Simplified Polarized GNSS-ReSAR Land Surface Remote Sensing Technology

  • Xuerui WU
Expand
  • Center for Astro-geodynamics Research, Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China
WU Xuerui, research areas include GNSS-R/SoOP-R modeling and geophyscial parameters retrieval. E-mail: xrwu@shao.ac.cn

Received date: 2025-06-30

  Revised date: 2025-08-28

  Online published: 2025-10-31

Supported by

the National Key Research and Development Program of China(2024YFB3910001);The National Natural Science Foundation of China(42061057)

Abstract

Global Navigation Satellite System Reflectometry (GNSS-R) is an effective Earth observation method that analyzes navigation satellite reflection signals to invert surface parameters. Historical research has shown that traditional GNSS-R systems primarily adopt a single-polarization configuration (Right-Handed Circularly Polarized (RHCP) transmission and Left-Handed Circularly Polarized (LHCP) reception, hereinafter referred to as LR polarization). With the advancement of technology, the use of RHCP antennas to receive surface-reflected signals has gained attention. The traditional Delay-Doppler Map (DDM) processing mode of GNSS-R has low efficiency in utilizing scattering features under different observation geometries. In this context, the development of GNSS-based Synthetic Aperture Radar (GNSS-SAR) technology that can effectively receive surface scattering signals across geometric configurations has become a promising research direction. This study focuses on remote sensing exploration of the fusion technology of reduced polarization GNSS-R and synthetic aperture radar (GNSS ReSAR: GNSS Reflectometry and Synthetic Aperture Radar). Based on dual-polarization (LR and RR) data obtained from the Spanish airborne GLORI experiment, soil moisture inversion research was conducted. Dual-polarization GNSS-R data from the Chinese Tianmu (TM) commercial satellite were synchronously used for comparative verification. Both experiments consistently showed that the reflectance of the RR polarization was approximately 10 dB lower than that of the LR polarization, but the accuracy of soil moisture inversion based on the two polarizations was comparable. Because of the limited ability to obtain simplified polarization data, this study used the Land Surface GNSS Reflection Simulator (LAGRS) model, constructed based on radiative transfer theory, to analyze other scattering characteristics of simplified polarization. A systematic analysis of the scattering mechanism and development trend of the GNSS ReSAR mode provides a theoretical reference for the evolution of new-generation GNSS-R technology to a certain extent.

Cite this article

Xuerui WU . Simplified Polarized GNSS-ReSAR Land Surface Remote Sensing Technology[J]. Advances in Earth Science, 2025 , 40(9) : 902 -915 . DOI: 10.11867/j.issn.1001-8166.2025.078

