Articles

AN EVALUATION OF CLOUD RADIATIVE FEEDBACK MECHANISMS IN CLIMATE MODELS

  • WANG Fang ,
  • DING Yi-hui
Expand
  • 1.Nanjing University of Information Science & Technology, Nanjing 210044, China;
    2.Chinese Academy of Meteorological Sciences, Beijing 100081,China;
    3.National Climate Center,CMA,Beijing 100081,China

Received date: 2004-01-29

  Revised date: 2004-06-28

  Online published: 2005-02-25

Abstract

Cloud plays an important role in the radiative budget of climate system, and cloud-radiation parameterization is one of the main sources of uncertainty in climate models. Cloud can impact radiation through various ways, resulting in feedbacks with different sign and magnitude. Researches show that model climate is very sensitive to cloud-radiation parameterization schemes. As predictable cloud water content is introduced to models, the simulation of cloud-radiation processes is improved,though significant difference from observations still exists. Generally, the introduction of phase change of cloud water and interactive cloud droplet size can produce negative feedbacks, while the cloud optical depth feedback and cloud amount feedback are positive in climate change. Cloud-radiation has a close connection with large-scale background of climate, especially the remarkable SST effect on radiation balance. We also summarize the main problems of present cloud-radiation researches and give some proposals.

Cite this article

WANG Fang , DING Yi-hui . AN EVALUATION OF CLOUD RADIATIVE FEEDBACK MECHANISMS IN CLIMATE MODELS[J]. Advances in Earth Science, 2005 , 20(2) : 207 -215 . DOI: 10.11867/j.issn.1001-8166.2005.02.0207

