Predictability of Land Surface Processes: Research Progress and Prospects

  • Guodong SUN ,
  • Fei PENG ,
  • Qiujie REN ,
  • Qiyu ZHANG ,
  • Dandan YUE
Expand
  • 1.State Key Laboratory of Earth System Numerical Modeling and Application, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
    2.CMA Earth System Modeling and Prediction Centre, Beijing 100081, China
    3.School of Mathematics and Information Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
    4.Chongqing Key Laboratory of Numerical Model-AI Integrated Forecast and Warning for Severe Weather, Chongqing Institute of Meteorological Sciences, Chongqing 401147, China
    5.College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
    6.The State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
    7.University of Chinese Academy of Sciences, Beijing 100049, China
SUN Guodong, research areas include predictability and land-atmosphere interaction. E-mail: sungd@mail.iap.ac.cn

Received date: 2025-04-11

  Revised date: 2025-06-12

  Online published: 2025-06-28

Supported by

the National Key Research and Development Program of China(2023YFF0805202);The National Natural Science Foundation of China(42175077)

Abstract

Land surfaces are important components of the Earth’s system. The land surface has an important influence on the weather and climate system through processes such as energy, moisture, carbon, and nitrogen cycles, coupling, and interactions with the atmosphere. The study of numerical modelling and forecasting of land surface processes is a hot topic in international research. However, the numerical modelling and forecasting of land surface processes are subject to large uncertainties. Assessing the current level of uncertainty in numerical modelling and forecasting of land surface processes, searching for sources of uncertainty in numerical modelling and forecasting of land surface processes, and exploring ways and means to reduce the uncertainty in numerical modelling and forecasting of land surface processes fall within the scope of research on the predictability of land surface processes. This paper reviews the progress of the author's research in these three areas and discusses key scientific issues and techniques that need to be focused on in future research on the predictability of land-surface processes.

Cite this article

Guodong SUN , Fei PENG , Qiujie REN , Qiyu ZHANG , Dandan YUE . Predictability of Land Surface Processes: Research Progress and Prospects[J]. Advances in Earth Science, 2025 , 40(7) : 661 -671 . DOI: 10.11867/j.issn.1001-8166.2025.050

