Articles

Spatial Representation of Flux Data in Gully Region on the Loess Plateau

  • ZHU Yuanjun ,
  • CHU Lianghai ,
  • LI Shuangjiang ,
  • LIU Wenzhao
Expand
  • 1. College of Resources and Environment, Northwest Agricultural & Forest University, Yangling 712100, China;
    2. Institute of Soil and water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China;
    3. College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China

Received date: 2008-09-16

  Revised date: 2008-11-19

  Online published: 2009-02-10

Abstract

Spatial representation of flux data during winter wheat growing period from 2004 to 2005 was analyzed in Changwu Station, the Chinese Academy of Sciences by FSAM (Flux Source Area Model). The results indicated that flux source area (FSA, footprint) was dramatically changed during each growing stage of winter wheat under the effect level of 90% confidence. The source area of the maximum footprint was located between 7.7 m and 36.2 m from the observation point. In the prevailing wind direction, the upwind range of source area was 3.3~172.8 m, and vertical upwind range was 38.1~128.4 m.The comparison of footprint among different measurement heights showed that: with the measurement height increased up from 1.86 to 12.17 m, the length of footprint expanded from 172.8 m to 1555.2 m in the prevailing wind direction and from 123.2 m to 665.8 m in the vertical direction. The footprint fluctuated with atmospheric stability. The length of the source area is the largest under the stable atmospheric stratification with the distance of 135.3 m from the observation point, reaching 101.7 m under the condition of moderate atmospheric stratification, and the smallest is under unstable stratification with the distance of 36.3 m. Meanwhile, the source area in night is larger than that in daytime. In daily and seasonal scales, atmospheric stability has an important effect on flux source area.

Cite this article

ZHU Yuanjun , CHU Lianghai , LI Shuangjiang , LIU Wenzhao . Spatial Representation of Flux Data in Gully Region on the Loess Plateau[J]. Advances in Earth Science, 2009 , 24(2) : 211 -218 . DOI: 10.11867/j.issn.1001-8166.2009.02.0211

References

[1] Yu Guirui, Sun Xiaomin, Wen Xuefa, et al. Principles of Flux Measurement in Terrestrial Ecosystems[M].Beijing: Higher Education Press,2006.[于贵瑞,孙晓敏,温学发,等.陆地生态系统通量观测的原理与方法[M].北京:高等教育出版社,2006.]
[2] Wang Jiemin, Wang Weizhen, Ao Yinhuan, et al. Turbulence flux measurements under complicated conditions[J].Advances in Earth Science,2007, 22(8):791-797.[王介民,王维真, 奥银焕,等.复杂条件下湍流通量的观测与分析[J].地球科学进展,2007,22(8):791-797.]
[3] Huang Yao. The Carbon and Nitrogen Exchange in Soil-atmosphere system from Experiments to Models[M].Beijing:China Meteorological Press,2003.[黄耀.地气系统碳氮交换——从实验到模型[M]. 北京:气象出版社,2003.]
[4] Yu Guirui, Zhang Leiming, Sun Xiaomin, et al. Advances in carbon flux observation and research in Asia[J].Science in China (Series D),2004, 34(suppl:II): 15-29.[于贵瑞, 张雷明,孙晓敏,等.亚洲区域陆地生态系统碳通量观测研究进展[J]. 中国科学:D辑,2004, 34 (增刊Ⅱ): 15-29.]
[5] Yu Guirui. Global Change, Carbon Cycle and Accumulation in Terrestrial Ecosystems[M]. Beijing: China Meteorological Press,2003.[于贵瑞.全球变化与陆地生态系统碳循环和碳蓄积[M].北京:气象出版社,2003.]
[6] Schmid H P.Source areas for scalars and scalar fluxes[J].Boundary-Layer Meteorology,1994,67:293-318.
[7] Schmid H P. Footprint modeling for vegetation and atmosphere exchange studies:A review and perspective[J].Agricultural and Forest Meteorology,2002,113 :159-183.
[8] Schmid H P, Lloyd C R. Spatial representativeness and the location bias of flux footprints over inhomogeneous areas[J]. Agricultural and Forest Meteorology,1999, 93 :195-209.
[9] Göckede M, Rebmann C, Foken T. A combination of quality assessment tools for eddy covariance measurements with footprint modelling for the characterisation of complex sites[J].Agricultural and Forest Meteorology,2004, 127 :175-188.
[10] Kim J, Guo Q, Baldocchi  D D, et al. Upscaling fluxes from tower to landscape: Overlaying flux footprints on high-resolution (IKONOS) images of vegetation cover[J].Agricultural and Forest Meteorology,2006, 136 :132-146.
[11] Sogachev A, Lloyd J. Using a one-and-a-half order closure model of the atmospheric boundary layer for surface flux footprint estimation[J].Boundary-Layer Meteorology,2004,112:467-502.
[12] Kormann R, Meixner F X. An analytical footprint model for non-neutral stratification[J].Boundary-Layer Meteorology,2001, 99:207-224.
[13] Kljun N, Kormann R,Rotach M W, et al. Comparison of the langrangian footprint model LPDM-B with an analytical footprint model[J].Boundary-Layer Meteorology,2003,106:349-355.
[14] Kljun N, Rotach M W, Schmid H P. A Three-Dimensional backward Lagrangian footprint model for a wide range of boundary layer stratifications[J].Boundary-Layer Meteorology, 2002, 103: 205-226.
[15] Liu Shuhua, Ma Yimin. The characteristics of CO2 concentration and flux turbulence fluxes in the near surface layer over the wheat field[J].Acta Meteorology Sinica,1997,4:181-199. 
[16] Mi Na, Yu Guirui, Wen Xuefa, et al. A preliminary study for spatial representiveness of flux observation at ChinaFLUX sites[J]. Science in China (Series D),2006, 36(suppl.Ⅰ): 22-33.[米娜,于贵瑞, 温学发,等.中国通量观测网络(ChinaFLUX)通量观测空间代表性初步研究[J]. 中国科学:D辑,2006,36(增刊Ⅰ):22-33.]
[17] Shen Yan, Liu Yunfen. Examination of source area in-flux measurements at the Mid-Subtropical forest region[J].Acta Phytoecologica Sinica,2005, 29(2):202-207.[沈艳,刘允芬.中亚热带森林区通量观测的源面积探讨[J].植物生态学报,2005,29(2):202-207.]
[18] Zhao Xiaosong, Guan Dexin, Wu Jiabing, et al.Distribution of footprint and flux source area of the mixed forest of broad-leaved and Korean pine in Changbai Mountain[J].Journal of Beijing Forestry University,2005,27(3):17-23.[赵晓松,关德新,吴家兵,等.长白山阔叶红松林通量观测的footprint及源区分布[J]. 北京林业大学学报,2005,27(3):17-23.]
[19] Shen Yan, Liu Yunfen, Wang Yan. Advances in applying the eddy-covariance technique to calculate heat, moisture and CO2 flux[J].Journal of Nanjing Institute of Meteorology, 2005,4:559-566.[沈艳,刘允芬, 王堰.应用涡动相关法计算水热、CO2通量的国内外进展概况[J].南京气象学院学报,2005,4:559-566.]

Outlines

/