地球科学进展, 2020, 35(12): 1222-1231 DOI: 10.11867/j.issn.1001-8166.2020.108

综述与评述

热带季节内振荡在延伸期预报中的应用进展

梅双丽,, 李勇,, 马杰

国家气象中心,北京 100081

Review of the Application of MJO in the Extended Range Forecast

Mei Shuangli,, Li Yong,, Ma Jie

National Meteorological Centre,Beijing 100081,China

通讯作者: 李勇(1980-),男,陕西富平人,教授级高级工程师,主要从事中长期天气预报技术研究. E-mail:liy@cma.gov.cn

收稿日期: 2020-10-10   修回日期: 2020-11-15   网络出版日期: 2021-02-09

基金资助: 中国气象局气象预报业务关键技术发展专项“气象要素和重要天气过程延伸期预报关键技术”.  YBGJXM(2020)04
国家科技支撑计划项目“10~20天延伸期天气预报技术研究”.  2015BAC03B06

Corresponding authors: Li Yong (1980-), male, Fuping Country, Shanxi Province,Professor-level senior engineer. Research areas include medium and extended range forecast research. E-mail:liy@cma.gov.cn

Received: 2020-10-10   Revised: 2020-11-15   Online: 2021-02-09

作者简介 About authors

梅双丽(1982-),女,黑龙江绥化人,工程师,主要从事中长期天气预报技术研究.E-mail:meisl@cma.gov.cn

MeiShuangli(1982-),female,SuihuaCity,HeilongjiangProvince,Engineer.Researchareasincludemediumandextendedrangeforecastresearch.E-mail:meisl@cma.gov.cn

摘要

热带季节内振荡是延伸期预报的主要来源,基于热带季节内振荡的延伸期预报研究对业务预报具有重要意义。系统回顾了近几年热带季节内振荡在延伸期降水、温度及其极端事件、台风和季风等方面的预报应用中的最新成果以及热带季节内振荡在主要预报业务中心的应用现状,总结了热带季节内振荡在延伸期预报应用中具有的一定理论支撑;最后分析了热带季节内振荡在延伸期预报应用中面临的预报对象的确立、当前动力模式的模拟、与气象要素的物理联系及影响预报的检验等方面的技术难点,并指出了热带季节内振荡影响预报在集合预报和多模式集成及加强多种季节内振荡对天气影响的研究等方面的未来发展趋势。

关键词: 热带季节内振荡 ; 延伸期预报 ; 降水 ; 业务应用

Abstract

Tropical intraseasonal oscillation (MJO) is the main source of the extended range forecast. The research of the extended range forecast based on MJO is of great significance for the operational forecast. In this paper, the latest achievements of MJO in the prediction of precipitation, temperature and their extreme events, typhoon and monsoon in the extended range and the operational status of major prediction centers in which MJO is used for real-time monitoring and prediction were reviewed systematically. The theoretical support of MJO in the prediction of the extended range was summarized. Finally, the technical difficulties of MJO in the application of the extended range forecast, such as the establishment of forecast objects, the simulation of MJO by the current dynamic model, the physical connection between MJO and meteorological elements, and the evaluation of MJO's influence forecasting were analyzed, and the future development trends of MJO influence forecast in the ensemble forecast, multi-mode integration and strengthening the research on the influence of multiple seasonal oscillations on the weather were also pointed out.

Keywords: MJO ; Extended range forecast ; Precipitation ; Operational application

PDF (1948KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

梅双丽, 李勇, 马杰. 热带季节内振荡在延伸期预报中的应用进展. 地球科学进展[J], 2020, 35(12): 1222-1231 DOI:10.11867/j.issn.1001-8166.2020.108

Mei Shuangli, Li Yong, Ma Jie. Review of the Application of MJO in the Extended Range Forecast. Advances in Earth Science[J], 2020, 35(12): 1222-1231 DOI:10.11867/j.issn.1001-8166.2020.108

1 引 言

近年来全球气象灾害天气事件频发,例如,据国家气候中心统计,2016年“Boss级”寒潮来袭,强冷空气自北向南影响我国大部分地区,广州出现建国以来首场降雪,造成了广东、江苏和浙江等13省(区、市)254.3万人受灾,直接经济损失12.4亿元;2017年台风“天鸽”和“帕卡”先后在广东珠海和台山登陆,造成245.9万人受灾,32人死亡失踪,直接经济损失289.1亿元;同年,印度、尼泊尔和孟加拉国等南亚国家遭遇了特大洪水,造成800多人死亡,超过2 400万人受灾;2019年秋冬季澳大利亚持续高温加剧了森林火灾,造成至少29人死亡,烧毁约1 030万hm2土地,10亿只动物丧生。引起上述这些气象灾害的天气过程通常与大气环流系统的异常程度有关,对这些持续性异常、高影响的灾害事件的分析和预测是当前国际气象学界的重大挑战,也是社会服务领域的重大需求,被列为国际次季节至季节尺度(Subseasonal-to-Seasonal,S2S)计划的核心研究目标之一。

10~30天的延伸期预报,作为10天以内的中短期天气预报和月尺度以上短期气候预测的有效链接,已成为国际天气—气候无缝隙预报业务体系建设的一个重要方向1图1)。延伸期预报主要包括10~30天的天气趋势(转折与持续异常)预报和重要灾害性天气过程(包含极端、高影响性)预报。延伸期预报是国际大气科学研究的难点,其预报时效超越了确定性预报的理论上限(2周左右)2,而预报对象的时间尺度又小于气候预测的月时间尺度。

图1

图1   天气—气候无缝隙预报示意图[1]

Fig.1   Schematic diagram of the weather-climate seamless forecast[1]


延伸期预报作为次季节时间尺度预报的重要组成部分,有多种重要的潜在可预报性来源,例如热带大气季节内振荡(Madden-Julian Oscillation,MJO)、平流层初始条件、陆面的土壤湿度/冰/雪的初始条件以及海表面温度等,在这些潜在的S2S可预报性来源中,MJO被认为是预测全球次季节时间尺度的主要来源13。它是全球热带天气变率的一个重要模态,典型周期为10~90天4~6。本文中的MJO泛指热带地区的季节内振荡,包含夏季的季节内振荡(Boreal Summer Intraseasonal Oscillation,BSISO)和10~30天准双周振荡(Quasi-Biweekly Oscillation,QBWO)。