References

[1] MCGUIRE A D, SITCH S, CLEIN J S, et al. Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land use effects with four process-based ecosystem models [J]. Global Biogeochemical Cycles200115: 183-206.
[2] FRIEDLINGSTEIN P, MEINSHAUSEN M, ARORA V K, et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks [J]. Journal of Climate201427: 511-526.
[3] LORENZ R, DAVIN E L, SENEVIRATNE S I. Modeling land-climate coupling in Europe: impact of land surface representation on climate variability and extremes: land-climate coupling in Europe [J]. Journal of Geophysical Research: Atmospheres2012, 117. DOI:10.1029/2012JD017755 .
[4] FINDELL K L, GENTINE P, LINTNER B R, et al. Data length requirements for observational estimates of land-atmosphere coupling strength [J]. Journal of Hydrometeorology201516: 1 615-1 635.
[5] BAUR F, KEIL C, CRAIG G C. Soil moisture-precipitation coupling over Central Europe: interactions between surface anomalies at different scales and the dynamical implication [J]. Quarterly Journal of the Royal Meteorological Society2018144: 2 863-2 875.
[6] DENISSEN J M C, TEULING A J, REICHSTEIN M, et al. Critical soil moisture derived from satellite observations over Europe [J]. Journal of Geophysical Research: Atmospheres2020, 125. DOI:10.1029/2019JD031672 .
[7] JACH L, SCHWITALLA T, BRANCH O, et al. Sensitivity of land-atmosphere coupling strength to changing atmospheric temperature and moisture over Europe [J]. Earth System Dynamics202213: 109-132.
[8] FU C, AN Z. Study of aridization in northern China—a global change issue facing directly the demand of nation [J]. Earth Science Frontiers20029(2): 271-275.
[9] HUANG J, LI Y, FU C, et al. Dryland climate change: recent progress and challenges [J]. Reviews of Geophysics201755: 719-778.
[10] DAI Y, ZENG Q. A Land Surface Model (IAP94) for climate studies part I: formulation and validation in off-line experiments [J]. Advances in Atmospheric Sciences199714(4): 433-460.
[11] ZHENG Hui, LIU Shuhua, PRABHAKAR C, et al. Description and evaluation of the Peking University Land Model (PKULM) [J]. Chinese Journal of Geophysics201659(1): 79-92.
  郑辉, 刘树华, Prabhakar C, 等. 北京大学陆面过程模式PKULM(Peking University Land Model)介绍及检验 [J]. 地球物理学报201659(1): 79-92.
[12] DAI Yongjiu. Issues in research and development of land surface process model [J]. Transactions of Atmospheric Sciences202043(1): 33-38.
  戴永久. 陆面过程模式研发中的问题 [J]. 大气科学学报202043(1): 33-38.
[13] ZHOU Guangsheng, ZHOU Mengzi, ZHOU Li, et al. Prospects for land-atmosphere interaction [J]. Advances in Earth Science202439(7): 661-670.
  周广胜, 周梦子, 周莉, 等. 陆—气相互作用研究展望 [J]. 地球科学进展202439(7): 661-670.
[14] MANABE S. Climate and the circulation: I. the atmospheric circulation and the hydrology of the Earth’s surface [J]. Monthly Weather Review196997: 739-774.
[15] ZENG X D, SHEN S S P, ZENG X B, et al. Multiple equilibrium states and the abrupt transitions in a dynamical system of soil water interacting with vegetation [J]. Geophysical Research Letters2004, 31. DOI:10.1029/2003GL018910 .
[16] ZENG Q C, ZENG X D. An analytical dynamic model of grass field ecosystem with two variables[J]. Ecological Modelling199685: 187-196.
[17] LUO Y Q, KEENAN T F, SMITH M. Predictability of the terrestrial carbon cycle [J]. Global Change Biology201521: 1 737-1 751.
[18] SELLERS P J, MINTZ Y, SUD Y C, et al. A Simple Biosphere model (SIB) for use within general circulation models [J]. Journal of the Atmospheric Sciences198643(6): 505-531.
[19] JI J. A climate-vegetation interaction model: simulating physical and biological processes at the surface [J]. Journal of Biogeography199522(2/3): 445-451.
[20] DAI Y. The Common Land Model (CoLM) user’s guide [R]. Beijing: School of Geography, Beijing Normal University, 2005.
[21] OLESON K W, NIU G Y, YANG Z L, et al. Improvements to the Community Land Model and their impact on the hydrological cycle [J]. Journal of Geophysical Research2008, 113. DOI:10.1029/2007JG000563 .
[22] MU M, DUAN W, WANG J. The predictability problems in numerical weather and climate prediction [J]. Advances in Atmospheric Sciences200219(2): 191-204.
[23] LORENZ E N. Section of planetary sciences: the predictability of hydrodynamic flow [J]. Transactions of the New York Academy of Sciences196325: 409-432.
[24] LORENZ E N. A study of the predictability of a 28-variable atmospheric model [J]. Tellus196517: 321-333.
[25] LORENZ E N. The predictability of a flow which possesses many scales of motion [J]. Tellus196921: 289-307.
[26] MU M, DUAN W S. A nonlinear theory and technology for reducing the uncertainty of high-impact ocean-atmosphere event prediction [J]. Advances in Atmospheric Sciences202542(10): 1 981-1 995.
[27] MU M, DUAN W, WANG B. Conditional nonlinear optimal perturbation and its applications [J]. Nonlinear Processes in Geophysics200310: 493-501.
[28] MU M, DUAN W, WANG Q, et al. An extension of conditional nonlinear optimal perturbation approach and its applications [J]. Nonlinear Processes in Geophysics201017(2): 211-220.
[29] PAN Z, ANDRADE D, SEGAL M, et al. Uncertainty in future soil carbon trends at a central U.S. site under an ensemble of GCM scenario climates [J]. Ecological Modelling2010221:876-881.
[30] SEAGER R, TING M, Li C, et al. Projections of declining surface-water availability for the southwestern United States [J]. Nature Climate Change20133: 482-486.
[31] SUN G D, MU M. Understanding variations and seasonal characteristics of net primary production under two types of climate change scenarios in China using the LPJ model [J]. Climatic Change2013120: 755-769.
