地球科学进展, 2019, 34(9): 891-900 DOI: 10.11867/j.issn.1001-8166.2019.09.0891

综述与评述

戈壁沙尘释放过程与机理研究进展

张正偲,1, 潘凯佳1,2, 梁爱民1,2, 董治宝3, 李兴财4

1. 中国科学院西北生态环境资源研究院,甘肃 兰州 730000

2. 中国科学院大学,北京100049

3. 陕西 师范大学 地理科学与旅游学院,陕西 西安 710119

4. 宁夏大学,宁夏 银川 750021

Progress on Process and Mechanism of Sand and Dust Emission on Gobi

Zhang Zhengcai,1, Pan Kaijia1,2, Liang Aimin1,2, Dong Zhibao3, Li Xingcai4

1. Key Laboratory of Desert and Desertification,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China

2. University of Chinese Academy of Sciences,Beijing 100049,China

3. School of Geography and Tourism,Shaanxi Normal University,Xi’ an 710119,China

4. School of Physics & Electronic-Electrical Engineering,Ningxia Key Laboratory of Intelligent Sensing for the Desert Information,Ningxia University,Yinchuan 750021,China

通讯作者: 张正偲(1979-),男,甘肃靖远人,副研究员,主要从事风沙地貌、风沙物理及沙尘释放过程方面的研究.E-mail:zhangzhsi@sina.com

收稿日期: 2019-07-27   修回日期: 2019-09-01   网络出版日期: 2019-10-19

基金资助: 国家自然科学基金项目“阿拉善高原西居延海地区冲积—洪积砂砾戈壁粉尘释放机理与模型研究”.  41971014
宁夏回族自治区重点研发计划项目“荒漠化地区光伏电站电能高效预测的若干关键技术研究”.  2018BFH03004

Corresponding authors: Zhang Zhengcai (1979-), male, Jingyuan County, Gansu Province, Associate professor. Research areas including aeolian geomorphology, aeolian mechanism and dust emission process. E-mail:zhangzhsi@sina.com

Received: 2019-07-27   Revised: 2019-09-01   Online: 2019-10-19

摘要

戈壁是中国西北干旱区的重要地表类型之一,被认为是我国乃至于中亚的沙尘暴源区。受戈壁特殊下垫面影响,沙尘释放过程与机理明显不同于沙漠等其他地表类型。系统分析了影响沙尘释放过程的风动力系统、地貌格局和下垫面特征;从摩阻起动风速和地表粗糙度的角度探讨了戈壁沙尘释放的机理。最后在总结前人工作基础上,结合区域和全球沙尘释放模型的需要,提出加强戈壁地表性质参数化过程、戈壁区沙源甄别和沙尘释放机理是戈壁沙尘释放研究的重中之重。

关键词: 戈壁 ; 沙尘 ; 过程与机理

Abstract

Gobi is one of the most important landscapes in northwest China, and it is also one of the dust sources in north China and even in central Asia. Based on the different land surface characteristics on the gobi surface, sand and dust emission process and mechanism are obviously different with other landscapes, such as sandy desert. Dust emission process and mechanism on the gobi surface were analyzed in this paper. Wind power system, geomorphology pattern and underlying characteristics were considered for their effect on the sand and dust emission process. Then, the mechanism of land surface characteristics on threshold wind velocity was analyzed. Finally, based on the previous studies on dust emission and mechanism, and in combination with the regional and global requirement, we suggested that the land surface characteristics parameterization, identification of the dust sources and sediment emission mechanism should be the main issues in the future gobi sand and dust research.

Keywords: Gobi ; Sand and dust ; Process and mechanism.

PDF (2360KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

张正偲, 潘凯佳, 梁爱民, 董治宝, 李兴财. 戈壁沙尘释放过程与机理研究进展. 地球科学进展[J], 2019, 34(9): 891-900 DOI:10.11867/j.issn.1001-8166.2019.09.0891

Zhang Zhengcai, Pan Kaijia, Liang Aimin, Dong Zhibao, Li Xingcai. Progress on Process and Mechanism of Sand and Dust Emission on Gobi. Advances in Earth Science[J], 2019, 34(9): 891-900 DOI:10.11867/j.issn.1001-8166.2019.09.0891

沙尘释放过程,也称之为沙尘扬析与输送,是指地表沙尘物质在风力作用下脱离地表,进入空气的过程。沙尘释放过程的研究对于估算沙尘释放量、阐明沙尘暴发生机理以及制定防沙治沙措施具有重要的现实和理论意义[1]。沙尘释放过程对气候变化、地表过程以及地球系统都具有重要的影响[2,3,4,5,6],同时,沙尘释放量对于海洋系统的生产力、抑制酸雨、大气污染、人类健康等产生深远的影响[7,8,9,10,11,12,13]。我国主要沙尘源区位于西北干旱区,主要地貌类型为戈壁和沙漠;该地区是“一带一路”的陆路主要途经区域,为此沙尘释放过程对该地区的经济建设和社会发展造成诸多负面的影响。因此,对沙尘释放过程的研究既能满足学科发展的需要,又能满足国家经济建设和社会稳定发展的需求。

戈壁源于蒙古语,原指粗砂、砾石覆盖在硬土层上而形成的荒漠。现指干旱或极端干旱地区,受强烈的风蚀或风化作用,地表被砾石覆盖的荒漠景观。中国戈壁面积达72×104 km2。由于戈壁所处区域自然条件恶劣,地表疏松,缺乏植被等覆盖物的保护,再加上气候干燥且变化异常,成为中国及中亚的主要沙尘源区(图1)。已有研究表明,亚洲的沙尘源区主要为蒙古国南部—中国西北部的戈壁、以塔克拉玛干沙漠为主体的沙漠区和以巴丹吉林—腾格里—乌兰布和沙漠为主体的沙漠区,我国的沙尘释放量占亚洲沙尘释放量的70%[14,15,16,17,18,19,20,21,22,23,24,25,26,27]。而以戈壁为主体的阿拉善高原及毗邻地区始终是我国沙尘暴极易发生区域之一(图1)。

