Basic Characteristics, Research Progress, and Prospects of Rain-on-Snow Flood

  • Rensheng CHEN
Expand
  • State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

Received date: 2025-04-01

  Revised date: 2025-04-30

  Online published: 2025-07-17

Supported by

the National Key Research and Development Program of China(2024YFF0808602)

The National Natural Science Foundation of China(42171145)

Abstract

Rain-on-snow floods are extreme hydrological events characterized by sudden onset, low frequency, and high destructiveness, often leading to severe disasters. Due to their complex nature, understanding the disaster-causing mechanisms, evolution processes, and prevention strategies of rain-on-snow floods has become one of the most pressing challenges in contemporary hydrology and a fundamental requirement for national disaster prevention and mitigation. This study reviews the distribution characteristics and hazards of rain-on-snow floods and examines current research progress and development trends. It is found that the definition of rain-on-snow floods remains at a “potential” stage, with varying thresholds and considerable inconsistency. The disaster-causing mechanisms are still unclear, resulting in a limited understanding of flood evolution laws and a lack of robust simulation and forecasting models. These gaps hinder accurate flood warnings and risk management. There is an urgent need to establish a “real” definition of rain-on-snow floods, based on extensive flood event data and related observations. Additionally, revealing the underlying mechanisms, developing reliable simulation and forecasting models, and replicating typical rain-on-snow flood events through application-based demonstrations are essential next steps. This will enable a clearer understanding of the evolutionary processes, future changes, and potential risks of rain-on-snow floods at regional, basin, and global scales, while also supporting the development of effective prevention and mitigation strategies.

Cite this article

Rensheng CHEN . Basic Characteristics, Research Progress, and Prospects of Rain-on-Snow Flood[J]. Advances in Earth Science, 2025 , 40(6) : 551 -558 . DOI: 10.11867/j.issn.1001-8166.2025.035

雪面雨(Rain-on-Snow,ROS)洪水是指由降落到积雪表面的雨诱发形成的一种雨雪混合型洪水,因其具有突发性、低频性和强破坏性1,通常被界定为极端洪水2,往往会造成重大灾害。受全球气候变暖影响,春季降雨提前3,雪面雨事件增多4,且向海拔更高、积雪更多、坡度更陡、更容易快速形成洪水的山区及高纬度地区发展5-8,导致早春特别是冬季雪面雨洪水增多69-11。未来全球特别是北半球,雪面雨洪水将会增多,且峰值会增大,灾害风险也将加大4-512-13,如在北美洲西海岸洪灾风险可增加20%~200%4,中国西部高海拔地区和东北地区雪面雨洪灾风险防范形势将更加严峻714。然而,由于雪面雨洪水致灾机理及演变规律尚不明确,Trubilowicz等152017年将雪面雨洪水致灾机理界定为水文学“最需要解决的”科学问题;2019年,前欧洲地球科学联合会(European Geosciences Union,EGU)主席及水文学分会主席Günter Blöschl联合全球近210名水文学家,界定雪面雨洪水致灾机理为水文学中“23个主要待解决的关键科学问题之一”16。因此,在全球变化背景下,深入认识雪面雨洪水的基本特点、致灾机理及演变规律,不仅是一个前沿科学问题,也是世界各国防灾减灾工作的迫切需求。