References

[1]Ramanathan V. The role of Earth radiation budget studies in climate and general circulation Research[J].  Journal of the Atmospheric Sciences,1987, 37: 447-454.
[2]Ramanathan V, Barkstorm B R, Harrison E F. Climate and the earth's radiation budget[J]. Physics Today, 1989, 42(5): 22-32.
[3]Ramanathan V, Cess R D, Harrison E F, et al. Cloud-radiative forcing and climate: Results form the earth radiation budget experiment[J]. Science, 1989, 243: 57-63.
[4]Manabe S, Smagorinsky J, Strickler R F. Simulated climatology of a general circulation model with a hydrological cycle[J]. Monthly Weather Review, 1965, 93: 769-798. 
[5]Slingo J M. The development and verification of a cloud prediction scheme for the ECMWF model[J]. Quarterly Journal of the Royal Meteorological Society, 1987, 113: 899-927. 
[6]Sundqvist H. A parameterization scheme for non-convective condensation including prediction of cloud water content[J]. Quarterly Journal of the Royal Meteorological Society, 1978, 104: 677-690. 
[7]Del Genio A D, Yao M S, Kovari W, et al. A prognostic cloud water parameterization for global climate models[J]. Journal of Climate, 1996, 9: 270-304. 
[8]Lee W H, Iacobellis S F, Somerville R C J. Cloud radiation forcings and feedbacks: General circulation model test and observational validation[J]. Journal of Climate, 1997, 10: 2 479-2 496.
[9]IPCC. Climate change: The IPCC scientific assessment[A]. In: Contribution of Working Group I to the First Assessment Report of the Intergovernmental Panel on Climate Change[C]. Cambridge, United Kingdom and New York,  USA:Cambridge University Press, 1990.
[10]IPCC. Climate change 1995: The science of climate change[A]. In: Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change[C]. Cambridge, United Kingdom and New York,  USA: Cambridge University Press, 1996.
[11]IPCC. Climate change 2001:The scientific basis[A]. In: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change[C].  United Kingdom and New York,  USA:Cambridge University Press, Cambridge, 2001.
[12]Cess R D, Potter G L, Blanchet J P, et al. Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models[J]. Science, 1989, 245:513-516.
[13]Cess R D, Potter G L, Blanchet J P, et al. Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models[J]. Journal of Geophysical Research,1990, 95: 16 601-16 615.
[14]Cess R D, Zhang M H, Ingram W J, et al. Cloud feedback in atmospheric general circulation models: An update [J].Journal of Geophysical Sciences,1996, 101: 12 791-12 794.
[15]Manabe S, Wetherald R T. Thermal equilibrium of the atmosphere with a given distribution of relative humidity[J]. Journal of the Atmospheric Sciences, 1967, 24(3): 241-259.
[16]Wetherald R T, Manabe S. Cloud feedback processes in a general circulation model[J]. Journal of the Atmospheric Sciences, 1988, 45(8): 1 397-1 415.
[17]Mitchell J F B, Ingram W J. Carbon dioxide and climate-mechanisms of changes in cloud[J].Journal of Climate,1992,5: 5-21.
[18]Yu W, Doutriaux M, Sèze G, et al. A methodology study of the validation of clouds in GCMs using ISCCP satellite observations[J]. Climate Dynamics, 1996, 12: 389-401.
[19]Zhao Gaoxiang, Wang Hongqi. Cloud and radiation Ⅱ: Cloud and cloud radiation parameterizations in general circulation models[J]. Chinese Journal of Atmospheric Sciences,1994,18(suppl.): 933-958.[赵高祥, 汪宏七. 云和辐射(Ⅱ) :环流模式中的云和云辐射参数化[J]. 大气科学, 1994, 18(增刊): 933-958.]
[20]Chen T, Zhang Y C, Rossow W B. Sensitivity of atmospheric radiative heating rate profiles to variations of cloud layer overlap[J]. Journal of Climate, 2000, 13: 2 941-2 959.
[21]Senior C A, Mitchell J F B. Carbon dioxide and climate: The impact of cloud parameterization[J]. Journal of Climate, 1993, 6: 393-418.
[22]Sun Zhian,Keith P Shine. The importance of mixed-phase clouds in GCM climate Simulation[J]. Quarterly Journal of Applied Meteorology, 1996,  7(4):452-459.[孙治安, Keith P Shine. 混合云在GCM气候模拟中的重要性[J]. 应用气象学报, 1996, 7(4): 452-459. ]
[23]Yao M S, Del Genio A D. Effects of cloud parameterization on the simulation of climate changes in the GISS GCM[J]. Journal of Climate, 1999, 12: 761-779.
[24]Tselioudis G, Del Genio A D, Kowari Jr W, et al. Temperature dependence of low cloud optical thickness in the GISS GCM: Contributing mechanisms and climate implication[J]. Journal of Climate, 1998, 11: 3 268-3 281.
[25]Tselioudis G, Rossow W B. Global. Multiyear variations of optical thickness with temperature in low and cirrus clouds[J]. Geophysical Research Letters, 1994, 21: 2 211-2 214.
[26]Tselioudis G, Rossow W, Rind D. Global patterns of cloud optical thickness variation with temperature[J]. Journal of Climate, 1992,5: 1 484-1 495. 
[27]Tselioudis G, Lacis A A, Rind D, et al. Potential effects of cloud optical thickness on climate warming[J]. Nature, 1993, 366: 670-672. 
[28]Roeckner E, Schlese U, Biercamp J, et al. Cloud optical depth feedbacks and climate modeling[J]. Nature, 1987, 329: 138-140.
[29]Iacobellis S F, Somerville R C J, Lane D E, et al. Analysis of cloud-radiation interactions using ARM observations and a single-column model[A]. In: Eight ARM Science Team Meeting[C]. Tucson, AZ: March 23-27, 1998.337-341.
[30]Somerville R C J, Iacobellis S F, Lee W H. Effects of cloud-radiation schemes on climate model results[J]. World Resource Review, 1996, 8: 321-333.
