Progress in Paleomagnetism of the Qiangtang Block since Permian to Triassic and Its Constraints on the Evolution of the Tethyan Ocean

  • Bitian WEI ,
  • Xin CHENG ,
  • Nan JIANG ,
  • Dongmeng ZHANG ,
  • Longyun XING ,
  • Yanan ZHOU ,
  • Shihu LI ,
  • Chenglong DENG ,
  • Hanning WU
Expand
  • 1.State Key Laboratory of Lithospheric and Environmental Coevolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    2.State Key Laboratory of Continental Evolution and Early Life, Department of Geology, Northwest University, Xi’an 710069, China
    3.School of Petroleum Engineering and Environmental Engineering, Yan’an University, Yan’an Shaanxi 716000, China
WEI Bitian, research area includes paleomagnetism. E-mail: btwei@mail.iggcas.ac.cn
CHENG Xin, research area includes paleomagnetism and regional tectonic. E-mail: chengxin@nwu.edu.cn

Received date: 2025-06-06

  Revised date: 2025-07-11

  Online published: 2025-08-31

Supported by

the National Natural Science Foundation of China(42504059);The Project of Theory of Hydrocarbon Enrichment under Multi-Spheric Interactions of the Earth

Abstract

The Qiangtang Block, separated into the North Qiangtang Block (NQB) and southern Qiangtang Block (SQB) by the Longmuco-Shuanghu suture zone, originated from the northern margin of Gondwana and split from it during the Paleozoic, subsequently drifting northward to collide with Laurasia during the Mesozoic. Its drift history is particularly important for understanding the evolution of the Qinghai-Tibet Plateau and Tethyan geodynamics. In this paper, we compiled reliable paleomagnetic data from SQB and NQB, establishing an epoch-level Apparent Polar Wander Path (APWP) for the NQB and a paleolatitude evolution curve for the SQB during the Late Carboniferous to Late Triassic. The NQB occupied the lower-middle latitudes (20°S~30°S) in the Late Carboniferous to Middle Permian, whereas the SQB connected with Gondwana until the Early Permian. The SQB that spalled from the northern margin of Gondwana and drifted may have started during the late Early Permian. By the Middle Permian, its paleolatitude converged to a similar position as the NQB. Subsequently, they drifted coherently northward at an average rate of 16 cm/year until the Early Late Triassic. The drift rate decreased during the Late Triassic. Using paleomagnetic results, together with other paleomagnetic data and geologic observations, we argue that the main domain of the Paleo-Tethys Ocean was located between the NQB and the Tarim-North China Block (i.e., the Jinshajiang Ocean) during the Late Paleozoic. The Neo-Tethys Ocean opened between the Late Early Permian and Middle Permian and had a width of ~2 000 km at ~265 Ma. In the late Middle Triassic to early Late Triassic, the Paleo-Tethys Ocean had a limited expanse (~1 000 km) and finally completely closed at approximately 230 Ma. More specifically, using paleomagnetic data to precisely characterize the kinematic evolution of the Qiangtang Block can provide important constraints on key scientific issues, such as the evolutionary history of the Paleo-Neo-Tethys Ocean.

Cite this article

Bitian WEI , Xin CHENG , Nan JIANG , Dongmeng ZHANG , Longyun XING , Yanan ZHOU , Shihu LI , Chenglong DENG , Hanning WU . Progress in Paleomagnetism of the Qiangtang Block since Permian to Triassic and Its Constraints on the Evolution of the Tethyan Ocean[J]. Advances in Earth Science, 2025 , 40(9) : 925 -944 . DOI: 10.11867/j.issn.1001-8166.2025.070

References

[1] CHANG Chengfa, ZHENG Xilan. Discussion on the formation of western-eastern ranges in Himalayas and Qinghai-Xizang Plateau and characteristics of geological structure in everest region[J]. Science in China1973(2): 190-201.
  常承法, 郑锡澜. 中国西藏南部珠穆朗玛峰地区地质构造特征以及青藏高原东西向诸山系形成的探讨[J]. 中国科学1973(2): 190-201.
[2] DEWEY J F, SHACKLETON R M, CHANG C F, et al. The tectonic evolution of the Tibetan Plateau[J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences1988327(1 594): 379-413.
[3] YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences200028: 211-280.
[4] TAPPONNIER P, XU Z Q, ROGER F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science2001294(5 547): 1 671-1 677.
[5] PAN G T, WANG L Q, LI R S, et al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences201253: 3-14.
[6] DING L, KAPP P, CAI F L, et al. Timing and mechanisms of Tibetan Plateau uplift[J]. Nature Reviews Earth & Environment20223(10): 652-667.
[7] HUANG Jiqing, CHEN Guoming, CHEN Bingwei. Preliminary analysis of the Tethyshimalayan tectonic domain[J]. Acta Geologica Sinica1984(1): 1-17.
  黄汲清, 陈国铭, 陈炳蔚. 特提斯—喜马拉雅构造域初步分析[J]. 地质学报1984(1): 1-17.
[8] ZHANG Peizhen, WANG Qi, MA Zongjin. GPS velocity field and active crustal blocks of contemporary tectonic deformation in continental China[J]. Earth Science Frontiers20029(2): 430-441.
  张培震, 王琪, 马宗晋. 中国大陆现今构造运动的GPS速度场与活动地块[J]. 地学前缘20029(2): 430-441.
[9] SHI Yafeng, LI Jijun, LI Bingyuan, et al. Uplift of the Qinghai-Xizang (Tibetan) Plateau and east asia environmental change during late Cenozoic[J]. Acta Geologica Sinica199954(1): 12-22.
  施雅风, 李吉均, 李炳元, 等. 晚新生代青藏高原的隆升与东亚环境变化[J]. 地理学报199954(1): 12-22.
[10] XU Zhiqin, YANG Jingsui, LI Haibing, et al. On the tectonics of the India-Asia collision[J]. Acta Geologica Sinica201185(1): 1-33.
  许志琴, 杨经绥, 李海兵, 等. 印度—亚洲碰撞大地构造[J]. 地质学报201185(1): 1-33.
[11] XU Zhiqin, YANG Jingsui, LI Haibing, et al. The Qinghai-Tibet Plateau and continental dynamics: a review on terrain tectonics, collisional orogenesis, and processes and mechanisms for the rise of the plateau[J]. Geology in China200633(2): 221-238.
  许志琴, 杨经绥, 李海兵, 等. 青藏高原与大陆动力学——地体拼合、碰撞造山及高原隆升的深部驱动力[J]. 中国地质200633(2): 221-238.
[12] ZHANG Peizhen, ZHENG Dewen, YIN Gongming, et al. Discussion on Late Cenozoic growth and rise of northeastern magin of the Tibetan Plateau[J]. Quaternary Sciences200626(1): 5-13.
  张培震, 郑德文, 尹功明, 等. 有关青藏高原东北缘晚新生代扩展与隆升的讨论[J]. 第四纪研究200626(1): 5-13.
[13] LI Cai, ZHAI Gangyi, WANG Liquan, et al. An important window for understanding the Qinghai-Tibet Plateau—a review on research progress in recent years of Qiangtang area, Tibet, China[J]. Geological Bulletin of China200928(9): 1 169-1 177.
  李才, 翟刚毅, 王立全, 等. 认识青藏高原的重要窗口——羌塘地区近年来研究进展评述(代序)[J]. 地质通报200928(9): 1 169-1 177.