本文就中国戈壁区沙尘释放过程与机理,系统整理和分析了戈壁沙尘释放过程的主要影响因子、研究成果、研究重点和难点,提出了戈壁沙尘研究的趋势,旨在为准确识别区域和全球沙尘源区提供理论依据,为优化区域和全球尺度上沙尘释放模型提供支撑。

1 戈壁沙尘释放过程

沙尘释放过程是一个复杂的物质能量循环过程,其涉及了风沙地貌学、空气动力学和大气边界层物理等学科。沙尘释放过程与动力条件(风速大小和湍流强度)和下垫面属性(沉积物颗粒大小、土壤含水量、植被盖度、空气温湿度、微地形和结皮)密切相关。前人通过风洞试验、野外观测、理论分析、数值模拟和沉积物理化性质分析等方法对沙尘释放过程进行了一些研究,总体上认为中国的干旱、半干旱区是亚洲沙尘的主要源区。但由于研究手段、目的和侧重点的不同,在沙尘源区的问题上存在争议:部分学者认为戈壁是沙尘的主要源区[20];部分学者认为沙漠是沙尘的主要源区[19];还有部分学者认为农田是沙尘的主要源区[27]。究其原因,由于研究时间尺度不同,研究方法不同,以及研究对象不同,从而导致了研究结果的差异。

戈壁是西北干旱区的主要地貌类型之一,根据戈壁地质、地貌上的成因和地面物质组成的性质可以划分为剥蚀(侵蚀)—堆积型和堆积型[28,29,30,31],也有学者将其划分为洪积成因的砾质戈壁、剥蚀残丘型的石质戈壁和冲积型戈壁。侵蚀型戈壁由于地面组成物质较粗,沙尘物质难以释放,所以不是沙尘源区。而对于堆积型戈壁,特别是冲积—洪积砂砾戈壁,主要分布在绿洲和盐碱洼地之中,地表物质主要有河流冲积—洪积砂砾组成(砂砾粒径以1~3 cm居多)[29],同时夹杂着细颗粒的冲洪积物。沙尘物质在强风作用下,极易释放,是潜在的沙尘源区[29]。目前对戈壁沙尘释放过程的研究相对较少,不同学者通过风洞试验对戈壁砾石覆盖度与沙尘释放关系、戈壁空气动力学特征、风沙流运动特征、风蚀量和湍流动能通量等进行了研究。

1.1 风动力系统与沙尘释放过程

风是沙尘物质起动、搬运和沉降的动力条件。沙尘的释放过程是近地层风速大于沙尘物质的起动风速时,沙尘颗粒脱离地表的过程。尽管目前还没有专门针对西北戈壁区的近地层风动力系统研究,但根据以往对西北沙漠区风动力系统的研究结果,戈壁区的风能环境总体以中等和高等风能环境为主,沙尘传输方向包括西北—东南和东北—西南[32]图2)。阿拉善高原、哈密南部等地是风能环境最高的地区(DP>400),其余各地均以中等风能环境为主。风能环境的区域差异,导致风沙活动强度的差异,而不同的风沙活动强度会影响沙尘物质的释放量、输送高度、传输距离以及风沙运动中磨蚀及颗粒间碰撞过程。

图2

图2   中国戈壁区风动力系统

Fig.2   Wind regime in the northwest China gobi area


1.2 地貌格局与沙尘释放过程

为了探讨沙尘源区,区域地貌格局是必须要考虑的[33]。地貌格局对沙尘释放过程的影响主要是影响沙尘物质的来源[34,35]、沙尘物质传输过程、沉降过程以及改变近地层气流结构(风速的大小和方向)。地貌格局是地质历史时期长期演化的结果。对于西北干旱区,整体表现为两山加盆地的格局分布,如河西走廊、巴丹吉林沙漠和腾格里沙漠位于祁连山和阿尔泰山之间,准格尔盆地位于阿尔泰山和天山之间,塔里木盆地位于天山和昆仑山之间。戈壁主要分布在昆仑山、祁连山、阿尔泰山、天山和贺兰山的山前地带。第四纪以来,高大山脉上的冰碛物在流水作用下形成冲积扇或冲积平原,细颗粒物质则带到更远、更低的地势低洼地带。阿拉善高原戈壁区粉尘含量为37%~99%,远大于其他戈壁地区(5%~7%)[36]。在气候变干时,冲积扇/冲积平原和盆地的可风蚀物在强风的作用下脱离地表,为沙尘暴提供充足的物源(图3)。而基于地表沉积物粒度特征、扫描电镜、X射线衍射图和地球化学元素特征的分析结果也证明冲洪积物是阿拉善高原的主要沙尘源区[36]

图3

图3   地貌格局对现代沙尘释放过程影响模型

(a)中国主要沙尘源区物源与山脉动力过程分析;(b)山脉物源动力过程示意图

Fig.3   Schematic overview of high-latitude dust sources and sinks in glacial and paraglacial landscapes

(a) Sediment supplement process in the dust source region and mountains; (b) Sediment supplement processes from mountains


图1

图1   戈壁和沙尘暴发生区空间分布图[24]