1 雪面雨洪水基本特点

雪面雨洪水在全球高纬度、高海拔地区普遍存在1517-18,分布广泛,在欧洲西部和东北部、美国西部和东北部以及加拿大西南部等地频发519-21,如德国海拔400 m以上流域的河道侵蚀主要由雪面雨洪水造成2,奥地利490个流域的11 518场洪水中约54%为雪面雨洪水22,北美洲特别是加拿大不列颠哥伦比亚省以及美国西海岸加利福尼亚州、俄勒冈州和华盛顿州等更是雪面雨洪水的重灾区1223-24。此外,瑞士6、英国25、南美洲安第斯山脉26和日本27等国家和地区也常常发生雪面雨洪水,挪威的冬季雪面雨已有诱发冰川区洪水的迹象28。高海拔亚洲地区29-30,包括中国青藏高原、新疆1831、东北32和华东北部等地也是雪面雨事件的多发区7,由此引发的雪面雨洪水也较多33,但相关研究较为薄弱71418
(1)在全球主要积雪区,雪面雨洪水基本为极端洪水。小雪面雨事件一般不会诱发洪水34,雪面雨洪水主要为强降雨过程诱发的极端洪水35。雪面雨降低了积雪反照率36-37,同时其携带的热量也加速了积雪消融38-40,在雨强较大的情况下,可强烈侵蚀积雪41-42,而此时土壤冻结,容易形成地表径流,强地表降雨径流叠加积雪融水快速冲蚀下坡积雪和河冰,并侵蚀土壤和河道43,也可能造成雪崩44和滑坡45等并发性灾害,往往形成灾害性较强的极端雨雪混合洪水或泥石流14。如在美国西海岸、西部内陆山脉和阿巴拉契亚山脉等地,超过70%的极端洪水(小于0.1%概率)为雪面雨洪水12,内华达山脉甚至整个北美洲西海岸历史上最大的几场洪水也均由雪面雨造成2445。在中国新疆,70%以上的雪面雨洪水为5年一遇以上水平33
(2)雪面雨洪水的极端性和强致灾性常常造成重大灾害。美国西部受灾最严重的洪水均为雪面雨洪水45,如1964年美国俄勒冈州和加利福尼亚州北部的一场雪面雨洪水造成了120万美元的损失46,2017年2月萨克拉门托—圣华金三角洲发生的雪面雨洪水破坏了奥罗维尔大坝的溢洪道,迫使18.8万居民撤离1245。加拿大阿尔伯塔省2013年6月的雪面雨洪水,是加拿大历史上损失最惨重的自然灾害,经济损失约60亿加元47。瑞士2011年10月的雪面雨洪水淹埋了进出阿尔卑斯山的唯一通道,20万方土石涌入下游水库,总损失达9 000万瑞士法郎48。德国2011年底的“圣诞洪水”和澳大利亚2016年的休恩河洪水49,造成严重的人员伤亡和财产损失。中国雪面雨洪水灾害损失也极为严重。如1988年3月,以新疆呼图壁县军塘湖河为中心的天山北坡雪面雨洪水灾害,累计冲毁公路130 km、渠道181 km、堤坝4.6 km、建筑物70座,冲毁淹没农田约9 593 hm2,淹没房屋268间、倒塌房屋1 038间,20 余万人受灾,直接经济损失3 182万元。2010年3月呼图壁、伊犁、塔城和阿勒泰等地因快速升温和雪面雨事件形成了严重洪灾,共造成130.5万人受灾,因灾死亡13人、失踪2人,紧急转移安置18.4万人,直接经济损失12.7亿元。此外,2001年8月天山南坡托什干河、2002年4月和2003年晚冬伊犁以及2019年冬天阿勒泰等地也发生了较为严重的雪面雨洪水灾害33

2 主要研究进展及发展动态

2.1 诱发阈值尚处在“潜在洪水”阶段且不确定性大

雪面雨洪水能否形成取决于雪面雨强度、积雪量以及其他组合条件,如气温和积雪性质等50,率定其形成阈值是界定、预报雪面雨洪水最简单的方法及对未来进行预估的依据。Freudiger等51基于2011年1月发生在欧洲中部的1场大范围雪面雨洪水和德国的3场雪面雨洪水数据,提出了“潜在雪面雨洪水”发生的阈值:①日降雨量≥3 mm;②雪水当量≥10 mm;③融雪水量占洪水总量的20%以上。Musselman等4结合北美西部特点,将以上第①个阈值更改为:①日降雨量≥10 mm。但同样在北美西部,Huang等52提出的阈值为:①日降雨量≥25 mm;②雪水当量≥10 mm;③融雪水量占洪水总量的25%以上;④雪表温度为0 ℃。Ohba等27定义日本的“潜在雪面雨洪水”阈值为:①日降雨量≥10 mm;②雪深≥10 cm。
从以上4种潜在雪面雨洪水定义来看,第①个阈值即日降雨量差异最大,分别为3 mm、10 mm和25 mm,甚至还有研究提出50 mm8,但Singh等53指出,在积雪饱水条件下,小降雨事件也可能产生快速的径流,并形成洪水。对于第②个和第③个阈值,Wayand等54指出在雪水贡献较小的情况下,实际仍然可能会发生雪面雨洪水。缺乏甚至脱离大量雪面雨洪水事件作为统计样本或雪面雨洪水形成过程机理作为支撑,是造成潜在与实际雪面雨洪水脱节的主要原因,但在水文站点稀少的条件下特别是在山区流域,通过监测获取这些数据并揭示其机理仍然极为困难355255