MJO的特征为延伸期预报提供了理论可行性7~9。MJO对热带外天气有滞后影响1011,MJO某种位相后的降水通常会低于/高于气候降水型,MJO对降水起作用的时间滞差为有技巧延伸期预报提供潜在价值12。当前比较先进的预测系统,利用Wheeler等13发展的实时多变量MJO(Real-time Multivariate MJO,RMM)指数代表MJO,可预报性达6~7周14~19,S2S业务模式对MJO的预测技巧达到12~36天20。在统计预报方面,近年来发展的时空投影(Spatial-Temporal Projection Method,STPM)模型2122对RMM实时预测比以往的统计模型2324具有更高的预测能力,MJO传播期间在15天及更长预报时效上,具有与最先进的实时运行模式相当的技巧。MJO及其遥相关的预报技巧达到了20天以上的有用预测范围2526。丁一汇等27也指出基于MJO的潜在可预报性对高空环流场可以达到30天25~27,但对降水而言只可达15天27。吴捷等28发现在10~20天时效上对MJO高影响区低频降水异常的预报技巧高于模式的直接预报,特别是在MJO活跃时期对降水预报技巧的提升更加明显,这为MJO信号释用提供了新思路。

近年来,由于公众、政府部分以及各行业对延伸期时段预报信息的迫切需求,MJO实时及影响预报对延伸期预报越来越重要。本文回顾了MJO在业务应用中的研究进展,对目前MJO应用于延伸期预报的主要预报中心的业务现状进行分析,提出了MJO在延伸期预报应用中面临的问题,并就未来发展趋势进行了展望。

2 MJO应用于延伸期预报的研究进展

2.1 MJO在延伸期降水预报中的应用

MJO对全球各大洲的降水及其极端事件都有显著影响29,降水发生在对流活跃位相的频率显著高于受抑制位相3031。MJO的移动和所处位相对我国夏冬季长江流域和华南地区降水32~36、西南地区降水37有很重要的影响,它们之间的关系对降水的预报和短期气候预测具有重大意义。

基于MJO对降水的作用,开展了很多MJO在延伸期降水预报中的应用研究,Waliser等38发展了一个统计模型,利用MJO的缓慢演变来预测延伸期热带降雨变率。Hsu等21提出了一套时空投影(Spatial-Temporal Projection,STP)模型预报福建低频夏季降水,预报大约提前20天。Li等39把时空投影法延伸到预报华南春季降水,预报提前30天。马悦等40建立了基于STPM的上海梅汛期降水延伸期预报模型,在其梅汛期延伸期降水预报中具有较好的参考价值。此外,林爱兰等41研究了大气季节内振荡(Intraseasonal Oscillation,ISO)对华南降水的影响并建立了基于ISO的降水延伸期定量预测模型。关于MJO对我国极端降水影响的研究主要采用概率预报方法,Xavier等42评估了东南亚极端降水概率可预测性,指出基于MJO获取中期预报时效的极端降水的概率信息是可行的。Ren等43揭示气候预测系统(Climate Forecast System version 2.0,CFSv2)能捕获和预报MJO对极端降水的调制,提出了基于RMM指数的中国南方极端降水概率预报的可行性。另外,基于实时北半球夏季季节内振荡BSISO指数的华南极端降水的监测和概率预报也有很大可能性4445

对于我国夏季降水次季节变率的预报技巧,北京气候中心气候系统模式(Beijing Climate Center Climate System Model version 1.2,BCC_CSM1.2)有效预测是2候(10 d),CFSv2模式是3候(15 d)46。不同S2S模式对南亚和东南亚地区夏季风降水的预测能力存在显著差异,从2天到2周不等47。研究者利用S2S模式对美国西海岸降水评估表明,在第二周之后,预测的结果通常具有很低的预报技巧。一些S2S模式在活跃的MJO条件下表现出增强的延伸期预测技巧48

2.2 MJO在延伸期温度预报中的应用

MJO对热带和热带外一些地区温度及其极端冷暖事件发生有显著调制作用49。北美暖温度异常、中非和南美北部等地的热带地区极端冷暖事件频率的变化、2013年3月西欧强冷空气和2008年东南亚极端冷异常都与MJO事件有关49~52。张伟等53统计了MJO位于各位相时中国各区域发生持续低温事件的概率并分析了其机制。

基于MJO与温度的关系,MJO对冷暖事件预测研究受到越来越多的关注,Zhou等54通过分析流函数异常反映MJO,能够提前至少2周预测美国冷暖干湿极端事件。Johnson等55采用基于北美温度和MJO与ENSO之间统计关系的预报方法,得到冬季温度预报的潜在技巧为提前1~6周。He等56发现热带MJO对流活动前2个模态对中国冬季干(冷)和暖(湿)异常天气有2候左右的预报时效,并提出了利用MJO制作东亚冬季延伸期预报系统的方案。另外,利用STPM方法,可以提前15天预测中国大部地区超过30%的热浪,STPM在中国夏季地面温度和热浪的延伸期预报方面显示出可观的技巧57。针对局地极端冷日的预报,STPM可在除中国东南部和青藏高原外的大部分地区至少提前15天命中率达到30%以上58。模式中MJO及大气对MJO响应的真实表现对极端温度事件的可靠早期预警信息非常重要,相比于同一区域不活跃位相,活跃位相后的极端事件的预报技巧趋于更好49

对于我国夏季温度次季节变率的预报技巧,BCC_CSM1.2模式有效预测期限是3候(15 d),CFSv2模式是4候(20 d)4659。Hsu等60评估东亚地区2家[中国气象局(China Meteorological Administration,CMA)和日本气象厅(Japan Meteorological Agency,JMA)]参加世界气象组织S2S预报计划的预报数据发现,当模式能对MJO强度和对流位置预报正确时,对于东北亚的热浪事件预报技巧也较高。根据Lin61和Vitart等62的研究结果,MJO在温带极端高温的次季节预测中起着关键作用。

2.3 MJO在延伸期台风预报中的应用

MJO对全球的台风活动有调制作用,MJO处于对流活跃位相或活跃位相通过时有利于热带气旋(Tropical Cyclone,TC)形成、频数增多和增强63~65,并且TC增强区域随着MJO东传而东移9;对流抑制位相会导致TC活动减少6667。这种调制存在遥相关影响6869,如印度洋MJO对流加强时,北大西洋上TC活动增加70,迅速增强的可能性也增加71