[31]Somerville R C J, Iacobellis S F. Single-column models, ARM observations, and GCM cloud-radiation schemes[J]. Physics and Chemistry of the Earth (B), 1999, 24(6): 733-740.
[32]Slingo A, Slingo J M. The response of a general circulation model to cloud longwave forcing.I: Introduction and initial experiments[J].Quarterly Journal of the Royal Meteorological Society, 1988, 114: 1 027-1 062.
[33]Randall D A, Harshvardhan, Dazlich D A, et al. Interactions among radiation, convection, and large-scale dynamics in a general circulation model[J]. Journal of the Atmospheric Sciences, 1989, 46: 1 943-1 970.
[34]Kuo H L, Qian Y F. Numerical simulation of the development of mean monsoon circulation in July[J]. Monthly Weather Review, 1982, 110: 1 879-1 897.
[35]Chen Shoujun. The Impact of radiative process on the onset of summer monsoon—Numerical experiments[J]. Acta Meteorologica Sinica, 1988, 46(1): 20-27.[陈受钧. 辐射对夏季风开始的影响——数值模拟[J]. 气象学报, 1988, 46(1):20-27. ]
[36]Ding Yihui, Kong Jun. Numerical simulation of 3-D tropical cyclones and the radiative impact on it[J]. Science in China(B), 1988, 8: 887-898.[丁一汇, 孔军. 三维热带气旋的数值模拟及辐射对它的影响[J]. 中国科学B辑, 1988, 8: 887-898.]
[37]Ramanathan V, Collins W. Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Nio[J]. Nature, 1991, 351: 27-32.
[38]Lindzen R S, Chou M D, Hou A Y. Does the Earth have an adaptive infrared iris?[J]. Bulletin of the American Meteorological Society, 2001, 82: 417-432. 
[39]Lindzen R S, Chou M D, Hou A Y. Commnets on “No Evidence for Iris”[J]. Bulletin of the American Meteorological Society, 2002, 83: 1 233-1 237.
[40]Hartmann D L, Michelson M L. Large-scale effects on the regulation of tropical sea surface temperatures[J]. Journal of Climate, 1993, 6: 2 049-2 062.
[41]Fu R, Del Genio A D, Rossow W B, et al. Cirrus-cloud thermostat for tropical sea surface temperature tested using satellite data[J]. Nature, 1992, 358: 394-397.
[42]Hartmann D L, Michelsen M L. No evidence for IRIS[J]. Bulletin of the American Meteorological Society, 2002, 83: 249-254.
[43]Lin B, Wielicki B A, Chambers L H, et al. The iris hypothesis: A negative or positive cloud feedback?[J]. Journal of Climate, 2002, 15: 3-7.
[44]Bony S, Lau K M, Sud Y C. Sea surface temperature and large-scale circulation influences on tropical greenhouse effect and cloud radiative forcing[J]. Journal of Climate,1997,10:2 055-2 077.[45]Yao M S, Del Genio A D. Effects of cloud parameterization on the simulation of climate changes in the GISS GCM. Part II: Sea surface temperature and cloud feedbacks[J]. Journal of Climate, 2002, 15: 2 491-2 504.
[46]Tselioudis G, Zhang Y, Rossow W B. Cloud and radiation variations associated with northern midlatitude low and high sea level pressure regimes[J]. Journal of Climate, 2000, 13: 312-327.
[47]Ma Xiaoyan, Ji Guoliang. Analysis of temporal and spacial variations for cloud radiative forcing in China by using ERBE data[J]. Plateau Meteorology, 2000, 19(2): 150-158.[马晓燕, 季国良. 利用ERBE资料分析中国地区云辐射强迫的时空变化[J]. 高原气象, 2000,19(2): 150-158.]
[48]Wang W C, Gong W, Kau W S, et al. Characteristics of cloud radiative forcing over east China[J]. Journal of Climate, 2004, 17(4): 845-853.
[49]Zhao Zongci, Luo Yong. Simulations of summer monsoon over east Asia: Intercomparisons of three regional climate models[J]. Quarterly Journal of Applied Meteorology, 1997, 8(suppl.): 116-122.[赵宗慈, 罗勇. 东亚夏季风的模拟研究——3 个区域气候模式的对比[J]. 应用气象学报, 1997, 8(增刊): 116-122.]
[50]Luo Yong, Zhao Zongci. Numerical simulation of east Asian regional climate with RegCM2[J]. Quarterly Journal of Applied Meteorology, 1997, 8(suppl.): 124-133.[罗勇, 赵宗慈. NCAR RegCM2对东亚区域气候的模拟试验[J]. 应用气象学报, 1997, 8(增刊): 124-133.]
[51]Leung L R, Ghan S J, Zhao Z C,et al. Intercomparison of regional climate simulations of the 1991 summer monsoon in East Asia[J]. Journal of Geophysical Research,1999, 104: 6 425-6 454.[52]Giorgi F, Huang Y, Nishizawa K,et al. A seasonal cycle simulation over eastern Asia and its sensitivity to radiative transfer and surface processes[J].Journal of Geophysical Research,1999, 104: 6 403-6 424.
[53]Lane D E, Somerville R C J, Iacobellis S F. Sensitivity of cloud and radiation parameterizations to changes in vertical resolution[J]. Journal of Climate, 2000, 13: 915-922.
[54]Wielicki B A, Wong T, Allan R P, et al. Evidence for large decadal variability in the tropical mean radiative energy budget[J]. Science, 2002, 295: 841-844.
[55]Gordon C T, Rosati A, Gudgel R. Tropical sensitivity of a coupled model to specified ISCCP low clouds[J]. Journal of Climate, 2000, 13: 2 239-2 260.
[56]Cess R D, Zhang M H, Minnis P, et al. Absorption of solar radiation by clouds: observations versus models[J]. Science, 1995, 267: 496-499.
[57]Cess R D, Zhang M H, Valero F P J, et al. Absorption of solar radiation by the cloudy atmosphere: Further interpretations of collocated aircraft measurements[J].Journal of Geophysical Research,1999, 104: 2 059-2 066.
[58]Wild M, Ohmura A. The role of clouds and the cloud-free atmosphere in the problem of underestimated absorption of solar radiation in GCM atmospheres[J]. Physics and Chemistry of the Earth, 1999, 24B: 261-268.
[59]Wild M. Absorption of solar energy in cloudless and cloudy atmospheres over Germany and in GCMs[J]. Geophysical Research Letters, 2000, 27: 959-962.

Outlines

/