Fig.1   Sptial distribution of gobi and dust storm occurring regions in northwest China[24]


除高大山系外,微地形对沙尘释放过程的影响也不可忽略。无论哪种类型的戈壁,其地表并不是平坦的。戈壁地表分布大量冲沟和低洼地带,可蚀性物质在暂时性流水作用下,将较高地表的细颗粒物质搬运、沉积,形成众多可蚀性物质含量大的斑块[35]。而这些斑块表层多含有龟裂,经过强风作用,开始风蚀,并形成沙尘的物源。

1.3 地表特征对沙尘释放过程的影响

戈壁地表特征与沙漠和沙地差异很大(表1),因此,戈壁的沙尘释放过程也明显与沙漠和沙地不同。戈壁地表特征,如可风蚀物分布特征、砾石盖度、砾石大小、植被盖度、植物类型、土壤黏土含量、土壤含水量等均影响沙尘的释放过程[37,38,39]。地表特征对沙尘释放的影响包括2个方面:抑制地表沙尘释放,如砾石、植被、结皮和土壤含水量等,其作用过程在于砾石、植被和结皮覆盖地表,阻止了地表可蚀性物质脱离地表、降低地表风速和增加地表粗糙度。促进沙尘释放,如总可蚀性物质粒度组成和黏土含量。

表1   戈壁、沙漠和沙地地表特征对比

Table 1  Surface properties comparison between gobi and sand desert

戈壁沙漠沙地
降雨<50 mm<200 mm>200 mm
植被盖度小于5%,零星分布,主要分布在黏土含量较多的低洼地带与降雨有关,多分布在丘间地除丘顶外的其余地方
砾石与戈壁类型有关,以大于2 mm为主
沙源较少最多较多
粉尘含量以5%~20%为主<1%,以丘间地含量较多<5%,以丘间地含量较多
微地形复杂多样,多与干涸湖盆、干河床和冲沟相间分布单一单一
结皮主要以物理结皮为主较多

新窗口打开| 下载CSV


尽管目前对戈壁沙尘释放过程进行了一些研究,但对地表特征的参数化分析几乎没有。戈壁地表类型复杂多样(图4),根据表层是否含有土壤结皮,可以划分为2类:含土壤结皮和不含土壤结皮[16]。根据砾石盖度可以划分为风蚀性、动力稳定性和堆积型。不同戈壁类型通过影响近地层气流特征(平均风速和湍流结构)、地表粗糙度、摩阻风速等来影响沙尘物质的起动过程和输送过程。不论戈壁是冲积、洪积、坡积成因还是侵蚀、剥蚀成因,其地表特征总体表现为砾石覆盖高、植被稀少、含有土壤结皮、黏土含量多等特征。以往对河西走廊不同戈壁地表沙尘释放过程的观测表明,在相同风况条件下,地表属性控制沙尘释放量,冲积—洪积砂砾戈壁沙尘释放量是砾石盖度大且含有土壤物理结皮的10倍左右[16]。由此可见:冲积—洪积砂砾戈壁是我国西北地区的最主要沙尘源区;地表属性,特别是砾石盖度、黏土含量和土壤物理结皮是影响沙尘释放过程的主要影响因子。

图4

图4   典型戈壁地表属性示意图

(a)无结皮戈壁;(b)含有冲沟和雅丹的戈壁;(c)含冲沟戈壁;(d)含有结皮的戈壁;(e)戈壁和冲积物并存;(f)含干湖沉积物戈壁

Fig.4   Typical gobi surface characteristics

(a)Without crust; (b) With gully and yardang; (c)With gully; (d)With crust; (e)Coexitence of gobi and diluvial deposition; (f)Large area of alluvial deposition in gobi region


尽管学者已经注意到砾石对沙尘释放过程的影响,但砾石盖度对沙尘释放过程的研究还存在争议:Wang等[34]的风洞试验研究表明,在砾石盖度小于30%时,沙尘释放量随砾石盖度增加而增加,但在砾石盖度大于30%,沙尘释放量随砾石盖度增加而减小。他们认为阿拉善高原的砾石盖度小于30%,所以砾石盖度并不是沙尘释放的主要影响因子。Sharon[40]的野外观测和董治宝等[41]的风洞试验研究则表明,戈壁表面砾石盖度达到40%~50%时,戈壁表层在空气动力学上是稳定的,沙尘难以释放,意味着此时的戈壁不是沙尘源区。而Zhang等[42]的野外观测表明,即使在砾石盖度大于80%,仍有一定数量的沙尘释放。究其原因在于,野外条件下远源释放和近源释放难以区分。但对于砾石盖度小且含有大量沙尘的冲积—洪积砂砾戈壁,由于地表摩阻起动风速小,其极有可能是现代沙尘的源地[26,41,43]。相反,对戈壁物质迁移过程的研究发现,戈壁表层砾石层之下普遍有薄层黏土层,是表面沙尘沉积物向下沉淀的结果,说明现代戈壁在接收沙尘沉积。戈壁表层砾石覆盖下的黏土层或黏土含量较高的沙质层和砾石覆盖度可以被认为是控制戈壁表层沙尘释放的重要因子。

戈壁可蚀性物质含量与沙尘释放量呈正相关[42,44]。一般认为,戈壁区的可蚀性物质是由于盐风化、物理风化、化学风化和风沙的磨蚀作用形成的[35]。细颗粒物质在风力作用下风蚀、搬运和堆积到冲沟,形成沙尘物质的内循环。冲沟内的细颗粒物质在风力作用下脱离地表,形成新的沙尘源,因此可蚀性物质是影响戈壁沙尘释放的主要原因[44],同时,细颗粒物质通过短暂性的河流,搬运到低洼地带,形成细颗粒富集的斑块/干涸河床等微地貌形态;而这些地区是沙尘的主要源区之一[45],沙尘释放量可达177.04 g/(m2·a)。由此可见,在戈壁沙尘释放的研究中,地形因子、季节性河流的携沙能力、风况、沉积物粒度分布、盐分和矿物质含量、土壤物理结皮、物理风化和化学风化都必须考虑[35]

