone interaction over the Dead Sea[J].Journal of Atmospheric Chemistry, 2001,106:10 375-10 387. [45] Van Roozendael M, et al. Intercomparison of BrO measurements from ERS-2 GOME, ground-based and balloon platforms[J]. Advance in Space Research, 2002, 29:1 661-1 666. [46] Frieβ U, Otten C, Platt U, et al. Intercomparison of measured and modelled BrO slant column amounts for the Arctic winter and spring 1994/95[J].Geophysical Research Letters, 1999, 26:1 861-1 864. [47] Leser H, Hoenninger G, Platt U. MAX-DOAS measurements of BrO and NO2 in the marine boundary layer[J].Geophysical Research Letters,2003,30:10,doi: 10.1029/2002GL015811. [48] Pszenny A A P, Keene W C, Jacob D J, et al. Evidence of inorganic chlorine gases other than hydrogen chloride in marine surface air[J].Geophysical Research Letters, 1993,20: 699-702. [49] Wingenter O W, Kubo M K, Blake N J, et al. Hydrocarbon and halocarbon measurements as photochemical and dynamical indicators of atmospheric hydroxyl, atomic chlorine, and vertical mixing obtained during Lagrange flights[J].Journal of Atmospheric Chemistry,1996,101:4 331-4 340. [50] Platt U. Differential Optical Absorption Spectroscopy (DOAS). Monitoring by Spectroscopic Techniques[M]. New York: Wiley, 1994.27-84. [51] Impey G A, Mihele C M, Anlauf K G, et al. Measurements of photolyzable halogen compounds and bromine radicals during Polar Sunrise Experiment 1997[J].Journal of Atmospheric Chemistry,1999,34: 21-37. [52] Roeckmann T, Crutzen P J, Platt U, et al.Short-term variations in the 13C/12C ratio of CO as a measure of Cl activation during tropospheric ozone depletion events in the Arctic[J]. Journal of Atmospheric Chemistry, 1999,104: 1 691-1 697. [53] Von Glasow R, Crutzen P J. Model study of multiphase DMS oxidation with a focus on halogens[J]. Atmospheric Chemistry and Physics, 2004,4: 589-608. [54] Sander R, Crutzen P J, Duce R A, et al. Inorganic bromine in the marine boundary layer: A critical review[J]. Atmospheric Chemistry and Physics, 2003,3: 1 301-1 336. [55] Shi Fei,Chen Zhongming. Study on atmospheric photo-oxidation of methyl hydroperoxide initiated by Cl-atom[J]. Spectroscope and Spectral Analysis,2004,24(1): 65-67.[史飞,陈忠明.氯原子引发的甲基过氧化氢大气光化学反应[J].光谱学与光谱分析,2004,24(1): 65-67.] [56] Wu Hai,Zhang Yi,Mou Yujing. Products of the gas-phase photooxidation of isopropanol initiated by OH radicals and Cl atoms[J]. Enviromental Chemistry,2004,23(1):1-6.[吴海,张逸,牟玉静.异丙醇与OH自由基物Cl反应产物的研究[J].环境化学,2004,23(1):1-6.] [57] Wennberg P O. Hydrogen radical,nitrogen radical,and the production of O3 in the upper troposphere[J]. Science,1998 ,279:49-53. [58] Charlson R J, Lovelock J E, Andreae M O, et al. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate[J].Nature, 1987,326: 655-661. [59] Barnes I, Bastian V, Becker K H, et al. Kinetic studies of the reactions of IO, BrO and ClO with DMS[J].International Journal of Chemical Kinetics, 1991,23:579-591. [60] Toumi R. BrO as a sink for dimethylsulphide in the marine atmosphere[J].Geophysical Research Letters,1994 ,21:117-120. [61] Jensen J, Adare K, Shearer R. Canadian Arctic Contaminants Assessment Report[R]. Indian and Northern Affairs Canada, Ottawa, Ontario,1997. [62] Schroeder W H, Anlauf K G, Barrie L A, et al. Arctic springtime depletion of mercury[J].Nature, 1998,394:331-332. [63] Ebinghaus R, Kock H H, Temme C, et al. Antarctic springtime depletion of atmospheric mercury[J].Environmental Science and Technology,2002, 36:1 238-1 244. [64] Ariya P A, Khalizov A, Gidas A. Reactions of gaseous mercury with atomic and molecular halogens: Kinetics, product studies, and atmospheric implications[J].Journal of physical Chemistry A,2002 ,106: 7 310-7 320. [65] Calvert J G, Lindberg S E. A modeling study of the mechanism of the halogen ozone mercury homogeneous reactions in the troposphere during the polar spring[J].Atmospheric Environment, 2003, 37:4 467-4 481. [66] Balabanov N B, Peterson K A. Mercury and reactive halogens: the thermochemistry of Hg+(Cl2, Br2, BrCl, ClO, and BrO) [J]. Journal of physical Chemistry A, 2003,107:7 465-7 470. [67] Parisa A A, Ashu P D, Marc A, et al. The Arctic: A sink for mercury[J]. Nature, 2004, 56(5): 397-403. [68] Finlayson-Pitts B J, Livingston F E, Berko H N. Ozone destruction and bromine photo chemistry in the Arctic