[14] JIANG Qingyun, DAN Wei, WANG Qiang, et al. Neoproterozoic basement information revealed in the Triassic granites in the northern Qiangtang, Tibetan Plateau: constraints from zircon SIMS U-Pb age and Hf-O isotopes [J]. Geotectonica et Metallogenia202145(2): 389-400.
  姜庆运, 但卫, 王强, 等. 青藏高原北羌塘三叠纪花岗岩中发现新元古代的基底信息:来自锆石SIMS U-Pb年龄和Hf-O同位素的约束[J]. 大地构造与成矿学202145(2): 389-400.
[15] LI Cai. Question about the basement of the Qiangtang micro-plate[J]. Geological Review200349(1): 3-9.
  李才. 羌塘基底质疑[J]. 地质论评200349(1): 3-9.
[16] DONG Chunyan, LI Cai, WAN Yusheng, et al. Detrital zircon age model of Ordovician Wenquan quartzite south of Lungmuco-Shuanghu suture in the Qiangtang area, Tibet: constraint on tectonic affinity and source regions[J]. Science China: Earth Science201141(3): 299-308.
  董春艳, 李才, 万渝生, 等. 西藏羌塘龙木错—双湖缝合带南侧奥陶纪温泉石英岩碎屑锆石年龄分布模式:构造归属及物源区制约[J]. 中国科学:地球科学201141(3): 299-308.
[17] YANG Yao, ZHAO Zhongbao, YUAN Tingyuan, et al. Ordovician parallel unconformity in Qiangtang terrane, northern Tibet: implications to Early Paleozoic evolution of northern Tibetan regions[J]. Acta Petrologica Sinica201430(8): 2 381-2 392.
  杨耀, 赵中宝, 苑婷媛, 等. 藏北羌塘奥陶纪平行不整合面的厘定及其构造意义[J]. 岩石学报201430(8): 2 381-2 392.
[18] ZHANG Y C, SHI G R, SHEN S Z. A review of Permian stratigraphy, Palaeobiogeography and Palaeogeography of the Qinghai-Tibet Plateau[J]. Gondwana Research201324(1): 55-76.
[19] LIANG Dingyi, NIE Zetong, GUO Tieying, et al. Permo-Carboniferous Gondwana-Tethys facies in southern Karakoran Ali, Xizang (Tibet)[J]. Earth Science—Journal of Wuhan College of Geology19838(1): 9-27.
  梁定益, 聂泽同, 郭铁鹰, 等. 西藏阿里喀喇昆仑南部的冈瓦纳——特提斯相石炭二叠系[J]. 地球科学19838(1): 9-27.
[20] FAN J J, LI C, WANG M, et al. Features, provenance, and tectonic significance of Carboniferous-Permian glacial marine diamictites in the Southern Qiangtang-Baoshan block, Tibetan Plateau[J]. Gondwana Research201528(4): 1 530-1 542.
[21] LI Cai. A review on 20 years’ study of the Longmu Co-Shuanghu-Lancang River suture zone in Qinghai-Xizang(Tibet) Plateau[J]. Geological Review200854(1): 105-119.
  李才. 青藏高原龙木错—双湖—澜沧江板块缝合带研究二十年[J]. 地质论评200854(1): 105-119.
[22] KAPP P, YIN A, MANNING C E, et al. Blueschist-bearing metamorphic core complexes in the Qiangtang block reveal deep crustal structure of northern Tibet[J]. Geology200028(1). DOI:10.1130/0091-7613(2000)28<19:BMCCIT>2.0.CO;2 .
[23] KAPP P, YIN A, MANNING C E, et al. Tectonic evolution of the early Mesozoic blueschist-bearing Qiangtang metamorphic belt, central Tibet[J]. Tectonics200322(4). DOI: 10.1029/2002TC001383 .
[24] PULLEN A, KAPP P, GEHRELS G E, et al. Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean[J]. Geology200836(5): 351-354.
[25] PULLEN A, KAPP P. Mesozoic tectonic history and lithospheric structure of the Qiangtang terrane: insights from the Qiangtang metamorphic belt, central Tibet[M]// NIE J, HORTON B K, HOKE G D. Toward an improved understanding of uplift mechanisms and the elevation history of the Tibetan Plateau. Geological Society of America, 2014.
[26] GENG Quanru, LI Wenchang, WANG Liquan, et al. Paleozoic tectonic framework and evolution of the central and western Tethys[J]. Sedimentary Geology and Tethyan Geology202141(2): 297-315.
  耿全如, 李文昌, 王立全, 等. 特提斯中西段古生代洋陆格局与构造演化[J]. 沉积与特提斯地质202141(2): 297-315.
[27] PAN Guitang, WANG Liquan, GENG Quanru, et al. Space-time structure of the Bangonghu-Shuanghu-Nujiang-Changning-Menglian Mega-suture zone: a discussion on geology and evolution of the Tethys Ocean[J]. Sedimentary Geology and Tethyan Geology202040(3): 1-19.
  潘桂棠, 王立全, 耿全如, 等. 班公湖—双湖—怒江—昌宁—孟连对接带时空结构——特提斯大洋地质及演化问题[J]. 沉积与特提斯地质202040(3): 1-19.
[28] PAN Guitang, WANG Liquan, YIN Fuguang, et al. Researches on geological-tectonic evolution of Tibetan Plateau: a review, recent advances, and directions in the future[J]. Sedimentary Geology and Tethyan Geology202242(2): 151-175.
  潘桂棠, 王立全, 尹福光, 等. 青藏高原形成演化研究回顾、进展与展望[J]. 沉积与特提斯地质202242(2): 151-175.
[29] WANG Liquan, WANG Baodi, LI Guangming, et al. Major progresses of geological survey and research in East Tethys: an overview[J]. Sedimentary Geology and Tethyan Geology202141(2): 283-296.
  王立全, 王保弟, 李光明, 等. 东特提斯地质调查研究进展综述[J]. 沉积与特提斯地质202141(2): 283-296.
[30] PAN Guitang, ZHU Dicheng, WANG Liquan, et al. Bangong Lake-Nu River suture zone-the northern boundary of Gondwanaland: evidence from geology and geophysics[J]. Earth Science Frontiers200411(4): 371-382.
  潘桂棠, 朱弟成, 王立全, 等. 班公湖—怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据[J]. 地学前缘200411(4): 371-382.
[31] XIE Chaoming, LI Cai, ZHAI Qingguo, et al. The Early Paleozoic magmatism in Qiangtang,northern Tibet and its geological significance[J]. Sedimentary Geology and Tethyan Geology202141(2): 340-350.
  解超明, 李才, 翟庆国, 等. 藏北羌塘早古生代岩浆作用及其地质意义[J]. 沉积与特提斯地质202141(2): 340-350.
[32] WANG Ming, LI Cai, ZHAI Qingguo, et al. Neopaleozoic mantle plume in southern Qiangtang, Tibet Plateau -geochemical evidences from basic and ultrabasic rocks[J]. Geological Bulletin of China201029(12): 1 754-1 772.
  王明, 李才, 翟庆国, 等. 青藏高原羌塘南部晚古生代地幔柱—来自基性—超基性岩的地球化学证据[J]. 地质通报201029(12): 1 754-1 772.
[33] WANG Ming, LI Cai, XIE Chaoming, et al. Petrogenesis of the basalt of Zhanjin Formation in the Gangmar Co area, southern Qiangtang, and its tectonic implications[J]. Geological Bulletin of China201433(11): 1 768-1 777.
  王明, 李才, 解超明, 等. 藏北羌塘南部冈玛错地区展金组玄武岩的成因及其构造意义[J]. 地质通报201433(11): 1 768-1 777.