2 戈壁沙尘释放机理

对戈壁沙尘释放机理的研究,是沙尘研究的关键科学问题;也是戈壁沙尘研究中的重点、难点和研究较少的问题。由于戈壁类型复杂多样(如洪积—冲积沙砾质戈壁、洪积砾石戈壁、冲积戈壁、山麓戈壁、侵蚀戈壁、伏土戈壁、石质戈壁和侵蚀残丘戈壁等,不同类型戈壁表层土壤的黏土层和砾石覆盖度均不同),且地表属性空间差异较大,所以不同类型戈壁的沙尘释放机理存在明显差异。而对戈壁沙尘释放机理研究的欠缺,是中亚沙尘释放量存在争议的重要原因。如Zhang等[18]认为中国西北地区的沙尘释放量为800 Tg。而Song等[25]认为,仅春季中国北方的沙尘释放量就达401 Tg。究其原因,除气候变化和研究方法不同造成的差异外,对不同地表沙尘释放机理研究的滞后是上述问题的主要原因。

沙尘的释放过程包括3种:磨蚀、颗粒碰撞作用和团聚体的碰撞分解(图5a)。沙和尘的释放机理在一定程度上具有相似性,沙尘的释放机理可以借助于沙粒起动的研究过程。为了研究沙尘的释放机理,通常通过解决3个问题来阐明,即起动风速,摩阻起动风速,沙尘粒度分布[48]。对沙尘释放机理的研究,通常包括地表要素参数化并计算摩阻起动风速、数值计算,通过观测加以验证和对沙尘释放量的估算(图5b)。对沙尘源区地表属性要素的参数化,是沙尘释放研究中的难点之一[1],也是沙尘释放模型中必不可少的步骤[50]。由此可见,要确定沙尘释放量和阐明戈壁地表沙尘释放机理,对地表属性的参数化是首要环节(图5c)。目前针对干旱区沙尘释放机理的研究,主要是针对戈壁风沙运动或沉积物特征进行探讨[51,52,53]。并未对戈壁地表属性的差异而引起的沙尘释放量和机理进行研究,如对戈壁砾石盖度和生物、物理结皮而引起的摩阻起动风速变化研究较少,也就是说,并未从风沙物理学的角度分析戈壁地区的沙尘释放问题。

图5

图5   沙尘释放机理示意图

(a)戈壁地表沙尘起动过程[46];(b)沙尘释放量与摩阻风速的关系;(c)摩阻风速与地表参数之间的关系[48]

Fig.5   The sketch map of sand and dust emission mechanism

(a)Sand and dust material emission processes[46]; (b)The relationship between dust flux and shear velocity; (c)The relationship between shear velocity and land surface parameters[48]


摩阻起动风速受风速和地表属性的影响,其控制着沙尘释放量,也是数值模拟研究中首先和必须考虑的参数(图6),并决定数值模拟的准确性[5,7,48,64,65,66,67]。常用的摩阻起动风速计算模型为Shao等[21]提出摩阻起动风速与地表属性的函数关系(图6),并被广泛应用于沙尘研究中。同时,Marticorena等[49]、Lu等[68]和GOCART[63]等沙尘释放方案常用于沙尘释放模型中。GOCART方案主要用于模拟全球沙尘过程,但Shao等的方案主要应用于模拟区域沙尘释放。Dong等[61]通过风洞试验,得到摩阻风速与风速梯度之间的函数关系(简称风速廓线法)(图5)。在不同的沙尘释放方案中,粗糙元是必须考虑的参数(R[46,69]。粗糙元,一般认为是根据植被的形态参数来计算[64,67,70,71],但在戈壁区,由于植被盖度小于5%,所以植被并不是主要的粗糙元,而砾石盖度一般大于50%,所以戈壁区的粗糙元应该是砾石。但目前仅个别学者对河西走廊个别区域的砾石盖度进行了调查和统计分析[16,72,73],且并未建立砾石盖度与摩阻起动风速的关系。同时,沙尘释放模型中对砾石盖度和结皮引起的摩阻起动风速的变化几乎未曾考虑[19,22,70,74,75]。而不同砾石盖度的摩阻起动风速为0.34~9.9 m/s[64,67,74,75]。不同类型结皮覆盖的摩阻起动风速为0.2~2.5 m/s[14,64,65,66,67,76]。土壤湿度(H)对沙尘释放机理的研究比较多[22,77],一般认为土壤湿度增加了沙尘颗粒之间的团聚力,所以增加了沙尘的起动风速。近年来,风沙学者逐渐注意到,物理结皮和生物结皮对沙尘释放机理的影响很大,并建立了结皮与摩阻风速的关系(M[65],但并未应用于沙尘模型中。

图6

图6   沙尘释放野外观测与模型建立过程[46,47,48,54,55,56,57,58,59,60,61,62,63]

Fig.6   Dust emission field measurements and modeling optimization[46,47,48,54,55,56,57,58,59,60,61,62,63]