基于以上对MJO和TC联系的认识,Leroy等72发现MJO近赤道对流异常的南部和西部TC活动聚集并制作了南半球TC季节内统计预报。法国气象局应用包含MJO指数的5个因子开展了以南半球为主的逐周台风活动延伸期预报,结果表明台风活动的预报技巧最大可达3周,并且在2007—2008年夏季南印度洋地区生成台风的实时预测中,大多数台风的实况生成时间与预测的台风生成概率峰值时段相对应。近年来,Qian等73开发了一种动力统计结合模式,能够提前25天对北太平洋西部TC频率进行预测,比单独基于统计或动力模型的预测更有优势。Zhou等74研究发现成功预测QBWO后,TC强度在延伸期(10~30天)有潜在可预测性。Zhu等75运用多种STPM方法开展热带气旋聚集事件的延伸期预报,通过融合来自季节内变化的2种主要模态(如10~30天和30~80天),可以实现提前30天获得有用预测技巧预报。STPM提前10天(20天)对2003—2014年54个TC聚集事件的预报达到了80%(69%)的命中率,这对西北太平洋上热带气旋聚集事件延伸期预报有实用价值。

对于模式对次季节TC预报的评估,Lee等7677讨论了TC生成、发生和累积气旋能量(Accumulated Cyclone Energy,ACE)在6个S2S模式中的表现,其中,来自欧洲中期天气预报(European Centre for Medium-Range Weather Forecasts,ECWMF)的模式是最有技巧的集合预报系统,来自澳大利亚气象局(Bureau of Meteorology Australia,BoM)的模式表现次之。对于所有模式和提前时效,模式的技巧评分与其准确表示MJO和MJO-TC关系的能力之间存在很大关系76

2.4 MJO在延伸期季风预报中的应用

MJO对季风活动有很重要的调制作用。李汀等78研究热带印度洋MJO对南海夏季风ISO的影响表明,在南海夏季风ISO强年,夏季共有3次较强的ISO波动,前2次均来自于热带印度洋。周群等79揭示了随着MJO从西印度洋进入西太平洋,南海冬季风出现阶段性的间断和活跃。Goswami等80发现印度夏季风由活跃(中断)转为中断(活跃)状态的可预报性达20天(10天),在此基础上提出了印度季风季节内振荡延伸期预报的经验统计模型。Dwivedi等81利用Lorenz模型预测季风中断的持续时间,发现活跃期的峰值异常可以作为随后间断期持续时间的一个预报因子,提前间断开始时间为23天(结束时间38天)。这些研究结果为利用MJO位相有技巧地实时预报季风间断和活跃状态提供了机遇。

S2S预测系统评估表明,对印度和澳大利亚夏季季风活动/中断期的预测是有限的,提前时间不到3周82。S2S模式对季风环流指数包括韦氏—杨指数、印度夏季风指数、南亚夏季风指数和东南亚夏季风指数对相应季风区的预测分别在9~31天、3~17天、7~13天和7~14天有统计学意义47。一般来说,S2S模式在预测有利的MJO振荡位相时,对季风的预报更有技巧。

2.5 MJO在延伸期其他方面预报中的应用

MJO对气溶胶的调制作用8384主要通过对大西洋低层纬向风影响,Guo等85也表明这些地区的沙尘受到MJO调制的信风和降水异常的影响。气溶胶对空气质量和人类健康产生严重影响,空气质量有技巧的延伸期预报将会带来巨大的社会经济效益。

MJO对重大洪水事件产生影响,例如1998年夏中国东部的一系列严重洪水86、2002年4月阿富汗洪水87、2006—2007年马来西亚半岛南部极端洪水88以及2002年、2007年和2008年雅加达历史上最大洪水89。虽然单个洪水事件与单个MJO事件的关联有较大的不确定性,但MJO对洪水发生概率的影响具有统计显著性。

MJO对火灾的可能影响来自于它对降雨的调制,从而有助于防止、延迟或终止火灾。例如MJO对海洋大陆火灾的影响,干季(6~11月)火灾最多(最少)发生在MJO干旱(多雨)阶段,其火灾比率可高达10。在湿季(12月至次年5月),MJO降雨之后,由于燃烧的材料需要更长的时间才能干燥,火灾活动会更加延迟90

3 MJO应用于延伸期预报的业务现状

在国外,美国气候预测中心(Climate Prediction Center,CPC)建立了MJO监测预测、评估和MJO影响预报一体化业务体系,MJO监测主要基于RMM指数、OLR、纬向风和速度势等时空分布来进行;预测采用经验统计模式 (包括组合相似法CA、自回归模型ARM、滞后线性回归PCL、经验位相传播EWP)和动力模式(全球集合预报系统GEFS、全球预报系统GFS/NCEP、气候预报系统CFS)来进行MJO实时业务预报。CPC除开展8~14天逐日温度降水概率预报及历史回算订正产品、灾害预估和极端预报指数(Extreme Forecast Index,EFI)等产品外,也开展3~4周预报业务,S2S计划中MJO的相关研究将为其提供技术支撑91。澳大利亚气象局(Australian Bureau of Meteorology,ABOM)提供周降水、最低/高温超过中位数阈值概率产品,将RMM指数作为MJO实时监测与诊断工具,采用统计模型和动力模式进行MJO的实时预测。利用MJO各位相澳大利亚降雨可能性与850 hPa风场和ORL的历史统计关系,在ABOM热带气候周报中给出MJO影响预报92,同时对南半球未来1~3周热带气旋生成频数进行预测。