[34] ZHANG H R, TORSVIK T H. Circum-Tethyan magmatic provinces, shifting continents and Permian climate change[J]. Earth and Planetary Science Letters2022, 584. DOI: 10.1016/j.epsl.2022.117453 .
[35] LI Cai, DONG Yongsheng, ZHAI Qingguo, et al. Discovery of Eopaleozoic ophiolite in the Qiangtang of Tibet Plateau: evidence from SHRIMP U-Pb dating and its tectonic implications[J]. Acta Petrologica Sinica200824(1): 31-36.
  李才, 董永胜, 翟庆国, 等. 青藏高原羌塘早古生代蛇绿岩——堆晶辉长岩的锆石SHRIMP定年及其意义[J]. 岩石学报200824(1): 31-36.
[36] LI Cai, HE Zhonghua, LI Huimin. U-Pb and Sm-Nd dating of mafic dike swarms in southern Qiangtang, Qinghai-Tibet Pleatau and its tectonic significance[J]. Geology of China200431(4): 384-389.
  李才, 和钟铧, 李惠民. 青藏高原南羌塘基性岩墙群U-Pb和Sm-Nd同位素定年及构造意义[J]. 中国地质200431(4): 384-389.
[37] LI Jingchao, ZHAO Zhongbao, ZHENG Yilong, et al. The magmatite evidences in southern Qiangtang for Paleo-Tethys Ocean subducting collision: Gangtang-Co granites in Rongma,Tibet[J]. Acta Petrologica Sinica201531(7): 2 078-2 088.
  李静超, 赵中宝, 郑艺龙, 等. 古特提斯洋俯冲碰撞在南羌塘的岩浆岩证据:西藏荣玛乡冈塘错花岗岩[J]. 岩石学报201531(7): 2 078-2 088.
[38] DAN W, MURPHY J B, TANG Gongjian, et al. Cambrian-Ordovician magmatic flare-up in NE Gondwana: a silicic large igneous province [J]. GSA Bulletin2022135(5/6): 1 618-1 632.
[39] DAN W, WANG Q, LI X H, et al. Low δ 18O magmas in the Carboniferous intra-oceanic arc, central Tibet: implications for felsic magma generation and oceanic arc accretion[J]. Lithos2019326: 28-38.
[40] DAN W, WANG Q, ZHANG X Z, et al. Magmatic record of Late Devonian arc-continent collision in the northern Qiangtang, Tibet: implications for the early evolution of East Paleo-Tethys Ocean[J]. Lithos2018308: 104-117.
[41] XU W T, LIU L S, HAO Y J, et al. A 4000-km-long late Devonian continental arc in eastern Asia and the opening of the Palaeo-Tethys[J]. Terra Nova202537(2): 77-84.
[42] FAN J J, LI C, XIE C M, et al. Remnants of Late Permian-Middle Triassic ocean islands in northern Tibet: implications for the late-stage evolution of the Paleo-Tethys Ocean[J]. Gondwana Research201744: 7-21.
[43] ZHANG Y X, ZHENG B, WANG J, et al. Locating northern Qiangtang on the margin of Gondwana or Laurasia evidence from detrital zircon geochronology[J]. Journal of Asian Earth Sciences2022, 237. DOI: 10.1016/j.jseaes.2022.105343 .
[44] FAN Jianjun, LI Cai, WANG Ming, et al. The genesis and material source of Carboniferous-Late Permian ice miscellaneous conglomerate: a case study of Gangma Co area, Qiangtang, Tibetan Plateau[J]. Geological Bulletin of China201231(9): 1 451-1 460.
  范建军, 李才, 王明, 等. 青藏高原羌塘南部冰海杂砾岩的成因与物源——以冈玛错地区为例[J]. 地质通报201231(9): 1 451-1 460.
[45] LI Lingui, LIANG Xiao, WANG Genhou, et al. Discovery of the Middle-Late Triassic carbonatite formation in the Central Qiangtang accretionary complex, North Tibet and its tectoinc signifiance[J]. Acta Geologica Sinica201892(4): 828-844.
  李林贵, 梁晓, 王根厚, 等. 西藏羌塘增生杂岩带内中—晚三叠世碳酸盐岩地层的发现及大地构造意义[J]. 地质学报201892(4): 828-844.
[46] ZHU Tongxing, DONG Han, LI Cai, et al. Distribution and sedimentary model of the Late Triassic strata in northern Qiangtang on the Qinghai-Xizang Plateau[J]. Sedimentary Geology and Tethyan Geology200525(3): 18-23.
  朱同兴, 董瀚, 李才, 等. 青藏高原北羌塘地区晚三叠世地层展布和沉积型式[J]. 沉积与特提斯地质200525(3): 18-23.
[47] GEHRELS G, KAPP P, DECELLES P, et al. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen[J]. Tectonics201130(5). DOI: 10.1029/2011TC002868 .
[48] ZHAI Q G, ZHANG R Y, JAHN B M, et al. Triassic eclogites from central Qiangtang, northern Tibet, China: petrology, geochronology and metamorphic P-T path[J]. Lithos2011125(1/2): 173-189.
[49] ZHAI Qingguo, JIANG Boming, ZHANG Ruyuan, et al. Triassic high pressure matamorphic belt in the central of Qiangtang, Qinghai-Tibet Plateau[J]. Acta Geologica Sinica201387(): 19.
  翟庆国, 江博明, 张儒媛, 等. 青藏高原羌塘中部三叠纪高压变质带[J]. 地质学报201387(): 19.
[50] ZHAI Qingguo, WANG Jun, LI Cai, et al. SHRIMP U-Pb dating and Hf isotopic analyses of Middle Ordovician meta-cumulate gabbro in central Qiangtang, northern Tibetan Plateau[J]. Science China:Earth Science201040(5): 565-573.
  翟庆国, 王军, 李才, 等. 青藏高原羌塘中部中奥陶世变质堆晶辉长岩锆石SHRIMP年代学及Hf同位素特征[J]. 中国科学:地球科学201040(5): 565-573.
[51] ZHANG Xiuzheng, DONG Yongsheng, LI Cai, et al. Identification of the eclogites with different ages and their tectonic significance in central Qiangtang, Tibetan Plateau: constraints from 40Ar-39Ar geochronology[J]. Geological Bulletin of China201029(12): 1 815-1 824.
  张修政, 董永胜, 李才, 等. 青藏高原羌塘中部不同时代榴辉岩的识别及其意义——来自榴辉岩及其围岩40Ar-39Ar年代学的证据[J]. 地质通报201029(12): 1 815-1 824.
[52] TAN Fuwen, CHEN Ming, WANG Jian, et al. Discovery of middle- and high- grade metamorphic rocks in the central Qiangtang Basin, Tibet, China[J]. Geological Bulletin of China200827(3):351-355.
  谭富文, 陈明, 王剑, 等. 西藏羌塘盆地中部发现中高级变质岩[J]. 地质通报200827(3): 351-355.
[53] TAN Fuwen, WANG Jian, FU Xiugen, et al. U-Pb zircon SHRIMP age of metamorphic rocks from basement of the Qiangtang Basin, northern Tibet, and its geological significance[J]. Acta Perologica Sinica200925(1): 139-146.
  谭富文, 王剑, 付修根, 等. 藏北羌塘盆地基底变质岩的锆石SHRIMP年龄及其地质意义[J]. 岩石学报200925(1): 139-146.
[54] ZHANG Xiuzheng, DONG Yongsheng, LI Cai, et al. Geochemistry and tectonic significance of eclogites in central Qiangtang, Tibetan Plateau[J]. Geological Bulletin of China201029(12): 1 804-1 814.