数值模拟对确定区域沙尘释放量具有很大的优势,但受野外观测资料缺乏的限制,不同模型之间的估算结果差异较大[22]。数值计算沙尘源区的释放量并通过观测加以验证,是确定区域沙尘释放量的关键方法,也是探索沙尘输送路径、空间分布、形成机理的基础[1]。由此可见,要估算区域沙尘释放量,野外观测是必不可少的环节。沙尘释放量(F)难以直接观测,一般是通过沙尘水平通量(Q)来计算(图6[63]。沙尘水平通量的野外观测通常采用梯度法(图6[15,16],数值计算常用Shao等[21]的模型和Gillette等[47]的模型(图6)。近年来,类似的模型也层出不穷[75]。但目前几乎所有的模型都没有考虑砾石和结皮的影响,而结皮对于区域或者全球性的沙尘释放模型至关重要[78],也是导致现有模型估算沙尘释放量产生差异的主要原因。

综上所述,正如Kok等[48]写到,沙尘释放研究中,最重要的仍未解决的问题是沙尘释放量与风和土壤状况之间的关系。到目前为止,我们对沙尘释放量与土壤湿度、不可蚀物质、生物/物理结皮、以及其他的土壤参数的理解仍很缺乏,而且,一些区域或全球性沙尘模型中所需的土壤参数仍无法获取。当然,为了解决这些问题,跃移沙尘颗粒导致的沙尘释放量首先需要解决。总体来说,目前对沙尘释放过程与机理的研究中,问题比方案多,完全难以满足沙尘模型参数化方案的需要。

3 戈壁沙尘释放研究发展趋势和展望

综上所述,戈壁沙尘释放问题一直是国内外不同领域学者关注的问题之一,取得了大量研究成果,主要包括:戈壁砾石盖度是影响沙尘释放过程的主要因子之一,临界砾石盖度为30%~50%。地表属性控制沙尘释放量,冲积—洪积砂砾戈壁沙尘释放量是砾石盖度大且含有土壤物理结皮的10倍左右。沙源可用性,特别是上风向的干湖盆和季节性沟谷等,影响戈壁沙尘释放量。戈壁表层的沙尘物质运动特征明显不同于沙漠等其他地表。

尽管前人对戈壁沙尘研究的成果显而易见,但也存在明显不足,为此,本文基于对戈壁沙尘释放过程和机理的研究,提出以下建议:要明确戈壁的沙尘释放过程,首先必须划分戈壁类型,辨别能够释放沙尘的戈壁类型。其次野外建立观测点,进行野外实地观测。再次,受人类活动的影响,戈壁地区的地表破坏严重,所以在野外观测或数值模型时,必须考虑人类活动的影响。但这个问题是以往所有的沙尘释放模型所欠缺的。戈壁沙尘释放过程是与区域自然环境因子、微地貌、近地层空气动力学特征和大气边界层密切相关。鉴于此,未来研究首先要在研究思路上进行改进,建立基于风沙物理学、风沙地貌学、大气边界层动力学等的多学科交叉研究方法,通过野外综合考察、室内试验、定点监测和野外移动风洞模拟试验相结合的方法来探讨戈壁沙尘释放机理。目前对戈壁沙尘释放机理的研究均是零星不系统的。对戈壁的主要地表特征,如砾石和物理结皮等地表数据的缺乏,从而导致沙尘释放模型中难以对其进行参数化分析。为此,对戈壁地表属性的参数化研究,是当前和未来一段时间内,戈壁沙尘释放研究的重要内容。沙尘形成的物质来源决定了沙尘的释放过程、影响范围和程度。为此,必须对物源的空间位置、面积和类型进行的划分,从而计算沙尘的释放量。

参考文献

Wang Tao .

Desert and Desertification in China

[M]. Shijiazhuang:Hebei Science and Technology Press, 2003.

[本文引用: 3]

王涛 .

中国沙漠与沙漠化

[M].石家庄河北科技出版社2003.

[本文引用: 3]

Tegen I Fung I .

Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness

[J]. Journal of Geophysical Research,199499(D11):22 897-22 914.

[本文引用: 1]

Zhang Kecun Qu Jianjun Yu Yanping et al .

Progress of research on wind-blown sand prevention and control of railways in China

[J]. Advances in Earth Science, 2019, 34(6): 573-583.

[本文引用: 1]

张克存屈建军鱼燕萍 .

中国铁路风沙防治的研究进展

[J]. 地球科学进展,201934(6):573-583.

[本文引用: 1]

Chen S Y Jiang N X Huang J P et al .

Quantifying contributions of natural and anthropogenic dust emission from different climatic regions

[J]. Atmospheric Environment,201819194-104.

[本文引用: 1]

Shao Y Fink A H Klose M .

Numerical simulation of a continental‐scale Saharan dust event

[J]. Journal of Geophysical Research,2010115D13205.

[本文引用: 2]

Gong S L Zhang X Y Zhao T L et al .

Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 2. Model simulation and validation

[J]. Journal of Geophysical Research,2003,108(D9):4262.

[本文引用: 1]

Zhuang G S Yi Z Duce R A et al .

Link between iron and sulfur cycles suggested by detection of Fe (n) in remote marine aerosols

[J]. Nature,1992355537-539.

[本文引用: 2]

Jickells T D An Z S Andersen K K et al .

Global iron connections between desert dust, ocean biogeochemistry, and climate

[J]. Science,200530867-71.

[本文引用: 1]

Sha Y Wang A P Yang S L et al .

Correlation of acid rain with the distributions of acid and alkaline elements in aerosols

[J]. Nuclear Instruments and Methods B,1996109/110551-554.

[本文引用: 1]

Terada H Ueda H Wang Z F .

Trend of acid rain and neutralization by yellow sand in east Asia — A numerical study

[J]. Atmospheric Environment,200236(3):503-509.