References

[1] HALL C D, CORDEY R A. Multistatic scatterometry[C]// International geoscience and remote sensing symposium, ‘Remote sensing: moving toward the 21st century’. Edinburgh, UK: IEEE, 1988. DOI:10.1109/igarss.1988.570200 .
[2] MARTIN-NEIRA M. A Passive Reflectometry and Interferometry System (PARIS): application to ocean altimetry[J]. ESA Journal199317(4): 331-335.
[3] LIU Jingnan, SHAO Lianjun, ZHANG Xunxie, et al. Advances in GNSS-R studies and key technologies[J]. Geomatics and Information Science of Wuhan University200732(11): 955-960.
  刘经南,邵连军,张训械,等. GNSS-R研究进展及其关键技术[J]. 武汉大学学报(信息科学版)200732(11):955-960.
[4] SMEX 02 experiment plan, USDA, 2002 [Z/OL]. [2025-05-25]. .
[5] ZAVOROTNY V U, MASTERS D, GASIEWSKI A J, et al. Seasonal polarimetric measurements of soil moisture using tower-based GPS bistatic radar[C]// 2003 IEEE international geoscience and remote sensing symposium. Proceedings. Toulouse, France: IEEE, 20032: 781-783.
[6] RODRIGUEZ-ALVAREZ N, CAMPS A, VALL-LLOSSERA M, et al. Land geophysical parameters retrieval using the interference pattern GNSS-R technique[J]. IEEE Transactions on Geoscience and Remote Sensing201149(1): 71-84.
[7] MOTTE E, ZRIBI M, FANISE P, et al. GLORI: a GNSS-R dual polarization airborne instrument for land surface monitoring[J]. Sensors201616(5): 732. DOI:10.3390/s16050732 .
[8] CARRENO-LUENGO H, RUF C S, GLEASON S, et al. Latest progress on rongowai polarimetric GNSS-R airborne mission[C]// IGARSS 2024-2024 IEEE international geoscience and remote sensing symposium. Athens, Greece: IEEE, 2024. DOI:10.1109/igarss53475.2024.10642216 .
[9] EGIDO A, PALOSCIA S, MOTTE E, et al. Airborne GNSS-R polarimetric measurements for soil moisture and above-ground biomass estimation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing20147(5): 1 522-1 532.
[10] GLEASON S, UNWIN M. Sensing ocean, ice and land reflected signals from space: results from the UK-DMC GPS reflectometry experiment[C]// ION GNSS. Long Beach, CA, 2005: 1 679-1 685.
[11] UNWIN M, JALES P, TYE J, et al. Spaceborne GNSS-reflectometry on TechDemoSat-1: early mission operations and exploitation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing20169(10): 4 525-4 539.
[12] RUF C S, ATLAS R, CHANG P S, et al. New ocean winds satellite mission to probe hurricanes and tropical convection[J]. Bulletin of the American Meteorological Society201697(3): 385-395.
[13] UNWIN M J, PIERDICCA N, CARDELLACH E, et al. An introduction to the HydroGNSS GNSS reflectometry remote sensing mission[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing202114: 6 987-6 999.
[14] ZHAO T J, SHI J C, LV L Q, et al. Soil moisture experiment in the Luan River supporting new satellite mission opportunities[J]. Remote Sensing of Environment2020, 240. DOI:10.1016/j.rse.2020.111680 .
[15] RODRIGUEZ-ALVAREZ N, MISRA S, MORRIS M. Sensitivity analysis of smap-reflectometry (SMAP-R) signals to vegetation water content[C]// IGARSS 2019-2019 IEEE international geoscience and remote sensing symposium. Yokohama, Japan: IEEE, 2019: 7 395-7 398.
[16] PIERDICCA N, GUERRIERO L, GIUSTO R, et al. SAVERS: a simulator of GNSS reflections from bare and vegetated soils[J]. IEEE Transactions on Geoscience and Remote Sensing201452(10): 6 542-6 554.
[17] KURUM M, DESHPANDE M, JOSEPH A T, et al. SCoBi-veg: a generalized bistatic scattering model of reflectometry from vegetation for signals of opportunity applications[J]. IEEE Transactions on Geoscience and Remote Sensing201957(2): 1 049-1 068.
[18] WU X R, WANG F. LAGRS-Veg: a spaceborne vegetation simulator for full polarization GNSS-reflectometry[J]. GPS Solutions202327(3). DOI: 10.1007/s10291-023-01441-5 .
[19] WU X R, OUYANG X Q, XIA J M, et al. LAGRS-soil: a full-polarization GNSS-reflectometry model for bare soil applications in FY-3E GNOS-R payload[J]. Remote Sensing202315(22). DOI: 10.3390/rs15225296 .
[20] WU X R, JIN S G, OUYANG X Q. A full-polarization GNSS-R Delay-Doppler-Map (DDM) simulator for bare soil freeze/thaw process detection[J]. Geoscience Letters20207(1). DOI: 10.1186/s40562-020-00154-8 .
[21] YANG G L, DU X Y, HUANG L Y, et al. An illustration of FY-3E GNOS-R for global soil moisture monitoring[J]. Sensors202323(13). DOI: 10.3390/s23/35825 .
[22] WU X R, CHEN L X, SHI J C. Optimization of random surface scattering models for RR polarization in SoOp-R/GNSS-R applications[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing202417: 4 890-4 898.
[23] AL-KHALDI M M, JOHNSON J T, O’BRIEN A J, et al. Time-series retrieval of soil moisture using CYGNSS[J]. IEEE Transactions on Geoscience and Remote Sensing201957(7): 4 322-4 331.
[24] CHEW C, SMALL E. Description of the UCAR/CU soil moisture product[J]. Remote Sensing202012(10). DOI: 10.3390/rs12101558 .
[25] LI Y, YAN S H, GONG J Y. Target detection and location by fusing delay-Doppler maps[J]. IEEE Transactions on Geoscience and Remote Sensing202361: 1-14.
[26] WU X R, SHI J C. Polarization GNSS-reflectometry: potential and possibility[C]// 2021 IEEE specialist meeting on reflectometry using GNSS and other signals of opportunity (GNSS+R). Beijing, China: IEEE, 2021: 29-31. DOI:10.1109/gnssr53802.2021.9617680 .
[27] DASSAS K, FANISE P, Le PAGE M, et al. Polarimetric instrument Global Navigation Satellite System-Reflectometry airborne data[J]. Data in Brief2024, 52. DOI: 10.1016/j.dib.2023.109850 .
[28] WU X, HAN S, HUANG X, et al. Soil moisture retrieval using single-frequency dual-polarization GNSS-R data from airborne GLORI experiment[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2025(18):20 655-20 665.
[29] ZAVOROTNY V U, VORONOVICH A G. Scattering of GPS signals from the ocean with wind remote sensing application[J]. IEEE Transactions on Geoscience and Remote Sensing200038(2): 951-964.
[30] MUNOZ-MARTIN J F, RODRIGUEZ-ALVAREZ N, BOSCH-LLUIS X, et al. Stokes parameters retrieval and calibration of hybrid compact polarimetric GNSS-R signals[J]. IEEE Transactions on Geoscience and Remote Sensing202260: 1-11.
[31] WU Xuerui, XIA Junming, BAI Weihua, et al. Advancing GNOS-R soil moisture estimation: a multi-angle retrieval algorithm for FY-3E[J]. Remote Sensing202517(13). DOI: 10.3390/rs17132325 .
[32] ULABY F T, ELACHI C. Radar polarimetry for geoscience applications[M]. Dedham, MA: Artech House, 1990.
[33] WU X R, JIN S G. Models and theoretical analysis of SoOp circular polarization bistatic scattering for random rough surface[J]. Remote Sensing202012(9). DOI: 10.3390/rs12091506 .
Outlines

/