  张修政, 董永胜, 李才, 等. 青藏高原羌塘中部榴辉岩地球化学特征及其大地构造意义[J]. 地质通报201029(12): 1 804-1 814.
[55] XU W, LIU L S, KOHN M J, et al. Late Triassic continental eclogite in the central Tibetan Plateau reveals 2500-km-long Paleo-Tethys continental subduction[J]. Geology202553(1): 23-28.
[56] GAO R, CHEN C, LU Z W, et al. New constraints on crustal structure and Moho topography in Central Tibet revealed by SinoProbe deep seismic reflection profiling[J]. Tectonophysics2013606: 160-170.
[57] ZHAO J M, ZHAO D P, ZHANG H, et al. P-wave tomography and dynamics of the crust and upper mantle beneath western Tibet[J]. Gondwana Research201425(4): 1 690-1 699.
[58] ZENG S H, HU X Y, LI J H, et al. Detection of the deep crustal structure of the Qiangtang terrane using magnetotelluric imaging[J]. Tectonophysics2015661: 180-189.
[59] YUE H, CHEN Y J, SANDVOL E, et al. Lithospheric and upper mantle structure of the northeastern Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth2012117(B5). DOI: 10.1029/2011JB008545 .
[60] ZHANG Y C, SHEN S Z, ZHAI Q G, et al. Discovery of a Sphaeroschwagerina fusuline fauna from the Raggyorcaka Lake area, northern Tibet: implications for the origin of the Qiangtang Metamorphic Belt[J]. Geological Magazine2016153(3): 537-543.
[61] SHEN Shuzhong, ZHANG Yichun, YUAN Dongxun, et al. Permian integrative stratigraphy, biotas, paleogeographical and paleoclimatic evolution of the Qinghai-Tibetan Plateau and its surrounding areas[J]. Science China: Earth Sciences202454(4): 1 125-1 170.
  沈树忠, 张以春, 袁东勋, 等. 青藏高原及其周边二叠纪综合地层、生物群以及古地理和古气候演化[J]. 中国科学:地球科学202454(4): 1 125-1 170.
[62] SHEN S Z, SUN T R, ZHANG Y C, et al. An upper Kungurian/lower Guadalupian (Permian) brachiopod fauna from the South Qiangtang Block in Tibet and its Palaeobiogeographical implications[J]. Palaeoworld201625(4): 519-538.
[63] JU Q, ZHANG Y C, YUAN D X, et al. Permian foraminifers from the exotic limestone blocks within the central Qiangtang Metamorphic Belt, Tibet and their geological implications[J]. Journal of Asian Earth Sciences2022, 239. DOI:10.1016/j.jseaes.2022.105426 .
[64] YUAN D X, ZHANG Y C, QIAO F, et al. A new late Kungurian (Cisuralian, Permian) conodont and fusuline fauna from the South Qiangtang Block in Tibet and their implications for correlation and paleobiogeography[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 589. DOI: 10.1016/j.palaeo.2021.110822 .
[65] QIAO F, ZHANG Y C, WANG Y, et al. An updated age of Permian strata in the Raggyorcaka and Qamdo areas, Tibet and their paleogeographic implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 582. DOI: 10.1016/j.palaeo.2021.110822 .
[66] ZHANG Y C, SHI G R, SHEN S Z, et al. Permian fusuline fauna from the lower part of the Lugu Formation in the central Qiangtang Block and its geological implications[J]. Acta Geologica Sinica-English Edition201488(2): 365-379.
[67] CHENG Xin. Paleomagnetic data on the late Paleozoic-Early Mesozoic rocks of central Qianghai-Tibet Plateau, China[D]. Xi’an: Northwest University, 2009.
  程鑫. 青藏高原羌塘地块晚古生代古地磁研究[D]. 西安:西北大学, 2009.
[68] CHENG Xin, WU Hanning, DIAO Zongbao, et al. Paleomagnetic data from the Late Carboniferous-Late Permian rocks in eastern Tibet and their implications for tectonic evolution of the northern Qiangtang-Qamdo Block[J]. Science China: Earth Sciences201343(8): 1 312-1 323.
  程鑫, 吴汉宁, 刁宗宝, 等. 藏东地区晚石炭—晚二叠世古地磁新结果:对羌北—昌都地块构造演化的制约[J]. 中国科学:地球科学201343(8): 1 312-1 323.
[69] CHENG X, WEI B T, JIANG N, et al. Evolution of the North Qiangtang Block in the Late Paleozoic: Paleomagnetism and its tectonic implications[J]. GSA Bulletin2024136(1/2): 707-724.
[70] MA X D, LI Y L, TAN X D, et al. Late Triassic paleolatitude of the Southern Qiangtang terrane, central Tibet: implications for the closure of the Longmu Co-Shuanghu Paleo-Tethyan Ocean[J]. Journal of Asian Earth Sciences2024, 269. DOI: 10.1016/j.jseaes.2024.106174 .
[71] MA Y M, WANG Q, WANG J, et al. Paleomagnetic constraints on the origin and drift history of the north Qiangtang terrane in the Late Paleozoic[J]. Geophysical Research Letters201946(2): 689-697.
[72] SONG P P, DING L, LI Z Y, et al. Late Triassic paleolatitude of the Qiangtang Block: implications for the closure of the Paleo-Tethys Ocean[J]. Earth and Planetary Science Letters2015424: 69-83.
[73] SONG P P, DING L, LI Z Y, et al. An early bird from Gondwana: paleomagnetism of Lower Permian lavas from northern Qiangtang (Tibet) and the geography of the Paleo-Tethys[J]. Earth and Planetary Science Letters2017475: 119-133.
[74] SONG P P, DING L, LIPPERT P C, et al. Paleomagnetism of Middle Triassic lavas from northern Qiangtang (Tibet): constraints on the closure of the Paleo-Tethys Ocean[J]. Journal of Geophysical Research: Solid Earth2020125(2). DOI: 10.1029/2019JB017804 .
[75] WEI B T, CHENG X, DOMEIER M, et al. Placing another piece of the Tethyan puzzle: the first Paleozoic paleomagnetic data from the South Qiangtang Block and its paleogeographic implications[J]. Tectonics202241(10). DOI: 10.1029/2022TC007355 .
[76] WEI B T, CHENG X, DOMEIER M, et al. Paleomagnetism of Late Triassic volcanic rocks from the south Qiangtang block, Tibet: constraints on Longmuco-Shuanghu Ocean closure in the Paleo-Tethys realm[J]. Geophysical Research Letters202350(19). DOI:10.1029/2023GL104759 .
[77] YU L, YAN M D, DOMEIER M, et al. New paleomagnetic and chronological constraints on the Late Triassic position of the Eastern Qiangtang terrane: implications for the closure of the paleo-Jinshajiang ocean[J]. Geophysical Research Letters202249(2). DOI: 10.1029/2021GL096902 .
[78] YU L, YAN M D, DOMEIER M, et al. New paleomagnetic results from Late Triassic limestone of the eastern Qiangtang terrane: implications for the closure of the paleo-Jinshajiang ocean[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2025, 657. DOI: 10.1016/j.palaeo.2024.112610 .
[79] ZHOU Y N, CHENG X, WU Y Y, et al. The Northern Qiangtang Block rapid drift during the Triassic Period: Paleomagnetic evidence[J]. Geoscience Frontiers201910(6): 2 313-2 327.
[80] LI C, ZHENG A Z. Paleozoic stratigraphy in the Qiangtang Region of Tibet: relations of the Gondwana and Yangtze continents and ocean closure near the end of the Carboniferous[J]. International Geology Review199335(9): 797-804.