在我国气象部门内,国家气象中心(National Meteorological Center,NMC)从2002年起开展了延伸期预报的探索,于2005年开始业务化延伸期预报业务,主要制作10~20天降水和温度趋势预报,并预测相应旬的主要天气过程。MJO预报构建完成了整体框架体系,包括MJO每日最新监测、统计预测和动力预测方法得到的实时预测产品、MJO各位相与中国各月天气(日降雨量、雨日概率和日气温距平)气候统计结果等。国家气候中心(National Climatic Center,NCC)建立了基于IMPRESS1.0的MJO监测预测一体化业务9394。把RMM指数作为监测指标,采用滞后线性回归和自回归模型,利用NCEP、Grapes和FY3C等观测资料、不同动力模式输出和经验统计预测数据,监测RMM指数空间位相和RMM指数振幅时间序列,MJO影响预报包括MJO降尺度模式输出的实时未来6候的候平均温度和降水异常产品(https://cmdp.ncc-cma.net/Monitoring/cn_mjo_impress.php?product=IMP),并且建立了相应的评估业务。各省市气象部门,如上海市气候中心、福建气候中心和广州中心气象台,根据所关心地区强降水过程与低频环流系统的关系,积极开展10~30天降水温度等天气过程和趋势预报,并投入汛期预报业务应用,在江淮梅雨延伸期预报和台风及其降水延伸期实时业务预报中取得了良好的预报服务效果95

可见,当前MJO在延伸期降水、温度和台风方面的预报应用广泛,但还需要进一步加强适用性研究。在极端天气(如极端降水、寒潮和高温热浪)、季风爆发、环境以及灾害评估等方面也需要拓展,建立相关业务,提供延伸期时段的相关信息。

4 MJO应用于延伸期预报面临的问题

在预报对象方面,目前国内外主流数值预报中心普遍将延伸期逐周平均的气象要素和环流距平作为预报对象,基于MJO影响预报也为MJO位相的要素平均或距平,这在预测结果的针对性和指导意义上存在局限性。而延伸期时段重要天气过程的准确预报是延伸期预报的核心,如何针对其较准确的预报是面临的一个急需解决的问题96

在预报方法方面,当前动力模式对MJO生成关键区及传播等的模拟还存在一定问题,这严重影响着次季节预报的准确性。例如,在研究MJO对北半球中纬度季节内预报时,MJO活跃的3~4位相,相比于MJO准静止个例,多数模式表现出较低延伸期预报技巧1297,这种预报技巧的下降可能归因于多数模式在MJO东传通过海洋大陆时不能很好地代表MJO98,这是目前动力延伸预报方法的主要问题。

在预报机理方面,针对MJO等低纬度地区的大气季节内低频振荡已有大量研究工作,然而中高纬度地区低频振荡的活动规律和传播特征以及与我国气象要素之间的联系还缺乏深入研究,如何综合考虑低纬度和中高纬度的低频信息,建立与要素预报的物理联系仍然是难点。

在影响预报评价方面,如何确定MJO影响预报是否准确就要针对预报对象制定兼顾科学性和实用性的检验标准问题。何金海等99提出延伸期预报时效与预报精度应该相匹配原则,基于此来探索延伸期预报的评价方法,但这方面的工作仍需加强和攻坚,这也同样是MJO影响预报面临的重要问题。

5 结 语

本文回顾了近几年MJO对天气影响研究及预报应用的最新进展,总结了MJO在延伸期降水、温度、台风和季风等方面的预报应用中存在的理论支撑。基于MJO与降水、温度和TC活动、季风的关系,一些统计模型例如时空投影法、基于MJO/ISO的统计预报方法被建立,来进行相关事件的延伸期预测。分析了MJO在世界主要预报业务中心的应用现状,指出了当前MJO影响预报业务应用中面临的困难,并对MJO在延伸期预报应用中面临的预报对象的确立、当前动力模式对MJO的模拟、MJO与气象要素的物理联系及MJO影响预报的检验等方面的技术难点进行了分析,基于上述关键问题,进一步明确了今后MJO应用于延伸期预报中的方向和重点。

(1)集合预报被认为是解决初值条件误差和模式误差的有效途径,在业务预报中世界各国均在大力发展集合数值预报技术,它不但可以提高确定性预报的效果和可靠性,还可为概率预报提供基础100。基于集合预报促进不同预报形式(例如超过阈值的概率)的发展和比较,可丰富MJO影响预报产品发展形式,提供更多延伸期预报信息。

(2)随着动力模式在MJO多尺度结构模拟上的改进和分辨率的进一步提高,在其基础上采用多模式集成方法将成为未来发展趋势。对于一些变量例如降水,多模式集成可以产生更有技巧和更可靠的延伸期预报101图2)。在预报时效上,逐日天气预报技巧基本限制在两周附近,而很多S2S模式对于MJO有提前2~3周的可观技巧,多模式集成能获得更长时效上较为准确的延伸期预报。

图2

图2   北半球热带外周平均降水的概率技巧评分[91]

横坐标为预报提前时效,各种颜色线条表示S2S多模式集成、11个模式(MULTI、ecmwf、UKMO、NCEP、CNRM、JMA、CMA、KMA、BoM、ECCC、HMCR、ISAC)的评分,评分时段为2017年6月8日至2018年11月1日

Fig.2   Probability Skill Score of the weekly mean precipitation over the Northern Extratropics[91]

The horizontal axis is the lead time,and various color lines represent the scores of S2S multi-mode integration and 11 modes (MULI,ecmwf,UKMO,NCEP,CNRM,JMA,CMA,KMA,BoM,ECCC,HMCR,ISAC). The scoring period is over the period 8 June 2017 to 1 November 2018


(3)影响机理除了研究MJO时间尺度影响,还需探索不同时间尺度的ISO传播过程对不同时空范围的重要天气过程、事件及异常的影响过程。各种季节内振荡如何影响延伸期天气气候过程的强度、持续性和范围,是值得深入研究的重要问题,可为基于MJO的延伸期预报提供物理动力基础,进一步提高MJO在延伸期预报中的适用性。

参考文献

Qi YanjunRong Xinrao. The application prospect and prospect of subseasonal-seasonal forecasting—Review of the conference on subseason-seasonal forecasting (S2

S)

[J]. Advances in Meteorological Science and Technology,201443):74-75.

[本文引用: 4]

齐艳军容新尧.

次季节—季节预测的应用前景与展望——“次季节—季节预测(S2S)”会议评述

[J].气象科技进展,201443):74-75.

[本文引用: 4]

Lorenz E N.

The predictability of a flow which possesses many scales of motion

[J]. Tellus,1969213):289-307.

[本文引用: 1]

Ma JieJin RonghuaZong Zhipinget al.

Analysis of predictability in extended range forecast

[J]. Desert and Oasis Meteorology,2019133):137-143.

[本文引用: 1]

马杰金荣花宗志平.