2.2 雪面雨洪水致灾机理仍是待解决的关键问题

目前研究对雪面雨洪水形成条件及案例分析较多,但对洪水致灾机理仍不明确:
(1)雪面雨对积雪消融过程的影响。该类研究历史较长,主要涉及雪面雨对积雪性质2656、融雪径流过程5357以及径流组分3458影响等方面14
(2)雪面雨洪水形成过程及其致灾机理。相对于雪面雨对积雪消融过程的影响,对雪面雨洪水形成及其致灾机理的研究相对较少42,目前主要有两方面的探索:一是采用人工降雨试验,这种研究相对较少59,目前见诸文献的、较大规模的约有7次,其中以洪水形成过程为研究目的的仅有3次535860;二是采用监测+模型探讨雪面雨洪水的形成过程,开展雪面雨洪水重大灾害案例及其影响因素分析,这也是主流研究内容265161-62。以上研究的主要认知包括:①多数大雨可导致雪面雨洪水发生34,但在积雪饱水或流域土壤水分含量高的情况下,小降雨事件也可能会引起洪水4553;②雪内结冰或底部土壤冻结对洪水形成有重要的促进作用5763;③雪面雨洪水不仅与降雨量及其强度有关,而且与0 ℃等温层高度和积雪特性等有关,暖薄积雪更容易产生洪水505264;④高纬度地区森林间隙区容易出现优先流65,森林砍伐会加速雪面雨洪水的形成过程并增大峰值66;⑤在北美等地受北极涛动或北大西洋涛动的影响较大5,在欧洲南部则主要受西南季风的影响67,而在大西洋中部则主要由一个异常深的500 mb低压槽控制62,Rössler等61和Guan等68还认为天河(atmospheric rivers)的出现加大了雪面雨洪水的风险。总体来看,不同于主要受热量控制的升温融雪型洪水,雪面雨强度、雪水当量和雪层初始含水量是雪面雨洪水形成最重要的影响因素69
(3)问题及不确定性。以上研究取得了许多重要进展,但有关雪面雨洪水的致灾机理,正如Blöschl等16指出,雪面雨在什么情况下、通过什么机制以及为什么会导致极端洪水,这些问题目前还不明确13165970。为此,Trubilowicz等15和Blöschl等16分别将其界定为水文学“最需要解决的”“23个主要待解决的关键科学问题之一”。

2.3 雪面雨洪水演变规律多聚焦“潜在洪水”