[81] WEN Shixuan. New data on strata from Northern Tibet[J]. Journal of Stratigraphy19793(2): 150-156.
  文世宣. 西藏北部地层新资料[J]. 地层学杂志19793(2): 150-156.
[82] CHEN Wenxi, WANG Jian. The formation and evolution of the Qiangtang Basin during the Late Triassic-Middle Jurassic period in northern Tibet[J]. Geology in China200936(3): 682-693.
  陈文西, 王剑. 晚三叠世—中侏罗世羌塘盆地的形成与演化[J]. 中国地质200936(3): 682-693.
[83] WANG Jian, FU Xiugen, CHEN Wenxi, et al. The Late Triassic paleo-weathering crust in the Qiangtang Basin, Northern Tibet: geology geochemistry and significance[J]. Acta Sedmentologica Sinica200725(4): 487-494.
  王剑, 付修根, 陈文西, 等. 藏北北羌塘盆地晚三叠世古风化壳地质地球化学特征及其意义[J]. 沉积学报200725(4): 487-494.
[84] LI Xueren, WANG Jian. New evidence for the Late Triassic syn-rifting in the eastern Nroth Qiangtang deoression: redefination of the stratigraphic age of volcanic rocks and conglomerates from the Jiapila Formation[J]. Earth Science Frontiers201825(4): 50-64.
  李学仁, 王剑. 北羌塘东部晚三叠世同裂谷作用新证据:来自甲丕拉组火山岩和砾岩时代的重新厘定[J]. 地学前缘201825(4): 50-64.
[85] LI Xueren. Volcanic-sedimentary petrological characteristics and Tectonic attribute of Nadigangri formation in Qiangtang Basin[D]. Beijing: China University of Geosciences (Beijing), 2019.
  李学仁. 羌塘盆地那底岗日组火山—沉积岩石学特征及构造属性研究[D]. 北京:中国地质大学(北京), 2019.
[86] WANG Jian, FU Xiugen. Sedimentary evolution of the Qiangtang Basin[J]. Geology in China45(2): 237-259.
  王剑, 付修根. 论羌塘盆地沉积演化[J]. 中国地质201845(2): 237-259.
[87] FU X G, WANG J, TAN F W, et al. The Late Triassic rift-related volcanic rocks from eastern Qiangtang, northern Tibet (China): age and tectonic implications[J]. Gondwana Research201017(1): 135-144.
[88] XU W, LIU F L, DONG Y S. Cambrian to Triassic geodynamic evolution of central Qiangtang, Tibet[J]. Earth-Science Reviews2020, 201. DOI: 10.1016/j.earscirev.2020.103083 .
[89] WU Guichun, JI Zhansheng, LASH G G, et al. Triassic integrative stratigraphy, biotas, and paleogeographical evolution of the Qinghai-Tibetan Plateau and its surrounding areas[J]. Science China: Earth Sciences202467(4): 1 152-1 194.
  武桂春, 纪占胜, LASH G G, 等. 青藏高原及其周边三叠纪综合地层、生物群与古地理演化[J]. 中国科学:地球科学202454(4): 1 171-1 210.
[90] ZHANG Shuqi, JJIANG Lijie, FENG Dechen, et al. New data of early Triassic conodnts in the Zishisang area, Southern Qiangtang, Northern Tibet, China[J]. Geological Bulletin of China200524(12): 1 173-1 174.
  张树岐, 蒋丽杰, 冯德臣, 等. 藏北南羌塘孜狮桑地区早三叠世牙形刺化石新资料[J]. 地质通报200524(12): 1 173-1 174.
[91] LI Ya, JI Zhansheng, WU Guichun, et al. Radiolarian Fauna from Middle Triassic of Zuoqingcuo Formation, Southern Qiangtang Basin, Xizang, China, and its stratigraphic significance[J]. Earth Science201843(11): 3 932-3 946.
  李亚, 纪占胜, 武桂春, 等. 西藏南羌塘盆地中三叠世座倾错组放射虫动物群及其地层学意义[J]. 地球科学201843(11): 3 932-3 946.
[92] LI Cai. The Longmucuo-Shuanghu-Lancangjiang plate suture and the north boundary of distribution of Gondwana facies permo-Carboniferous system in northern Xizang, China[J]. Journal of Jilin University (Earth Science Edition)198730(2): 155-166.
  李才. 龙木错—双湖—澜沧江板块缝合带与石炭二叠纪冈瓦纳北界[J]. 吉林大学学报(地球科学版)198730(2): 155-166.
[93] DENG Wanming, YIN Jixiang, GUO Zhongping. Basic-ultrabasic and volcanic rocks in Chabu-Shuanghu area of northern Xizang (Tibet), China[J]. Science China:Earth Sciences1996 (4): 296-301.
  邓万明, 尹集祥, 呙中平. 羌塘茶布—双湖地区基性超基性岩和火山岩研究[J]. 中国科学:地球科学1996 (4): 296-301.
[94] WANG Chengshan, HU Chengzu, WU Ruizhong, et al. Significance of the discovery of Chasang-Chabu rift in Northern Xizang(Tibet)[J]. Journal of Chengdu college of Geology1987 (2): 36-49, 124.
  王成善, 胡承祖, 吴瑞忠, 等. 西藏北部查桑—茶布裂谷的发现及其地质意义[J]. 成都地质学院学报1987(2): 36-49, 124.
[95] LIN J L, WATTS D. Palaeomagnetic results from the Tibetan Plateau[J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences1988327(1 594): 239-262.
[96] SUN Zhiming, CAO Yong, LI Haibing, et al. A review of Paleomagnetic study of the formation and evolution of the Tibetan Plateau[J]. Acta Geoscientica Sinica201940(1): 17-36.
  孙知明, 曹勇, 李海兵, 等. 青藏高原形成和演化的古地磁研究进展综述[J]. 地球学报201940(1): 17-36.
[97] YE Xianghua, LI Jiafu. Plaomagnetism and evolution of Tibet plates and Tethys[J]. Journal of Chengdu College of Geology198714(1): 65-79.
  叶祥华, 李家福. 古地磁与西藏板块及特提斯的演化[J]. 成都地质学院学报198714(1): 65-79.
[98] DONG Xuebin, WANG Zhongmin, TAN Chengze, et al. New results of paleomagnetic studies of the Qinghai-Tibet Plateau[J]. Geological Review199137(2): 160-164.
  董学斌, 王忠民, 谭承泽, 等. 青藏高原古地磁研究新结果[J]. 地质论评199137(2): 160-164.
[99] LI Yongan, LI Qiang, ZHANG Hui, et al. Palaeomagnetic study of Tarim and its adjacent area as well as the formation and evolution of Tarim basin[J]. Xinjiang Geology199513(4): 293-378.
  李永安, 李强, 张慧, 等. 塔里木及其周边古地磁研究与盆地形成演化[J]. 新疆地质199513(4): 293-378.
[100] YANG Xingfeng, CHENG Xin, ZHOU Yanan, et al. Paleomagnetic results from Late Carboniferous to Early Permian rocks in the northern Qiangtang terrane, Tibet, China, and their tectonic implications[J]. Science China: Earth Sciences201646(10): 1 381-1 391.
  杨兴峰, 程鑫, 周亚楠, 等. 羌北地块晚石炭—早二叠世古地磁结果及构造意义[J]. 中国科学:地球科学201646(10): 1 381-1 391.
[101] CHENG Xin, WU Hanning, GUO Qiang, et al. Paleomagnetic results of late Paleozoic rocks from northern Qiangtang block in Qinghai-Tibet Plateau, China[J]. Science China: Earth Sciences201141(8): 1 100-1 108.