延伸期预报中的可预报性浅析

[J].沙漠与绿洲气象,2019133):137-143.

[本文引用: 1]

Madden R AJulian P R.

Detection of a 40-50-day oscillation in the zonal wind in the tropical Pacific

[J]. Journal of Atmospheric Science,197128702-708.

[本文引用: 1]

Li TZhou C.

Planetary scale selection of the Madden-Julian oscillation

[J]. Journal of Atmospheric Science,2009668): 2 429-2 443.

Zhao CLi TZhou T.

Precursor signals and processes associated with MJO initiation over the tropical indian ocean

[J]. Journal of Climate, 2013261): 291-307.

[本文引用: 1]

Waliser DLau WStern Wet al.

Potential predictability of the Madden-Julian Oscillation

[J]. Bulletin of the American Meteorological Society,2003841):33-50.

[本文引用: 1]

Li T.

Recent advance in understanding the dynamics of the Madden-Julian Oscillation

[J]. Journal of Meteorological Research,2014281):1-33.

Aiyyer AMolinari J.

MJO and tropical cyclogenesis in the Gulf of Mexico and eastern Pacific:Case study and idealized numerical modeling

[J]. Journal of Atmospheric Sciences,2008652):691-704.

[本文引用: 2]

Lin HBrunet GMo R.

Impact of the Madden-Julian Oscillation on wintertime precipitation in Canada

[J]. Monthly Weather Review,201013810):3 822-3 839.

[本文引用: 1]

Schreck C JCordeira J MMargolin D.

Which MJO events affect North American temperatures?

[J].Monthly Weather Review,201314111):3 840-3 850.

[本文引用: 1]

Pan BHsu KAghakouchak Aet al.

Precipitation prediction skill for West Coast United States—From short to extended range

[J]. Journal of Climate,2019321):16-82.

[本文引用: 2]

Wheeler M CHendon H H.

An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction

[J]. Monthly Weather Review,20041328):1 917-1 932.

[本文引用: 1]

Kim H-MWebster P JToma V Eet al.

Predictability and prediction skill of the MJO in two operational forecasting systems

[J]. Journal of Climate,20142714):5 364-5 378.

[本文引用: 1]

Neena J MLee J YWaliser Det al.

Predictability of the Madden-Julian Oscillation in the Intraseasonal Variability Hindcast Experiment (ISVHE)

[J]. Journal of Climate, 20142712): 4 531-4 543.

Rashid H AHendon H HWheeler M Cet al.

Prediction of the Madden-Julian oscillation with the POAMA dynamical prediction system

[J]. Climate Dynamics,2011363/4):649-661.

Xiang BZhao MJiang Xet al.

The 3-4-week MJO prediction skill in a GFDL coupled model

[J]. Journal of Climate,20152813):5 351-5 364.

Marshall A GHendon H HHudson D.

Visualizing and verifying probabilistic forecasts of the Madden-Julian Oscillation

[J]. Geophysical Research Letters,20164323):12 278-12 286.

Wu JRen H-LZuo Jet al.

MJO prediction skill,predictability,and teleconnection impacts in the Beijing Climate Center atmospheric general circulation model

[J]. Dynamics of Atmospheres and Oceans,20167578-90.

[本文引用: 1]

Lim YSon S-WKim D.

MJO Prediction skill of the subseasonal-to-seasonal prediction models

[J]. Journal of Climate,20183110):4 075-4 094.

[本文引用: 1]

Hsu P CLi TYou Let al.

A spatial-temporal projection model for 10-30 day rainfall forecast in South China

[J]. Climate Dynamics,2015445/6):1 227-1 244.

[本文引用: 2]

Bangqi HsuZang YuxinZhu Zhiweiet al.

Subseasonal-to-Seasonal(S2S) prediction using the Spatial-Temporal Projection Model (STPM)

[J]. Transactions of Atmospheric Sciences,2020431): 212-224.

[本文引用: 1]

徐邦琪臧钰歆朱志伟.

时空投影模型(STPM)的次季节至季节(S2S)预测应用进展

[J].大气科学学报,2020431):212-224.

[本文引用: 1]

Jiang XWaliser D E.

Assessing the skill of an all-season statistical forecast model for the Madden-Julian Oscillation

[J]. Monthly Weather Review,20081366):1 940-1 956.

[本文引用: 1]

Seo K HWang WGottschalck Jet al.

A evaluation of MJO forecast skill from several statistical and dynamical forecast models

[J]. Journal of Climate,2010229):2 372-2 388.

[本文引用: 1]

Vitart FMolteni F.

Simulation of the Madden-Julian Oscillation and its teleconnections in the ECMWF forecast system

[J].Quarterly Journal of the Royal Meteorological Society,2010136649):842-855.

[本文引用: 2]

Vitart FMolteni FJung T.

Prediction of the Madden-Julian Oscillation and its impact on the European weather in the ECMWF monthly forecasts

[J]. International Advances in Economic Research,2011121):141-142.

[本文引用: 1]

Ding YihuiLiang Ping.

Extended range forecast basing on MJO

[J]. Meteorology,2010367): 111-122.

[本文引用: 3]

丁一汇梁萍.

基于MJO的延伸预报

[J].气象,2010367):111-122.

[本文引用: 3]

Wu JieRen HongliXu Xiaofenget al.

Seasonal modulation of MJO's impact on precipitatipn in China and its dynamical downscaling prediction

[J]. Meteorology,2018446):737-751.

[本文引用: 1]

吴捷任宏利许小峰.

MJO对我国降水影响的季节调制和动力—统计降尺度预测

[J].气象,2018446):737-751.

[本文引用: 1]

Cowan TWheeler M CAlves Oet al.

Forecasting the extreme rainfall,low temperatures,and strong winds associated with the northern Queensland floods of February 2019

[J].Weather and Climate Extremes,201926100232. DOI: 10.1016/j.wace.2019.100232.

DOI      [本文引用: 1]

Jayawardena ISumathipala W LBasnayake B.

Impact of Madden Julian Oscillation (MJO) and other meteorological phenomena on the heavy rainfall event from 19th-28th December,2014 over Sri Lanka

[J]. Journal of the National Science Foundation of Sri Lanka,2017452):101-111.

[本文引用: 1]

Hidayat R.

