POTENTIAL IMPACT OF SOUTH TO NORTH WATER TRANSFERRING ON THE DROUGHT IN NORTHERN CHINA
Received date: 2004-09-06
Revised date: 2005-03-31
Online published: 2005-08-25
By using surface water balance model and energy balance model, the sensitive simulation experiments were made to explore the potential climatic influences of south to north water transferring project in northern China. The simulation results gave some possible local changes of soil moisture, evaporation, temperature and precipitation under different climatic scenarios. Results show that the different amount of water transferring will bring about different climatic effects when the climate backgrounds and seasons are different, and related to seasonal variation of precipitation. For the northern China, input water from the project could change the local soil moisture and runoff, and cause decrease in temperature in summer half year and increase in temperature in winter half year. At the same time, the local precipitation and evaporation in summer half year will increase, and those will change a little bit in winter half year. Therefore, the central line project of south to north water transferring will not only resolve the problem of water resources shortage in north China, but also improve the local drought climate environment to some extent. It is beneficial for the regional ecological environmental positive circulating and sustainable development.
CHEN Xing , ZHAO Ming , ZHANG Jie . POTENTIAL IMPACT OF SOUTH TO NORTH WATER TRANSFERRING ON THE DROUGHT IN NORTHERN CHINA[J]. Advances in Earth Science, 2005 , 20(8) : 849 -855 . DOI: 10.11867/j.issn.1001-8166.2005.08.0849
[1] Ren Hongzun, Li Lin. Supply and demand diagnostic of water resources in Huabei plain[J].Geography Research,2000,(3):316-323.[任鸿遵,李林.华北平原水资源供需诊断分析[J].地理研究,2000,(3):316-323.]
[2] Lu Zhiguang, Sun Jingdu, Lu Li,et al. Drought and Countermeasures in Beijing[M].Beijing:Meteorological Press, 2002.[卢志光,孙京都,卢丽,等.北京的干旱与对策[M].北京:气象出版社,2002.]
[3] Sha Zhigui,Zhang Mingbo,Li Zhongping, et al. Hydrological and climatological features alone the central-main line area of water transfer from south to north[J].Yangtze River,2001,32(12):3-5.[沙志贵,张明波,李中平,等.南水北调中线总干渠沿线水文气候特征分析[J].人民长江,2001,32(12):3-5.]
[4] Chen Jianchi, Jin Rongling, Guan Guangming. Impact of climate change on the potential transferring water for the project of water transfer from south to north in central-main line[J].Yangtze River,1999,30(3):9-16.[陈剑池,金蓉玲,管光明.气候变化对南水北调中线工程可调水量的影响[J].人民长江,1999,30(3):9-16.]
[5] Zheng Hongxing,Liu Changming.Analysis on asynchronism-synchronism of regional precipitation in planned South-to-North water transferareas[J]. Acta Geographica Sinica,2000,55(5):523-532.[郑红星,刘昌明.南水北调东中两线不同水文区降水丰枯遭遇性分析[J].地理学报,2000,55(5):523-532.]
[6] Wang Yumin,Zhou Xiaode,Ning Datong.Effect on climate in middle-and down reaches of Hanjing River owing to middle-line project of transferring water from south to north[J]. Bulletin of Soil and Water Conservation,2001,21(6):40-42.[王玉敏,周孝德,宁大同.南水北调中线工程对汉江中下游气候的影响研究[J].水土保持通报,2001,21(6):40-42.]
[7] Yeh T C, Wetherald R T, Manabe S. The effect of soil moisture on the short-term climate and hydrology change, a numerical experiment[J].Monthly Weather Review,1984,112:374-490.
[8] Pan Z,Talke E,Zegal M,et al. Influence of model parameterization schemes on the response of rainfall to soil moisture in the central United States[J]. Monthly Weather Review, 1996,124:1 786-1 802.
[9] Beljiarrs A C M,Vitebo P, Miller M J.The anomalours rainfall over the U.S. during July 1993, sensitivity to land surface parameterization and soil moisture anomalous[J]. Monthly Weather Review, 1996,124:362-383.
[10] Giorge F,Marinucci R. Validation of a regional atmospheric model over Europe, sensitivity of winter time and summer time simulations to selectedphysics parameterization and lower boundary conditions[J].Quarterly Journal of the Royal Meteorological Society, 1991,117:1 171-1 206.
[11] Rowtree P R, Bolton J A. Simulation of atmosphere response to soil moisture anomalies over Europe[J]. Quarterly Journal of the Royal Meteorological Society, 1983,109:511-526.
[12] Cunnington W M, Rowntree P R. Simulation of Saharan atmosphere dependence on moisture and albedos[J]. Quarterly Journal of the Royal Meteorological Society, 1986,112:971-999.
[13] Zeng N, Neelin J D. A land-atmosphere interaction theory for the tropical deforestation problem [J]. Journal of Climate,1999,12:857-872.
[14] Zhao Ming. A theoretical analysi on the effect of water transportation from south to north China on the local climate in the northern part of China[J]. Journal of Nanjing University(Natural Sciences),2002,38(3):271-280. [赵鸣.南水北调对我国北方局地气候影响的一个理论分析[J].南京大学学报(自然科学版),2002,38(3):271-280.]
[15] Clark C A, Arritt R W. Numerical simulations of the effect of soil moisture and vegetation cover on development of deep convection[J]. Journal of Applied Meteorology, 1995,34:2 029-2 045.
[16] Michael Starr. UN ECE Convention on Long-Range Trans-boundary Air Pollution[R]. The Finnish Environment,1999.
[17] Liu Chunzhen. The issues in the impact study of climate change on the terrestrial hydrological cycle[J]. Advances in Earth Science, 2004, 19 (1): 115-119. [刘春蓁.气候变化对陆地水循环影响研究的问题[J].地球科学进展,2004,19(1):115-119.]
[18] Ge Quansheng, Chen Panqin, Fang Xiuqi,et al. Adaptation to global change: Challenge and research strategy[J].Advances in Earth Science, 2004,19(4):516-524. [葛全胜,陈泮勤,方修琦,等全球变化的区域适应研究:挑战与研究对策[J].地球科学进展,2004,19(4):516-524.]
/
〈 |
|
〉 |