  程鑫, 吴汉宁, 郭强, 等. 青藏高原羌北地块晚古生代古地磁研究的初步结果[J]. 中国科学:地球科学201141(8): 1 100-1 108.
[102] HUANG K N, OPDYKE N D, PENG X J, et al. Paleomagnetic results from the Upper Permian of the eastern Qiangtang Terrane of Tibet and their tectonic implications[J]. Earth and Planetary Science Letters1992111(1): 1-10.
[103] LIANG X, SUN X H, WANG G H, et al. Sedimentary evolution and provenance of the Late Permian-Middle Triassic raggyorcaka deposits in north Qiangtang (Tibet, western China): evidence for a forearc basin of the Longmu Co-Shuanghu Tethys Ocean[J]. Tectonics2020, 39. DOI: 10.1029/2019TC005589 .
[104] WANG J, WANG Q, ZHANG C F, et al. Late Permian bimodal volcanic rocks in the northern Qiangtang terrane, central Tibet: evidence for interaction between the Emeishan plume and the Paleo-Tethyan subduction system[J]. Journal of Geophysical Research: Solid Earth2018123(8): 6 540-6 561.
[105] GUAN C, YAN M D, ZHANG W L, et al. Paleomagnetic and chronologic data bearing on the Permian/Triassic boundary position of Qamdo in the eastern Qiantang terrane: implications for the closure of the Paleo-Tethys[J]. Geophysical Research Letters202148(6). DOI: 10.1029/2020GL092059 .
[106] CHEN S S, SHI R D, YI G D, et al. Middle Triassic volcanic rocks in the Northern Qiangtang (Central Tibet): geochronology, petrogenesis, and tectonic implications[J]. Tectonophysics2016666: 90-102.
[107] SONG Chunyan, WANG Jian, FU Xiugen, et al. Late Triassic Paleomagnetic data from the Qiangtang terrane of Tibetan Plateau and their tectonic significances[J]. Journal of Jilin University (Earth Science Edition)201242(2): 526-535.
  宋春彦, 王剑, 付修根, 等. 青藏高原羌塘盆地晚三叠世古地磁数据及其构造意义[J]. 吉林大学学报(地球科学版)201242(2): 526-535.
[108] ZHOU Yanan, CHENG Xin, SHAO Ruiqi, et al. Paleomagnetic data from the Middle-Late Triassic rocks of Qiangtang Block, Qinghai-Tibet Plateau, China[J]. Journal of Northwest University (Natural Science Edition)201949(5): 736-744.
  周亚楠, 程鑫, 邵瑞琦, 等. 青藏高原北羌塘块体中—晚三叠世古地磁研究[J]. 西北大学学报(自然科学版)201949(5): 736-744.
[109] MA X D, TAN X D, LI Y L, et al. Initial closure of the Longmu Co-Shuanghu Paleo-Tethyan ocean: constraints based on new paleomagnetic data from the Middle Triassic volcanic-sedimentary sequence, Southern Qiangtang terrane[J]. Tectonics2025, 44. DOI: 10.1029/2024TC008504 .
[110] WEI B T, CHENG X, DOMEIER M, et al. A Cimmerian keystone: Middle-Late Triassic paleomagnetic and calcite geochronologic constraints on the South Qiangtang Block[J]. Earth and Planetary Science Letters2025, 664. DOI: 10.1016/j.epsl.2025.119442 .
[111] CAO Yong, SUN Zhiming, LI Haibing, et al. Paleomagnetic study of the Late Triassic limestones in the western portion of the Qiangtang Block and its tectonic implications[J]. Acta Geologica Sinica201993(10): 2 463-2 476.
  曹勇, 孙知明, 李海兵, 等. 羌塘地块西部晚三叠世灰岩古地磁研究及其构造意义[J]. 地质学报201993(10): 2 463-2 476.
[112] FENG Xintao, ZHU Tongxing, LI Cai, et al. Redetinition of the Upper Triassic Xiaochaka Group in the Shuanghu area, northern Tibet, China and its geological implications[J]. Geological Bulletin of China200524(12): 1 135-1 140.
  冯心涛, 朱同兴, 李才, 等. 藏北双湖地区上三叠统肖茶卡群的重新厘定及其地质意义[J]. 地质通报200524(12): 1 135-1 140.
[113] WANG Yongsheng, QU Yonggui, SUN Zhonggang, et al. Characteristics and tectonic setting of volcanic rocks of the Late Triassic Nongbai Formation margin of the South Qiangtang Block, Northern Tibet, China[J]. Geological Bulletin of China200726(6): 682-691.
  王永胜, 曲永贵, 孙中纲, 等. 藏北南羌塘陆块北缘晚三叠世弄佰组火山岩的特征及构造环境[J]. 地质通报200726(6): 682-691.
[114] CHEN W W, ZHANG S H, DING J K, et al. Combined paleomagnetic and geochronological study on Cretaceous strata of the Qiangtang terrane, central Tibet[J]. Gondwana Research201741: 373-389.
[115] SONG P P, DING L, LI J X, et al. Unraveling the Lhasa-Qiangtang collision in western Tibet: insights from geochronological and paleomagnetic analyses[J]. Geophysical Research Letters202451(14). DOI:10.1029/2024GL110264 .
[116] TORSVIK T H, van der VOO R, PREEDEN U, et al. Phanerozoic polar wander, Palaeogeography and dynamics[J]. Earth-Science Reviews2012114(3/4): 325-368.
[117] HUANG B C, YAN Y G, PIPER J D A, et al. Paleomagnetic constraints on the paleogeography of the east Asian blocks during Late Paleozoic and Early Mesozoic times[J]. Earth-Science Reviews2018186: 8-36.
[118] YAN Y G, HUANG B C, ZHANG D H, et al. Paleomagnetic study on the Permian rocks of the Indochina Block and its implications for paleogeographic configuration and northward drifting of cathaysialand in the Paleo-Tethys[J]. Journal of Geophysical Research: Solid Earth2018123(6): 4 523-4 538.
[119] DING Lin, LI Zhenyu, SONG Peiping. Core fragments of Tibetan Plateau from Gondwanaland United in northern hemisphere[J]. Bulletin of Chinese Academy of Sciences201732(9): 945-950.
  丁林, 李震宇, 宋培平. 青藏高原的核心来自南半球冈瓦纳大陆[J]. 中国科学院院刊201732(9): 945-950.
[120] WEI B T, YANG X F, CHENG X, et al. An absolute paleogeographic positioning of the early Permian Tarim large igneous province[J]. Journal of Geophysical Research: Solid Earth2020125(5). DOI: 10.1029/2019JB019111 .
[121] FAN Jianjun, LI Cai, WANG Ming, et al. The analysis of depositional environment and U-Pb dating of detrital Zircon for Zhanjin Formation at Gangma Co area, Southern Qiangtang, Tibtean Olateau[J]. Acta Geologica Sinica201488(10): 1 820-1 831.
  范建军, 李才, 王明, 等. 青藏高原羌塘南部冈玛错地区展金组的沉积环境分析及碎屑锆石U-Pb定年[J]. 地质学报201488(10): 1 820-1 831.
[122] LI Cai, CHENG Liren, HU Ke, et al. Ice-sea mix-conglomeates and their genesis in the southrn area of Qiangtang, Tibet[J]. Journal of Changchun University of Earth Sciences1995(4): 368-374.
  李才, 程立人, 胡克, 等. 西藏羌塘南部地区的冰海杂砾岩及其成因[J]. 长春地质学院学报1995(4): 368-374.