Modulation of indonesian rainfall variability by the Madden-Julian Oscillation

[J].Procedia Environmental Sciences,201633167-177.

[本文引用: 1]

Yang QiumingSong JuanLi Yiet al.

Review of impacts of the global atmospheric intraseasonal oscillation on the continuous heavy rainfall over Yangtze River Valley

[J]. Advances in Earth Science,2012278):876-884.

[本文引用: 1]

杨秋明宋娟李熠.

全球大气季节内振荡对长江流域持续暴雨影响的研究进展

[J]. 地球科学进展,2012278):876-884.

[本文引用: 1]

Zhang LWang BZeng Q.

Impact of the Madden-Julian Oscillation on summer rainfall in Southeast China

[J]. Journal of Climate,2009222):201-216.

Zhang LinaLin PengfeiXiong Zhe.

Effects of intra-seasonal oscillation in tropical atmosphere on precipitation in pre-flood period of south China

[J]. Atmospheric Science,2011353):560-570.

章丽娜林鹏飞熊喆.

热带大气季节内振荡对华南前汛期降水的影响

[J].大气科学,2011353):560-570.

Jia XiaolongChen LijuanRen Fuminet al.

Impacts of the MJO on winter rainfall and circulation in China

[J]. Advances in Atmospheric Sciences,2011283):521-533.

Yuan WeiYang Haijun.

Modulation of winter precipitation in southeast China by Madden-Julian Oscillation

[J]. Journal of Peking University (Natural Science),2010462):207-214.

[本文引用: 1]

袁为杨海军.

Madden-Julian振荡对中国东南部冬季降水的调制

[J].北京大学学报:自然科学版,2010462):207-214.

[本文引用: 1]

Li TingYan XinJu Jianhua.

Impact of MJO activities on precipitation in May over Yunnan

[J]. Chinese Journal of Atmospheric Sciences,2012366): 1 101-1 111.

[本文引用: 1]

李汀严欣琚建华.

MJO活动对云南5月降水的影响

[J].大气科学,2012366): 1 101-1 111.

[本文引用: 1]

Waliser D EJones CSchemm J K Eet al.

A statistical extended-range tropical forecast model based on the slow evolution of the Madden-Julian Oscillation

[J]. Journal of Climate,1999127):1 918-1 939.

[本文引用: 1]

Li WHsu P-CHe Jet al.

Extended-range forecast of spring rainfall in southern China based on the Madden-Julian Oscillation

[J]. Meteorology and Atmospheric Physics,20161283): 331-345.

[本文引用: 1]

Ma YueLiang PingLi Wenkaiet al.

Application of spatial-temporal projection model for extended-range forecast during meiyu season in Shanghai

[J]. Meteorology,20184412):87-97.

[本文引用: 1]

马悦梁萍李文铠.

时空投影法在上海地区梅汛期降水延伸期预报中的应用

[J]. 气象,20184412):87-97.

[本文引用: 1]

Lin AilanJi ZhongpingGu Dejunet al.

Application of atmospheric Intra-seasonal Oscillation in precipitation forecast in South China

[J]. Chinese Journal of Tropical Meteorology,2016326):878-889.

[本文引用: 1]

林爱兰纪忠萍谷德军.

大气季节内振荡在华南降水预报中的应用

[J].热带气象学报,2016326):878-889.

[本文引用: 1]

Xavier PRahmat RCheong W Ket al.

Influence of Madden-Julian Oscillation on Southeast Asia rainfall extremes: Observations and predictability

[J]. Geophysical Research Letters,20144112): 4 406-4 412.

[本文引用: 1]

Ren H-LRen P.

Impact of Madden-Julian Oscillation upon winter extreme rainfall in Southern China: Observations and predictability in CFSv2

[J]. Atmosphere,20178192): 1-14.

[本文引用: 1]

Ren PRen H-LFu J-Xet al.

Impact of boreal summer intraseasonal oscillation on rainfall extremes in Southeastern China and its predictability in CFSv2

[J]. Journal of Geophysical Research: Atmospheres,20181239): 4 423-4 442.

[本文引用: 1]

Hsu P CJ‐Y LeeK‐J Ha.

Influence of boreal summer intraseasonal oscillation on rainfall extremes in southern China

[J]. International Journal of Climatology,2016368):1 403-1 412.

[本文引用: 1]

Fu ZhipengHuang Anning.

Evaluation of forecasting skills and error correction of subseasonal precipitation in summer over China in BCC S2S forecasting system

[C]//The 35th Annual Meeting of the Chinese Meteorological Society S7 East Asia ClimateVariation Mechanism of Extreme Climatic Events and Climate Prediction2018.[

[本文引用: 2]

付志鹏黄安宁.

BCC S2S预报系统对中国夏季次季节降水的预报技巧评估及误差订正

[C]//第35届中国气象学会年会S7东亚气候、极端气候事件变异机理及气候预测2018.]

[本文引用: 2]

Jie WVitart FWu Tet al.

Simulations of the Asian summer monsoon in the sub-seasonal to seasonal prediction project (S2S) database

[J]. Quarterly Journal of the Royal Meteorological Society,20171432 282-2 295.

[本文引用: 2]

Pan BHsu KAghakouchak Aet al.

Precipitation prediction skill for West Coast United States-from short to extended range

[J]. Journal of Climate,2019321):16-82.

[本文引用: 1]

Matsueda STakaya Y.

The global influence of the Madden-Julian Oscillation on extreme temperature events

[J]. Journal of Climate,20152810): 4 141-4 151.

[本文引用: 3]

Barrett B S.

Connections between the Madden-Julian Oscillation and surface temperatures in winter 2018 over eastern North America

[J]. Atmospheric Science Letters,2019201): e869.DOI: 10.1002/asl.869.

DOI     

Zhou YYang BChen Het al.

Effects of the Madden-Julian Oscillation on 2-m air temperature prediction over China during boreal winter in the S2S database

[J]. Climate Dynamics,20185211): 6 671-6 689.

Hong C CLi T.

The Extreme cold anomaly over southeast Asia in February 2008: Roles of ISO and ENSO

[J]. Journal of Climate,20092213): 3 786-3 801.

[本文引用: 1]

Zhang WeiJiang Jing.

Influence of Madden-Julian Oscillation on winter persistent cold events in China

[J]. Journal of the Meteorological Sciences,2015354):422-429.