[本文引用: 1]

Chang Y S Arndt R L Carmichael G R .

Mineral base-cation deposition in Asia

[J]. Atmospheric Environentents,199630(13):2 417-2 427.

[本文引用: 1]

Zhang Chunlai Song Changqing Wang Zhenting et al .

Review and prospect of the study on soil wind erosion process

[J]. Advances in Earth Science201833(1):27-41.

[本文引用: 1]

张春来宋长青王振亭 .

土壤风蚀过程研究回顾与展望

[J]. 地球科学进展,201833(1):27-41.

[本文引用: 1]

Wang R X Li J F Wang J P et al .

Influence of dust storms on atmospheric particulate pollution and acid rain in northern China

[J]. Air Quality, Atmosphere &amp; Health,201710(3):297-306.

[本文引用: 1]

Marticorena B Bergametti G Gillette D et al .

Factors controlling threshold friction velocity in semiarid and arid areas of the United States

[J]. Journal of Geophysical Research,1997102(D19):23 277-23 287.

[本文引用: 2]

Goossens D .

Effect of soil crusting on the emission and transport of wind-eroded sediment: Field measurements on loamy sandy soil

[J]. Geomorphology,200458(1/4):145-160.

[本文引用: 2]

Zhang Z C Dong Z B Qian G Q et al .

Implications of surface properties for dust emission from gravel deserts (gobis) in the Hexi Corridor

[J]. Geoderma,201626869-77.

[本文引用: 5]

Taramelli A Asqui M , Barbour P J et al .

Spatial and temporal dust source variability in northern China identified using advanced remote sensing analysis

[J]. Earth Surface Processes and Landforms,201338(8):793-809.

[本文引用: 1]

Zhang X Y Arimoto R An Z S .

Dust emission from Chinese desert sources linked to variations in atmospheric circulation

[J]. Journal of Geophysical Research,1997102(D23):28 041-28 047.

[本文引用: 2]

Laurent B Marticorena B Bergametti G P et al .

Modeling mineral dust emissions from Chinese and Mongolian deserts

[J]. Global and Planetary Change,200652(1/4):121-141.

[本文引用: 3]

Zhang B L Tsunekawa A Tsubo M .

Contributions of sandy lands and stony deserts to long-distance dust emission in China and Mongolia during 2000-2006

[J]. Global and Planetary Change,200860(3/4):487-504.

[本文引用: 2]

Shao Y P Raupach M R Leys J F .

A model for predicting aeolian sand drift and dust entrainment on scales from paddock to region

[J]. Australia Journal of Soil Research,199634309-342.

[本文引用: 3]

Darmenova K Sokolik I N Shao Y et al .

Development of a physically based dust emission module within the Weather Research and Forecasting (WRF) model: Assessment of dust emission parameterizations and input parameters for source regions in Central and East Asia

[J]. Journal of Geophysical Research,2009114D14201.

[本文引用: 4]

Sun J Zhang M Liu T .

Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960-1999: Relations to source area and climate

[J]. Journal of Geophysical Research Atmospheric,2001106(D10):10 325-10 333.

[本文引用: 1]

Han Lanying Zhang Qiang Guo Ni et al .

Temporal and spatial characteristics dust events in Northwest China

[J]. Journal of Desert Research201232(2):454-457.

[本文引用: 3]

韩兰英张强郭妮 .

中国西北地区沙尘天气的时空位移特征

[J].中国沙漠,201232(2):454-457.

[本文引用: 3]

Song H Q Zhang K S Piao S L et al .

Spatial and temporal variations of spring dust emissions in northern China over the last 30 years

[J]. Atmospheric Environment,2016126117-127.

[本文引用: 2]

Han Xujiao Zhang Guoming Lei Jie et al .

Wind erosion on different solonchaks in dried lake bed

[J]. Arid Zone Research201936(1):262-268.

[本文引用: 2]

韩旭娇张国明雷洁 .

干涸湖床不同类型盐土地表净风吹蚀试验研究

[J].干旱区研究,201936(1):262-268.

[本文引用: 2]

Wang Rende Chang Chunping Peng Shuai et al .

Estimation on farmland wind-erosion and dust emission amount in Bashang of Hebei Province by grain composition contrast

[J]. Transactions of the Chinese Society of Agricultural Engineering201329(21):108-114.

[本文引用: 2]

王仁德常春平彭帅 .

基于粒度对比法的坝上农田风蚀与粉尘释放量估算

[J].农业工程学报,201329(21):108-114.

[本文引用: 2]

Du Rongheng .

The characteristics of gobi geomorphology in north region of the Hexi Corridor

[M]// Selected Conference Paper of the 1960 National Geographic Conference (Geomorphology). Beijing:Science Press,1962.

[本文引用: 1]

杜榕桓 .

河西走廊西北部戈壁地貌的特征

[M].一九六零年全国地理学术会议论文选集(地貌).北京:科学出版社,1962.

[本文引用: 1]

Zhao Songqiao .

A survey of deserts and gobi in China

[M]// Zhao Songqiao's Collected Work. Beijing:Science Press, 1998.

[本文引用: 3]

赵松乔 .

中国沙漠和戈壁概况

[M]//赵松乔文集. 北京:科学出版社,1998.

[本文引用: 3]

Feng Yiming Wu Bo Yao Aidong et al .

A study on classification system and inventory of gobi

[J]. Acta Geographica Sinica201469(3):391-398.

[本文引用: 1]

冯益明吴波姚爱冬 .

戈壁分类体系与编目研究

[J].地理学报,201469(3):391-398.