[123] CRADDOCK J P, OJAKANGAS R W, MALONE D H, et al. Detrital zircon provenance of Permo-Carboniferous glacial diamictites across Gondwana[J]. Earth-Science Reviews2019192: 285-316.
[124] WANG X D, HU K Y, SHI Y K, et al. The missing upper Carboniferous in the Cimmerian Continent: a critical review[J]. Earth-Science Reviews2021, 217. DOI: 10.1016/j.earscirev.2021.103627 .
[125] JIANG Nan, WU Hanning, LI Yuyu, et al. Preliminary paleomagnetic results of the Early-Middle Silurian rocks from North Qiangtang terrane, and its tectonic implications[J]. Chinese Journal of Geophysics202265(3): 1 057-1 070.
  姜南, 吴汉宁, 李玉玉, 等. 羌北地块早—中志留世古地磁学初步研究结果及其构造意义[J]. 地球物理学报202265(3): 1 057-1 070.
[126] LI Teng, CHENG Xin, ZHOU Yanan, et al. Paleomagnetic study on the Early Devonian Pingshagou Formation limestone from the North Qiangtang terrance in the Tibetan Plateau[J]. Progress in Geophysics202439(1): 10-25.
  李腾, 程鑫, 周亚楠, 等. 青藏高原北羌塘地块下泥盆统平沙沟组古地磁学研究[J]. 地球物理学进展202439(1): 10-25.
[127] YAN Y G, DUAN L, LIANG S M, et al. Paleomagnetic constraint on the Carboniferous paleoposition of Indochina and its implications for the evolution of eastern Paleo-Tethys Ocean[J]. Tectonics202039(7). DOI: 10.1029/2020TC006168 .
[128] YAN Yonggang, HUANG Baochun, ZHANG Peizhen, et al. Paleomagnetic constraint on the movement of the Indochina Block since Late Paleozoic: progress and prospect[J]. Chinese Science Bulletin202469(18): 2 498-2 517.
  闫永刚, 黄宝春, 张培震, 等. 印支地块晚古生代以来运动历史的古地磁学重建:进展与展望[J]. 科学通报202469(18): 2 498-2 517.
[129] YAN Y G, ZHAO Q, ZHANG Y P, et al. Direct paleomagnetic constraint on the closure of Paleo-Tethys and its implications for linking the Tibetan and Southeast Asian blocks[J]. Geophysical Research Letters201946(24): 14 368-14 376.
[130] LI Pengwu, GAO Rui, CUI Junwen, et al. Paleomagnetic Results from the Three Rivers Region, SW China: implications for the collisional and accretionary history[J]. Acta Geoscientica Sinica200526(5): 3-20.
  李朋武, 高锐, 崔军文, 等. 西藏和云南三江地区特提斯洋盆演化历史的古地磁分析[J]. 地球学报200526 (5): 3-20.
[131] WU Liandong, YUAN Tingyuan, JIN Hailong, et al. Petrology of low-grade metamorphic quartz sandstones within northwestern Tibetan regions: implications to the tectonic evolution of the northwestern Tibet[J]. Acta Petrologica Sinica201834(3): 701-718.
  伍连东, 苑婷媛, 金海龙, 等. 西藏西北部浅变质石英砂岩岩石学特征及其构造意义[J]. 岩石学报201834(03): 701-718.
[132] LIU Y M, LI C, XIE C M, et al. Detrital zircon U-Pb ages and Hf isotopic composition of the Ordovician Duguer quartz schist, central Tibetan Plateau: constraints on tectonic affinity and sedimentary source regions[J]. Geological Magazine2017154(3): 558-570.
[133] CAWOOD P A, JOHNSON M R W, NEMCHIN A A. Early Palaeozoic orogenesis along the Indian margin of Gondwana: tectonic response to Gondwana assembly[J]. Earth and Planetary Science Letters2007255(1/2): 70-84.
[134] XU Y C, YANG Z Y, TONG Y B, et al. Further paleomagnetic results for Lower Permian basalts of the Baoshan Terrane, southwestern China, and paleogeographic implications[J]. Journal of Asian Earth Sciences2015104: 99-114.
[135] ALI J R, CHEUNG H M C, AITCHISON J C, et al. Palaeomagnetic re-investigation of early Permian Rift basalts from the Baoshan Block, SW China: constraints on the site-of-origin of the Gondwana-derived eastern Cimmerian terranes[J]. Geophysical Journal International2013193(2): 650-663.
[136] YUAN J, DENG C L, YANG Z Y, et al. New paleomagnetic data from the central Tethyan Himalaya refine the size of Greater India during the Campanian[J]. Earth and Planetary Science Letters2023, 622. DOI: 10.1016/j.epsl.2023.118422 .
[137] MENG J, GILDER S A, WANG C S, et al. Defining the limits of greater India[J]. Geophysical Research Letters201946(8): 4 182-4 191.
[138] MENG J, GILDER S A, TAN X D, et al. Strengthening the argument for a large greater India[J]. Proceedings of the National Academy of Sciences of the United States of America2023120(33). DOI: 10.1073/pnas.2305928120 .
[139] BIAN W W, YANG T S, PENG W X, et al. Paleomagnetic constraints on the India-Asia collision and the size of greater India[J]. Journal of Geophysical Research: Solid Earth2021126(6). DOI: 10.1029/2021JB021965 .
[140] JIN S C, SUN X X, JING X Q, et al. A smaller greater India and a Middle-Early Eocene collision with Asia[J]. Geophysical Research Letters202350(3). DOI: 10.1029/2022GL101372 .
[141] YANG T S, JIN J J, BIAN W W, et al. Precollisional latitude of the northern Tethyan Himalaya from the Paleocene redbeds and its implication for greater India and the India-Asia collision[J]. Journal of Geophysical Research: Solid Earth2019124(11): 10 777-10 798.
[142] DAN W, WANG Q, MURPHY J B, et al. Short duration of Early Permian Qiangtang-Panjal large igneous province: implications for origin of the Neo-Tethys Ocean[J]. Earth and Planetary Science Letters2021, 568. DOI: 10.1016/j.epsl.2021.117054 .
[143] XU W, DONG Y S, ZHANG X Z, et al. Petrogenesis of high-Ti mafic dykes from southern Qiangtang, Tibet: implications for a Ca. 290Ma large igneous province related to the Early Permian rifting of Gondwana[J]. Gondwana Research201636: 410-422.
[144] WANG M, LI C, ZENG X W, et al. Petrogenesis of the southern Qiangtang mafic dykes, Tibet: link to a Late Paleozoic mantle plume on the northern margin of Gondwana [J]. GSA Bulletin2019131(11/12): 1 907-1 919.
[145] ZHAI Qingguo, LI Cai, WANG Jun, et al. SHRIMP U-Pb dating and Hf isotopic analyses of zircons from the mafic dyke swarms in central Qiangtang area, Northern Tibet[J]. Chinese Science Bulletin200954(21): 3 331-3 337.
  翟庆国, 李才, 王军, 等. 藏北羌塘地区基性岩墙群锆石SHRIMP定年及Hf同位素特征[J]. 科学通报200954(21): 3 331-3 337.
[146] ZHAI Q G, JAHN B M, SU L, et al. SHRIMP zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopic compositions of a mafic dyke swarm in the Qiangtang terrane, northern Tibet and geodynamic implications[J]. Lithos2013174: 28-43.
[147] ZHU Rixiang, ZHAO Pan, WAN Bo, et al. Geodynamics of the one-way subduction of the Neo-Tethys Ocean[J]. Chinese Science Bulletin202368(13): 1 699-1 708.