[本文引用: 1]

张伟江静.

热带大气季内振荡对中国冬季持续低温事件的影响

[J].气象科学,2015354):422-429.

[本文引用: 1]

Zhou SHeureux M LWeaver Set al.

A composite study of the MJO influence on the surface air temperature and precipitation over the Continental United States

[J]. Climate Dynamics,2011387): 1 459-1 471.

[本文引用: 1]

Johnson NCollins DFeldstein Set al.

Skillful wintertime North American temperature forecasts out to 4 weeks based on the state of ENSO and the MJO

[J]. Weather and Forecasting,2014291):23-38.

[本文引用: 1]

He JLin HWu Z.

Another look at influences of the Madden-Julian Oscillation on the wintertime East Asian weather

[J]. Journal of Geophysical Research,2011116D3): D03109.DOI:10.1029/2010JD014787.

DOI      [本文引用: 1]

Zhu ZLi T.

Statistical extended-range forecast of winter surface air temperature and extremely cold days over China

[J]. Quarterly Journal of the Royal Meteorological Society,2017143704): 1 528-1 538.

[本文引用: 1]

Zhu ZLi T.

Extended-range forecasting of Chinese summer surface air temperature and heat waves

[J]. Climate Dynamics,2017505/6): 2 007-2 021.

[本文引用: 1]

Li Chengcheng.

Study on the Pad Scale Predictibility of Summer Temperature and Precipitation in China Based on BCC_CSM

1.2 and CFSv2

Model Data

[D]. ChengduChengdu University of Information Technology2018.

[本文引用: 1]

李成程.

基于BCC_CSM

1.

2和CFSv2模式资料对中国夏季温度和降水的候尺度可预报性研究

[D].成都成都信息工程大学2018.

[本文引用: 1]

Hsu P CQian YLiu Yet al.

Role of abnormally enhanced MJO over the Western Pacific in the formation and subseasonal predictability of the record-breaking Northeast Asian heatwave in the summer of 2018

[J]. Journal of Climate,2020338): 3 333-3 349.

[本文引用: 1]

Lin H.

Predicting the dominant patterns of subseasonal variability of wintertime surface air temperature in extratropical Northern Hemisphere

[J]. Geophysical Research Letters,2018459):4 381-4 389.

[本文引用: 1]

Vitart FRobertson W A.

The sub-seasonal to seasonal prediction project (S2S) and the prediction of extreme events

[J].npj Climate and Atmospheric Science,201811):3. DOI:10.1038/s41612-018-0013-0.

DOI      [本文引用: 1]

Klotzbach P J.

The Madden-Julian Oscillation's impacts on worldwide tropical cyclone activity

[J]. Journal of Climate,2014276): 2 317-2 330.

[本文引用: 1]

Maloney E DHartmann D L.

Modulation of Eastern North Pacific hurricanes by the Madden-Julian Oscillation

[J]. Journal of Climate,20001313): 1 451-1 460.

Barrett B SLeslie L M.

Links between tropical cyclone activity and Madden-Julian Oscillation phase in the North Atlantic and Northeast Pacific basins

[J]. Monthly Weather Review,20091372):727-744.

[本文引用: 1]

Kim J-HHo C-HKim H-Set al.

Systematic variation of summertime tropical cyclone activity in the Western North Pacific in relation to the Madden-Julian Oscillation

[J]. Journal of Climate,2008216): 1 171-1 191.

[本文引用: 1]

Li R C YZhou W.

Modulation of Western North Pacific tropical cyclone activity by the ISO. Part I: Genesis and intensity

[J]. Journal of Climate,2013269):2 919-2 930.

[本文引用: 1]

Hall J DMatthews A JKaroly D J.

The modulation of tropical cyclone activity in the Australian region by the Madden-Julian oscillation

[J]. Monthly Weather Review,200112912):2 970-2 982.

[本文引用: 1]

Kikuchi KWang B.

Formation of tropical cyclones in the northern Indian Ocean associated with two types of tropical intraseasonal oscillation modes

[J]. Journal of the Meteorological Society of Japan,201088475-496.

[本文引用: 1]

Klotzbach P J.

On the Madden-Julian Oscillation-Atlantic hurricane relationship

[J]. Journal of Climate,2010232): 282-293.

[本文引用: 1]

Klotzbach P J.

El Niño-Southern Oscillation,the Madden-Julian Oscillation and Atlantic basin tropical cyclone rapid intensification

[J]. Journal of Geophysical Research,2012117D14104):1-12.

[本文引用: 1]

Leroy AWheeler M C.

Statistical prediction of weekly tropical cyclone activity in the Southern Hemisphere

[J]. Monthly Weather Review,200813610): 3 637-3 654.

[本文引用: 1]

Qian YHsu P-CMurakami Het al.

A hybrid dynamical-statistical model for advancing subseasonal tropical cyclone prediction over the western North Pacific

[J]. Geophysical Research Letters,202047e2020GL

090095

DOI:10.1029/2020GL090095.

DOI      [本文引用: 1]

Zhou HHsu P-CQian Y.

Close linkage between quasi biweekly oscillation and tropical cyclone intensification over the western North Pacific

[J]. Atmospheric Science Letter,201819e826. DOI:10.1002/asl.826.

DOI      [本文引用: 1]

Zhu ZLi TBai Let al.

Extended-range forecast for the temporal distribution of clustering tropical cyclogenesis over the western North Pacific

[J]. Theoretical and Applied Climatology,20161303/4): 865-877.

[本文引用: 1]

Lee C-YCamargo S JVitart Fet al.

Subseasonal tropical cyclone genesis prediction and MJO in the S2S dataset

[J]. Weather and Forecasting,2018334): 967-988.

[本文引用: 2]

Lee C-YCamargo S JVitart Fet al.

Subseasonal predictions of tropical cyclone occurrence and ACE in the S2S dataset

[J]. Weather and Forecasting,2020353): 921-938.

[本文引用: 1]

Li TingYang XiuqunJu Jianhua.

Characteristics of intra-seasonal oscillation of summer monsoon in the South China Sea and its response to MJO anomalies in the tropical Indian Ocean

[J]. Chinese Science: Earth Science,2013434):582-593.

[本文引用: 1]

李汀杨修群琚建华.