[本文引用: 1]

Shen Yuancun Wang Xiuhong Cheng Weiming et al .

Integrated physical regionalization of stony deserts in China

[J]. Progress in Geography201635(1):57-66.

[本文引用: 1]

申元村王秀红程维明 .

中国戈壁综合自然区划研究

[J].地理科学进展,201635(1):57-66.

[本文引用: 1]

Zhu Zhenda Wu Zheng Liu Shu et al .

An Introduction to Deserts in China

[M]. Beijing:Science Press1980.

[本文引用: 1]

朱震达吴正刘恕 .

中国沙漠概论

[M]. 北京科学出版社1980.

[本文引用: 1]

Sun J M Ding Z L Xia X P et al .

Detrital zircon evidence for the ternary sources of the Chinese Loess Plateau

[J]. Journal of Asian Earth Science,201815521-34.

[本文引用: 1]

Wang X M Zhou Z J Dong Z B .

Control of dust emissions by geomorphic conditions, wind environments and land use in northern China: An examination based on dust storm frequency from 1960 to 2003

[J]. Geomorphology,200681(3/4):292-308.

[本文引用: 2]

Wang X M Xia D S Wang T et al .

Dust sources in arid and semiarid China and southern Mongolia: Impacts of geomorphologic setting and surface materials

[J]. Geomorphology,200897(3/4):583-600.

[本文引用: 4]

Wang X M Dong Z B Yan P et al .

Surface sample collection and dust source analysis in northwestern China

[J]. CATENA,200559(1):35-53.

[本文引用: 2]

Hupy J P .

Influence of vegetation cover and crust type on wind-blown sediment in a semi-arid climate

[J]. Journal of Arid Environments,200458(2):167-179.

[本文引用: 1]

Zhang J Teng Z J Huang N et al .

Surface renewal as a significant mechanism for dust emission

[J]. Atmospheric Chemistry &amp; Physics,201616(1/12):15 517-15 528

[本文引用: 1]

Xu B Zhang J Huang N et al .

Characteristics of turbulent aeolian sand movement over straw barriers and formation mechanism of their internal erosion form

[J]. Journal of Geophysical Research Atmospheric,2018123(13):6 907-6 919.

[本文引用: 1]

Sharon D .

On the nature of hamadas in Isreal

[J]. Zeitschrift fur Geomorphologie,19626129-147.

[本文引用: 1]

Dong Zhibao Qu Jianjun Liu Xiaoping et al .

An experiments on gobi surface drag coefficients

[J]. Science in China(Series D)200131(11):953-958.

[本文引用: 2]

董治宝屈建军刘小平 .

戈壁表面阻力系数的实验研究

[J].中国科学:D辑,200131(11):953-958.

[本文引用: 2]

Zhang Z C Dong Z B Qian G Q .

An investigation into the processes and volume of dust emissions over gravel and sand deserts in northwestern China

[J]. Boundary-Layer Meteorology,2017163523-535.

[本文引用: 2]

Abudulawaili Jilili ,et al .

Lakes and Salt Dust Storms in Arid Area

[M]. Beijing:China Environmental Publishing House2012.

[本文引用: 1]

吉力力·阿不都外力, .

干旱区湖泊与盐尘暴

[M].北京中国环境出版社2012.

[本文引用: 1]

Wang X M Lang L L Hua T et al .

Characteristics of the Gobi desert and their significance for dust emissions in the Ala Shan Plateau (Central Asia): An experimental study

[J]. Journal of Arid Environments,20128135-46.

[本文引用: 2]

Zhang C X Wang X M Dong Z B et al .

Aeolian process of the dried-up riverbeds of the Hexi Corridor, China: A wind tunnel experiment

[J]. Environmental Monitoring and Assessment,2017189(8):419.

[本文引用: 1]

Shao Y P .

Physics and Modelling of Wind Erosion

[M]. Heidelberg: Springer2008.

[本文引用: 5]

Gillette D A Passi R .

Modeling dust emission caused by wind erosion

[J]. Journal of Geophysical Research,198893(D11):14 233-14 242.

[本文引用: 3]

Kok J F Parteli E J R Michaels T I et al .

The physics of wind-blown sand and dust

[J]. Report Progress and Physics,201275106901.

[本文引用: 7]

Marticorena B Bergametti G .

Modeling the atmospheric dust cycle:1. Design of a soil-derived dust emission scheme

[J]. Journal of Geophysical Research,1995100(D8):16 415-16 430.

[本文引用: 1]

Zhu Hao Zhang Hongsheng .

Review of the field measurements and parameterization of the dust emission flux

[J]. Acta Scientiarum Naturalium Universitatis Pekinensis201147(4):768-776.

[本文引用: 1]

朱好张宏升 .

沙尘释放通量外场观测和参数化研究进展

[J].北京大学学报:自然科学版,201147(4):768-776.

[本文引用: 1]

Zou Xueyong Dong Guangrong Wang Zhoulong .

A study on some characteristics of drifting sand flux over gobi

[J]. Journal of Desert Research199515(4):368-373.

[本文引用: 1]

邹学勇董光荣王周龙 .

戈壁风沙流若干特征研究

[J].中国沙漠,199515(4):368-373.

[本文引用: 1]

Qu Jianjun Huang Ning Wanquan Ta et al .

Structural charateristics of gobi sand-drift and its significance

[J]. Advances in Earth Science200520(1):19-23.

[本文引用: 1]

屈建军黄宁拓万全 .

戈壁风沙流结构特征及其意义

[J].地球科学进展,200520(1):19-23.

[本文引用: 1]

Wang Xunming Lang Lili Hua Ting et al .