spring[J]. Nature,1990,343:622-625. [69] Le Bras G, Platt U. A Possible mechanism for combined chlorine and bromine catalysed destruction of tropospheric ozone in the Arctic[J]. Geophysical Research Letters, 1995,22:599-602. [70] Ashworth S H, Allan B J, Plane M C. High resolution spectroscopy of the OIO radical: Implications for the ozone depleting potential of iodine[J]. Geophysical Research Letters,2002,29 (10):1 456-1 459, doi:10.1029/ 2001GL 013851. [71] Platt U,Janssen C. Observation and role of the free radicals NO3, ClO, BrO and IO in the Troposphere[J].Faraday Discuss, 1995, 100:175-198. [72] Khalil M A K, Rasmussen R A, Gundwardena A. Atmospheric methyl bromide: Trends and global mass balance[J]. Journal of Atmospheric Chemistry, 1993, 98:2 887-2 896. [73] Sturges W T, Cota G F, Buckley P T. Bromoform emission from Arctic Ice Algae[J].Nature, 1992,358:660-662. [74] Carpenter L J, Sturges W T, Platt U, et al. Observation of short-lived alkyl iodides and bromides at Mace Head, Ireland: Links to biogenic sources and halogen oxide production[J].Journal of Atmospheric Chemistry, 1999,104: 1 679-1 689. [75] Kritz M, Rancher J. Circulation of Na, Cl, and Br in the Tropical Marine Atmosphere[J]. Journal of Atmospheric Chemistry, 1980,85:1 633-1 639. [76] Ayers G P, Gillett R W, Cainey J M, et al. Chloride and Bromide Loss from Sea-Salt Particles in Southern Ocean Air[J]. Journal of Atmospheric Chemistry, 1999,33: 299-319. [77] Kaleschke L, Richter A, Burrows J. Frost flowers on sea ice as a source of sea salt and their influence on tropospheric halogen chemistry[J]. Geophysical Research Letters, 2004,31,L16114, doi:10.1029/2004GL020655. [78] Behnke W, Krueger H U, Scheer V, et al. Formation of ClNO2 and HONO in the presence of NO2, O3 and wet NaCl aerosol[J].Journal of Aerosol Science, 1992,23: 933-936. [79] Behnke W, Scheer V, Zetzsch C. Formation of ClNO2 and HNO3 in the presence of N2O5 and wet pure NaCl- and wet mixed NaCl/Na2SO4-aerosol[J]. Journal of Aerosol Science, 1993,24:115-116. [80] Finlayson-Pitts B J, Johnson S N. The reaction of NO2 with NaBr: Possible source of BrNO in polluted marine atmospheres[J]. Atmospheric Environment, 1988,22: 1 107-1 112. [81] Schweitzer F, Mirabel P, George C. Heterogeneous chemistry of nitryl halides in relation to tropospheric halogen activation[J]. Journal of Atmospheric Chemistry,1999, 34:101-117. [82] Oum K W, Lakin M J, Finlayson Pitts B J, et al. Formation of molecular chlorine from the photolysis of ozone and aqueous sea-salt particles[J]. Science, 1998, 279:74-77. [83] Oum K W, Lakin M J, Finlayson Pitts B J. Bromine activation in the troposphere by the dark reaction of O3 with seawater ice[J]. Geophysical Research Letters,1998,25:3 923-3 926. [84] Qiao Z, Sun S, Wang D, et al. Vacuum Synthesis and Characterizations of BrOBr and HOBr[J]. Journal of Chemical Physics, 2003,119:7 111-7 114.[85] Abbatt J P D, Waschewsky G C G. Heterogeneous interactions of HOBr, HNO3, O3 and NO2 with deliquescent NaCl aerosols at room temperature[J]. Journal of Physical Chemistry A, 1998,102: 3 719-3 725. [86] Mozurkewich M. Mechanisms for the release of halogens from sea-salt particles by free radical reactions[J]. Journal of Atmospheric Chemistry, 1995,100:14 199-14 207. [87] Molina M J,Tso T L,Molina L T, et al. Antarctic stratospheric chemistry of chlorine nitrate, hydrogen chloride, and ice: Release of active Chlorine[J]. Science,1987,238:1 253-1 257. [88] Molina M J,Molina L T,Kolb C E. Gas-Phase and heterogeneous chemical kinetics of the troposphere and stratosphere[J]. Annual Review of Physical Chemistry, 1996,47:327-367. [89] Ying L M,Zhao X S. Theoretical studies of XONO2-H2O (X=Cl, H) complexes[J]. Journal of Physical Chemistry A, 1997,101:6 807-6 812. [90] Wang D, Li Y, Jiang P, et al. The study of HeI photoelectron spectroscopy (PES) of the electronic structure for ClONO2[J]. Chemical Physics Letters, 1996,260: 99-102. [91] Wang D, Jiang P. HeI photoelectron spectroscopy study on the electronic structure of bromine nitrate, BrONO2[J]. Journal of Physical Chemistry, 1996,100:4 382-4 384. [92] Sun S, Zeng Y, Wang D, et al. A new reaction:Vacuum synthesis and characterization of IONO2 and IONO[J].Journal of Electron Spectroscopy and Related Phenomena,2005, 142:261-264. |