[32] PENG F, MU M, SUN G D. Responses of soil moisture to climate change based on projections by the end of 21st century under the high emission scenario in the ‘Huang-Huai-Hai Plain’ region of China [J]. Journal of Hydro-environment Research201714: 105-118.
[33] PENG F, MU M, SUN G. Evaluations of uncertainty and sensitivity in soil moisture modeling on the Tibetan Plateau [J]. Tellus A: Dynamic Meteorology and Oceanography202072(1): 1-16.
[34] XIE Dongdong, SUN Guodong, SHAO Aimei, et al. A study of simulation uncertainties caused by parameter uncertainties in a grassland ecosystem model [J]. Climate and Environmental Research201318(3): 375-386.
  谢东东, 孙国栋, 邵爱梅, 等. 草原生态系统模式中参数不确定性导致的模拟结果不确定性研究 [J]. 气候与环境研究201318(3): 375-386.
[35] LAWRENCE D M, FISHER R A, KOVEN C D, et al. The Community Land Model version 5: description of new features, benchmarking, and impact of forcing uncertainty [J]. Journal of Advances in Modeling Earth Systems201911: 4 245-4 287.
[36] MOUAD E, GARAMBOIS P, HUYNH N, et al. Improving parameter regionalization learning for spatialized differentiable hydrological models by assimilation of satellite-based soil moisture data[J]. Journal of Hydrology2025. DOI:10.1016/j.jhydrol .
[37] SUN G D, PENG F, MU M. Uncertainty assessment and sensitivity analysis of soil moisture based on model parameters-results from four regions in China [J]. Journal of Hydrology2017555: 347-360.
[38] SUN G D, MU M, REN Q J, et al. Determinants of physical processes and their contributions for uncertainties in simulated evapotranspiration over the Tibetan Plateau [J]. Journal of Geophysical Research: Atmospheres2022, 127. DOI: 10.1029/2021JD035756 .
[39] ZHANG K, MA J, ZHU G, et al. Parameter sensitivity analysis and optimization for a satellite-based evapotranspiration model across multiple sites using Moderate Resolution Imaging Spectroradiometer and flux data[J]. Journal of Geophysical Research Atmospheres2017122: 230-245.
[40] SUN G D, MU M, YOU Q L. Identification of key physical processes and improvements for simulating and predicting net primary production over the Tibetan Plateau [J]. Journal of Geophysical Research: Atmospheres2020, 125. DOI:10.1029/2020JD033128 .
[41] SUN G D. Evaluation of sensitive physical parameter combinations for determining the uncertainty of fire simulations and predictions in China [J]. Atmospheric Science Letters202223(6). DOI: 10.1002/asl.1085 .
[42] CAO M, WANG W, XING W, et al. Multiple sources of uncertainties in satellite retrieval of terrestrial actual evapotranspiration [J]. Journal of Hydrology2021, 601. DOI:10.1016/j.jhydrol.2021.126642 .
[43] WEI G, ZHOU L, LIU H, et al. Improving evapotranspiration model performance by treating energy imbalance and interaction [J]. Water Resources Research202056(9). DOI:10.1029/2020WR027367 .
[44] SUN G D, MU M, ZHANG Q Y, et al. Verification of long-term ensemble evapotranspiration hindcast using a conditional nonlinear optimal parameter perturbation ensemble prediction method on the Tibetan Plateau [J]. Journal of Geophysical Research: Atmospheres2024, 129. DOI:10.1029/2023jd040076 .
[45] LI Xin. Characterization, controlling, and reduction of uncertainties in the modeling and observation of land-surface systems [J]. Science China: Earth Sciences201343(11): 1 735-1 742.
  李新. 陆地表层系统模拟和观测的不确定性及其控制 [J]. 中国科学: 地球科学201343(11): 1 735-1 742.
[46] CHEN Jing, LI Xiaoli. The review of 10 years development of the GRAPES Global/Regional Ensemble Prediction [J]. Advances in Meteorological Science and Technology202010(2): 9-18,29.
  陈静, 李晓莉. GRAPES全球/区域集合预报系统10年发展回顾及展望[J]. 气象科技进展202010(2): 9-18,29.
[47] DUAN Q, GUPTA V K, SOROUSHIAN S. A shuffled complex evolution approach for effective and efficient global minimization [J]. Journal of Optimization Theory and Applications199376: 501-521.
[48] RODELL M, HOUSER P R, JAMBOR U, et al. The global land data assimilation system [J]. Bulletin of the American Meteorological Society200485: 381-394.
[49] LI Xin, HUANG Chunlin, CHE Tao, et al. Progress and prospects in the research of the Chinese Land Data Assimilation System [J]. Progress in Natural Sciences200717(2): 163-173.
  李新, 黄春林, 车涛, 等. 中国陆面数据同化系统研究的进展与前瞻 [J]. 自然科学进展200717(2): 163-173.
[50] YANG K, WATANABE T, KOIKE T, et al. Auto-calibration system developed to assimilate AMSR-E data into a land surface model for estimating soil moisture and the surface energy budget [J]. Journal of the Meteorological Society of Japan200785: 229-242.
[51] TIAN X, XIE Z, DAI A, et al. A dual-pass variational data assimilation framework for estimating soil moisture profiles from AMSR-E microwave brightness temperature [J]. Journal of Geophysical Research: Atmospheres2009114(D16). DOI:10.1029/2008JD011600 .
[52] SHI C X, XIE Z H, QIAN H, et al. China land soil moisture EnKF data assimilation based on satellite remote sensing data [J]. Science China Earth Sciences201154: 1 430-1 440.
[53] LI X, LIU F, FANG M. Harmonizing models and observations: data assimilation in Earth system science [J]. Science China Earth Sciences202063(8): 1 059-1 068.
[54] TIAN J, LU H, YANG K, et al. Quick estimation of parameters for the land surface data assimilation system and its influence based on the extended Kalman filter and automatic differentiation [J]. Science China Earth Sciences202366: 2 546-2 562.
[55] SCHAAKE J C, HAMILL T M, BUZZA R, et al. The hydrological ensemble prediction experiment [J]. Bulletin of the American Meteorological Society200788: 1 541-1 548.
[56] CLOKE H, PAPPENBERGER F. Ensemble flood forecasting: a review [J]. Journal of Hydrology2009375(3/4): 613-626.
Outlines

/