  朱日祥, 赵盼, 万博, 等. 新特提斯单向俯冲的动力学机制[J]. 科学通报202368(13): 1 699-1 708.
[148] XU H P, ZHANG Y C, YUAN D X, et al. Quantitative Palaeobiogeography of the kungurian-roadian brachiopod faunas in the Tethys: implications of allometric drifting of Cimmerian blocks and opening of the meso-Tethys ocean[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 601. DOI: 10.1016/j.palaeo.2022.111078 .
[149] XING L Y, CHENG X, DOMEIER M, et al. Was the Lhasa block at low latitudes in the Middle Permian insights from new paleomagnetic and geochronological data[J]. Geophysical Research Letters202552(7). DOI: 10.1029/2024GL114347 .
[150] YUAN J, DENG C L, YANG Z Y, et al. Triple-stage India-Asia collision involving arc-continent collision and subsequent two-stage continent-continent collision[J]. Global and Planetary Change2022, 212. DOI: 10.1016/j.gloplacha.2022.103821 .
[151] YUAN J, YANG Z Y, DENG C L, et al. Rapid drift of the Tethyan Himalaya terrane before two-stage India-Asia collision[J]. National Science Review20208(7). DOI: 10.1093/nsr/nwaa173 .
[152] DAN W, WANG Q, WHITE W M, et al. Rapid formation of eclogites during a nearly closed ocean: revisiting the Pianshishan eclogite in Qiangtang, central Tibetan Plateau[J]. Chemical Geology2018477: 112-122.
[153] LIU D L, SHI R D, DING L, et al. Survived seamount reveals an in situ origin for the central Qiangtang metamorphic belt in the Tibetan Plateau[J]. Journal of Earth Science201930(6): 1 253-1 265.
[154] LU R K, LI Y, SUN S L, et al. Middle Triassic remnant of the Palaeo-Tethys Ocean, central Tibet: constraints from the Pianshishan retrograded eclogite-type rocks[J]. Geological Journal202257(8): 3 033-3 047.
[155] SONG P P, DING L, LIPPERT P C, et al. Paleomagnetism of Middle Triassic lavas from northern Qiangtang (Tibet): constraints on the closure of the Paleo-Tethys Ocean[J]. Journal of Geophysical Research: Solid Earth2020125(2). DOI: 10.1029/2019JB017804 .
[156] WANG J, FU X G, WEI H Y, et al. Late Triassic basin inversion of the Qiangtang Basin in northern Tibet: implications for the closure of the Paleo-Tethys and expansion of the Neo-Tethys[J]. Journal of Asian Earth Sciences2022, 227. DOI: 10.1016/j.jseaes.2022.105119 .
[157] LI Yong, WANG Chengshan, YIN Haisheng. The Late Triassic collision and sedimentary responses at western segment of Jinshajiang suture,Tibet[J]. Acta Sedimentologica Sinica200321(2): 191-197.
  李勇, 王成善, 伊海生. 西藏金沙江缝合带西段晚三叠世碰撞作用与沉积响应[J]. 沉积学报200321(2): 191-197.
[158] LI Cai, ZHAI Qingguo, DONG Yongsheng, et al. Stablishment of the Upper Triassic Wanghuling Formation at Guoganjianian Mountain, central Qiangtang, Qinghai-Tibet Plateau, and its significance[J]. Geological Bulletin of China200726(8): 1 003-1 008.
  李才, 翟庆国, 董永胜, 等. 青藏高原羌塘中部果干加年山上三叠统望湖岭组的建立及意义[J]. 地质通报200726(8): 1 003-1 008.
[159] LI Cai, ZHAI Qingguo, Chen Wen, et al. Geochronology evidence of the closure of Longmu Co-Shuanghu suture, Qinghai-Tibet Plateau: Ar-Ar and zircon SHRIMP geochronology from ophiolite and rhyolite in Guoganjianian[J]. Acta Petrologica Sinica200723(5): 911-918.
  李才, 翟庆国, 陈文, 等. 青藏高原龙木错—双湖板块缝合带闭合的年代学证据——来自果干加年山蛇绿岩与流纹岩Ar-Ar和SHRIMP年龄制约[J]. 岩石学报200723(5): 911-918.
[160] ZHANG R Y, LO C H, CHUNG S L, et al. Origin and tectonic implication of ophiolite and eclogite in the Song Ma suture zone between the South China and Indochina blocks[J]. Journal of Metamorphic Geology201331(1): 49-62.
[161] ZHANG Xiuzheng, DONG Yongsheng, WANG Qiang, et al. High pressure metamorphic belt in central Qiangtang, Tibetan Plateau: progress and unsolved problems[J]. Geological Bulletin of China201837(8): 1 406-1 416.
  张修政, 董永胜, 王强, 等. 青藏高原羌塘中部高压变质带的研究进展及存在问题[J]. 地质通报201837(8): 1 406-1 416.
[162] ZHANG Y X, JIN X, ZHANG K J, et al. Newly discovered Late Triassic Baqing eclogite in central Tibet indicates an anticlockwise West-East Qiangtang collision[J]. Scientific Reports20188(1). DOI: 10.1038/s41598-018-19342-w .
[163] TANG X C, ZHANG K J. Lawsonite- and glaucophane-bearing blueschists from NW Qiangtang, northern Tibet, China: mineralogy, geochemistry, geochronology, and tectonic implications[J]. International Geology Review201456(2): 150-166.
[164] ZHAI Q G, JAHN B M, LI X H, et al. Zircon U-Pb dating of eclogite from the Qiangtang terrane, north-central Tibet: a case of metamorphic zircon with magmatic geochemical features[J]. International Journal of Earth Sciences2017106(4): 1 239-1 255.
[165] WANG H N, LIU F L, LI J, et al. Petrology, geochemistry and P-T-t path of lawsonite-bearing retrograded eclogites in the Changning-Menglian orogenic belt, southeast Tibetan Plateau[J]. Journal of Metamorphic Geology201937(4): 439-478.
[166] HU Peiyuan, LI Cai, YANG Hantao, et al. Characteristic, zircon dating and tectonic significance of Late Triassic granite in the Guoganjianianshan area, central Qiangtang, Qinghai-Tibet Plateau, China[J]. Geological Bulletin of China201029(12): 1 825-1 832.
  胡培远, 李才, 杨韩涛, 等. 青藏高原羌塘中部果干加年山一带晚三叠世花岗岩的特征、锆石定年及其构造意义[J]. 地质通报201029(12): 1 825-1 832.
[167] HU P Y, LI C, LI J, et al. Zircon U-Pb-Hf isotopes and whole-rock geochemistry of gneissic granites from the Jitang complex in Leiwuqi area, eastern Tibet, China: record of the closure of the Paleo-Tethys Ocean[J]. Tectonophysics2014623: 83-99.
[168] ZHAI Q G, HU P Y, LIU Y M, et al. Final closure of the Paleo-Tethys Ocean: insights from Triassic granitoids in the central Qiangtang area, northern Tibetan Plateau[J]. Geological Society of America Bulletin2024136(11/12): 5 075-5 090.
[169] PENG T P, ZHAO G C, FAN W M, et al. Late Triassic granitic magmatism in the eastern Qiangtang, eastern Tibetan Plateau: geochronology, petrogenesis and implications for the tectonic evolution of the Paleo-Tethys[J]. Gondwana Research201527(4): 1 494-1 508.
[170] MA Y M, DEKKERS M J, DUARTE J C, et al. Subduction transference drove the Mesozoic convergence of microcontinents from Gondwana to Asia[J]. Communications Earth & Environment2025, 6. DOI: 10.1038/s43247-025-02410-1 .
Outlines

/