Gravel cover of Gobi desert and its significance for wind erosion: An experimental study

[J]. Journal of Desert Research201332(2):313-319.

[本文引用: 1]

王训明郎丽丽花婷 .

戈壁砾石覆盖度与风蚀强度关系实验研究

[J].中国沙漠,201332(2):313-319.

[本文引用: 1]

Bagnold R A .

The Physics of Blown Sand and Desert Dunes

[M]. New York: Methuen1941.

[本文引用: 2]

Durán O Parteli E J R Herrmann H J .

A continuous model for sand dunes: Review, new developments and application to barchans dunes and barchan dune fields

[J]. Earth Surface Processes and Landforms,201035(13):591-600.

[本文引用: 2]

Lettau K Lettau H H .

Experimental and micro-meteorological field studies of dune migration

[R] //Lettau H H , Lettau K ,eds . Exploring the World's Driest Climate (IES Report, 101, 110-147. Madison, WI: University of Wisconsin-Madison, Institute for Environmental Studies1978.

[本文引用: 2]

Kawamura R .

Study of Sand Movement by Wind Translated (1965) as University of California Hydraulics Engineering Laboratory Report HEL 2-8

[M]. Berkeley, 1951.

[本文引用: 2]

Shao Y M Lu H .

A simple expression for wind erosion threshold friction velocity

[J]. Journal of Geophysical Research,2000105(D17):224 37-22 443.

[本文引用: 2]

Gillette D A .

Environmental factors affecting dust emission by wind erosion

[M]// Morales C, ed. Saharan Dust. New York: Wiley,1979.

[本文引用: 2]

Gillette D A .

Threshold friction velocities for dust production for agricultural soils

[J]. Journal of Geophysical Research,197293(D10):12 645-12 662.

[本文引用: 2]

Dong Z B Liu X P Wang X M .

Wind initiation thresholds of the moistened sands

[J]. Geophysical Research Letters,200229(12):1 585.

[本文引用: 3]

Gillette D A .

Threshold friction velocities for dust production for agricultural soils

[J]. Journal of Geophysical Research,197293(D10):12 645-12 662.

[本文引用: 2]

Ginoux P Chin M Tegen I et al .

Sources and distributions of dust aerosols simulated with the GOCART model

[J]. Journal of Geophysical Research,2001106(D17):20 255-20 273.

[本文引用: 4]

Li X Zhang H .

Research on threshold friction velocities during dust events over the Gobi Desert in northwest China

[J]. Journal of Geophysical Research,2011,116(D20):D20210.

[本文引用: 4]

Sharratt B S Vaddella V .

Threshold friction velocity of crusted windblown soils in the Columbia Plateau

[J]. Aeolian Research,201415227-234.

[本文引用: 3]

Belnap J Walker B J Munson S M et al .

Controls on sediment production in two US deserts

[J]. Aeolian Research,20141415-24.

[本文引用: 2]

Brungard C W Boettinger J L Hipps L E .

Wind erosion potential of lacustrine and alluvial soils before and after disturbance in the eastern Great Basin, USA: Estimating threshold friction velocity using easier-to-measure soil properties

[J]. Aeolian Research,201518185-203.

[本文引用: 4]

Lu H Shao Y P .

Toward quantitative prediction of dust storms: an integrated wind erosion modelling system and its applications

[J]. Environmental Modelling Software,200116(3):233-249.

[本文引用: 1]

Raupach M R .

Drag and drag partition on rough surfaces

[J]. Boundary Layer Meteorology,199260(4):375-395.

[本文引用: 1]

Xi X Sokolik I N .

Seasonal dynamics of threshold friction velocity and dust emission in Central Asia

[J]. Journal of Geophysical Research Atmospheric,2015120(4):1 536-1 564.

[本文引用: 2]

Batt R G Peabody S A .

Threshold friction velocities for large pebble gravel beds

[J]. Journal of Geophysical Research,1999104(D20):24 263-24 279.

[本文引用: 1]

Qian Guangqiang Dong Zhibao Luo Wanyin et al .

Gravel morphoketric analysis based on digital images of different gobi surface in Northwestern China

[J]. Journal of Desert Research201434(3):625-633.

[本文引用: 1]

钱广强董治宝罗万银 .

基于数字图像的中国西北地区戈壁表面砾石形貌特征研究

[J].中国沙漠,201434(3):625-633.

[本文引用: 1]

Mu Y Wang F Zheng B Y .

McGET: A rapid image-based method to determine the morphological characteristics of gravels on the Gobi desert surface

[J]. Geomorphology,201830489-98.

[本文引用: 1]

Gillette D A Adams J Muhs D et al .

Threshold friction velocities and rupture moduli for crusted desert soils for the input of soil particles into the air

[J]. Journal of Geophysical Research,198287(C11):9 003-9 015.

[本文引用: 2]

Webb N P Okin G S Brown S .

The effect of roughness elements on wind erosion: The importance of surface shear stress distribution

[J]. Journal of Geophysical Research Atmospheric,2014119(10):6 066-6 084.

[本文引用: 3]

Zhang Z C Dong Z B Zhao A G .

The effect of restored microbiotic crusts on erosion of soil from a desert area in China

[J]. Journal of Arid Environments,200872(5):710-721.

[本文引用: 1]

Fécan F Marticorena B Bergametti G .

Parameterization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas

[J]. Annual Geophysics,199917149-157.

[本文引用: 1]

Nield J M Bryant R G Wiggs G F S et al .

The dynamism of salt crust patterns on playas

[J]. Geology,201543(1):31-34.

[本文引用: 1]

/