南海夏季风季节内振荡特征及其对热带印度洋MJO活动异常的响应

[J].中国科学:地球科学,2013434):582-593.

[本文引用: 1]

Zhou QunHuan Huanqing.

Impact of the Madden-Julian oscillation on winter monsoon anomaly over the South China Sea

[J]. Ocean Forecast,2016333): 9-17.

[本文引用: 1]

周群黄焕卿.

MJO对我国南海冬季风异常的影响

[J].海洋预报,2016333): 9-17.

[本文引用: 1]

Goswami B NXavier P K.

Potential predictability and extended range prediction of Indian summer monsoon breaks

[J]. Geophysical Research Letters,20033018): 1966. DOI: 10.1029/2003GL017810.

DOI      [本文引用: 1]

Dwivedi SMittal A KGoswami B N.

An empirical rule for extended range prediction of duration of Indian summer monsoon breaks

[J]. Geophysical Research Letters,200633118):122-140.

[本文引用: 1]

Moron VBombardi RHendon Het al.

Monsoon Sub-Seasonal Prediction

[M]. Sixth,WMO,International Workshop on Monsoons (IWM-VI),2017. DOI:10.1142/9789811216602_0026.

DOI      [本文引用: 1]

Tian BWaliser DKahn Ret al.

Modulation of Atlantic aerosols by the Madden-Julian Oscillation

[J]. Journal of Geophysical Research,2011116D15):D15108. DOI:10.1029/2010JD015201.

DOI      [本文引用: 1]

Tian B DWaliser RKahn Qet al.

Does the Madden-Julian Oscillation influence aerosol variability?

[J]. Journal of Geophysical Research: Atmospheres,2008113D12):D12215. DOI: 10.1029/2007JD009372.

DOI      [本文引用: 1]

Guo Y BTian R AKahn Oet al.

Tropical Atlantic dust and smoke aerosol variations related to the Madden-Julian Oscillation in MODIS and MISR observations

[J]. Journal of Geophysical Research: Atmospheres,201311810):4 947-4 963.

[本文引用: 1]

Zhu C W.

The 30-60 day intraseasonal oscillation over the western North Pacific Ocean and its impacts on summer flooding in China during 1998

[J]. Geophysical Research Letters,20033018): 223-250.

[本文引用: 1]

Barlow MWheeler MLyon Bet al.

Modulation of daily precipitation over Southwest Asia by the Madden-Julian Oscillation

[J]. Monthly Weather Review,201013312):3 579-3 594.

[本文引用: 1]

Tangang F TJuneng LSalimun Eet al.

On the roles of the northeast cold surge,the Borneo vortex,the Madden‐Julian Oscillation,and the Indian Ocean Dipole during the extreme 2006/2007 flood in southern Peninsular Malaysia

[J]. Geophysical Research Letters,20083514): 237-255.

[本文引用: 1]

Aldrian E.

Dominant factors of jakartas three largest floods

[J]. Journal Hidrosfir Indonesia,200833):105-112.

[本文引用: 1]

Zhang C D.

Madden-Julian Oscillation: Bridging weather and climate

[J]. Bulletin of the American Meteorological Society,20139412): 1 849-1 870.

[本文引用: 1]

Vitart FBalmaseda MFerranti Let al.

Extended-Range Prediction

[M]. European Center for Medium Range Weather Forecasts,2019.

[本文引用: 3]

Goswami B NWheeler M C.

Intraseasonal Variability and Forecasting: A Review of Recent Research

[M]. World Scientific,2011.

[本文引用: 1]

Ren HongliWu JieZhao Chongboet al.

Progresses of MJO prediction researches and developments

[J]. Journal of Applied Meteorological Science,2015266):658-668.

[本文引用: 1]

任宏利吴捷赵崇博.

MJO预报研究进展

[J].应用气象学报,2015266):658-668.

[本文引用: 1]

Wu JieRen HongliZhao Chongboet al.

Research and application of operational MJO monitoring and predition products in Beijing Climate Center

[J]. Journal of Applied Meteorological Science,2016276): 641-653.

[本文引用: 1]

吴捷任宏利赵崇博.

国家气候中心MJO监测预测业务产品研发及应用

[J]. 应用气象学报,2016276): 641-653.

[本文引用: 1]

Liang PingHe JinhaiMu Haizhen.

Application of MJO in extended-range forecast

[J]. Advances in Meteorological Science and Technology,201331): 31-38.

[本文引用: 1]

梁萍何金海穆海振.

MJO在延伸期预报中的应用进展

[J].气象科技进展,201331): 31-38.

[本文引用: 1]

Du LiangminKe Zongjian.

A test method for the process event prediction in extended range

[J]. Chinese Journal of Applied Meteorology,2013246):686-694.

[本文引用: 1]

杜良敏柯宗建.

一种适用于延伸期过程事件预报的检验方法

[J].应用气象学报,2013246):686-694.

[本文引用: 1]

Jones CHazra ACarvalho L M V.

The Madden-Julian Oscillation and boreal winter forecast skill: An analysis of NCEP CFSv2 reforecasts

[J]. Journal of Climate,20152815): 6 297-6 307.

[本文引用: 1]

Lin HBrunet GDerome J.

Forecast skill of the Madden-Julian Oscillation in two Canadian atmospheric models

[J]. Monthly Weather Review,200813611): 4 130-4 149.

[本文引用: 1]

He JinhaiLiang PingSun Guowu.

Consideration on extended-range forecast and its application study

[J]. Advances in Meteorological Science and Technology,201331):11-17.

[本文引用: 1]

何金海梁萍孙国武.

延伸期预报的思考及其应用研究进展

[J].气象科技进展,201331):11-17.

[本文引用: 1]

Jin RonghuaMa JieRen Hongchanget al.

Advances and development countermeasures of 10~30 days extended-range forecasting technology in China

[J]. Advance in Earth Sciences,2019348): 814-825.

[本文引用: 1]

金荣花马杰任宏昌.

我国10~30天延伸期预报技术进展与发展对策

[J]. 地球科学进展,2019348): 814-825.

[本文引用: 1]

Vigaud NRobertson A WTippett M K.

Multi-model ensembling of subseasonal precipitation forecasts over North America

[J]. Monthly Weather Review,201714510):3 913-3 928.

[本文引用: 1]

/