(1)雪面雨演变规律。雪面雨事件是雪面雨洪水发生的基本前提。关于不同空间尺度雪面雨事件的过去及未来可能变化的研究较多5304250-515771-73,得出的较为一致的结论有:过去几十年,雪面雨事件总体呈现增加趋势,其发生区域多集中于更高海拔和更高纬度地区,且在时间分布上,早春特别是冬季更加频繁。相对于雪面雨洪水,雪面雨事件相对容易界定,常用的方法是通过实测气象和遥感数据,如基于气温阈值的雨雪分离法或降水类型监测数据来确定降水类型是否为降雨,通过可见光遥感、地面气象站记录或水文模型手段等判断地面是否为积雪。在未来预估方面也基于类似方法,主要是利用雨雪分离方案+积雪消融模型来判断是否发生了雪面雨事件627。近年来,对中国雪面雨事件过去的变化特征及空间分布的研究已取得了显著进展7183171,但亟待开展对未来变化趋势的预估工作。
(2)雪面雨洪水演变规律。在有实测径流数据时,可利用分类树32和Camp-Meidell不等式74等方法界定雪面雨洪水,并结合相关水文模型等评估其过去和未来的演变规律,效果良好。在雪面雨洪水频发的高山区和高纬度地区,由于洪水监测数据匮乏,模型结果也存在较大不确定性54,目前主流的研究方法仍然是采用“潜在洪水”概念及其阈值,并结合已有监测和不同情景预估的气象数据进行分析482752。以上结果表明,未来全球高纬度和高海拔地区雪面雨洪水风险总体呈上升趋势,且这种风险正在向海拔更高、积雪更多、坡度更陡的山区及高纬度地区发展,同时,预计未来早春和冬季雪面雨洪水事件将会增多。
(3)问题及不确定性。Schirmer等13指出,基于以上方法预估的未来雪面雨洪水风险存在很大的不确定性:①冬季降雨时由于气温较低或积雪较干,很难形成洪水,不考虑气温和积雪初始含水量阈值,仅以降雨量和雪水当量来界定的方法27存在较大缺陷;②将融雪水量占洪水量的比例设定为≥20%51或≥25%52作为阈值,相当于补充了气温和/或含水量因子,但这种方法预估的未来雪面雨洪水次数,仅在以前融雪水量比重小于该阈值的地区增加明显(降雨和雪水当量阈值未变),而在融雪水量比重大于该阈值的地区,预估的洪水次数则变化不大(降雨量和雪水当量引起的除外),但实际上未来这些地区在小于上述降雨阈值的情况下仍然可能发生洪水事件,比如在夏季早期雪温较高、积雪快速融化的情况下;③气候模式预估的未来气象数据也存在较大不确定性,Jasper等75指出较小的降雨和气温等误差很可能会造成较大的洪水预估误差,Schirmer等13更是认为气象数据的不确定性可占总不确定性的70%以上。

2.4 中国升温融雪洪水研究较好但雪面雨洪水研究刚起步

融雪洪水主要分为2种:升温融雪型和雨雪混合型,雪面雨洪水属于雨雪混合型中的一种特殊类型。中国融雪径流过程研究具有长久的历史,在监测、模拟和预估等方面均取得了长足进展76。在升温融雪型洪水及灾害分布77-78、灾害效应79、洪水模拟80、重大灾害案例分析81以及决策支持系统研发82-86等方面也有较好的基础14。近年来,在国家相关项目支持下,在西北干旱区极端升温过程融雪洪水致灾机理87-88和演变规律89-90,立体监测91-93、精细格网化气象预报技术研发94、高精度驱动95-96和预报数据集制作,产汇流97-100、雨雪混合洪水河道演进101和冰塞洪水模型102构建,以及预报预警决策支持系统研发和业务化应用103等方面,开展了较为系统的研究工作。针对致灾性极强的雪面雨洪水,中国已开展了东亚季风区洪水分类方法及雪面雨洪水识别32,干旱区山地雪面雨侵蚀积雪动力过程野外试验60等工作,但在雪面雨洪水致灾机理、演变规律及预报预警等方面,尚缺乏专门而系统的研究。

3 研究展望

面向防灾减灾需求,针对雪面雨洪水这种分布范围广、致灾性强、未来风险大的复合型极端洪水,聚焦其致灾机理这一当前水文学“亟需解决的”“23个主要待解决的关键科学问题之一”,应突破当前“潜在雪面雨洪水”的概念限制,从孕灾环境、致灾因子和承灾体3个方面,与理论模式、野外试验、阈值率定和综合分析相结合,揭示致灾机理,构建机理或AI模型,在系统认识区域/流域尺度雪面雨洪水演变规律的基础上,开展洪水预报预警和灾害风险评估。
当前亟需开展的工作包括但不限于:
(1)雪面雨洪水事件界定方法探索。为突破当前“潜在雪面雨洪水”概念的限制,首先需要基于水文站多年洪水记录或日流量数据以及其他相关数据,探索“真实”雪面雨洪水事件界定方法,包括但不限于阈值(组合)法和人工智能法等。
(2)雪面雨洪水致灾机理研究。建议基于实际雪面雨洪水数据,从不同雪面雨分区重大雪面雨洪水事件孕灾环境、致灾因子及承灾体分析入手,并结合雪面雨对积雪消融过程的影响试验,提出雪面雨洪水形成关键过程理论模式并构建定量表征方法,据此揭示不同孕灾环境下的关键致灾因子并率定阈值,在此基础上开展雪面雨洪水致灾机理综合分析。
(3)雪面雨洪水模型构建及示范应用。构建基于致灾机理和AI的雪面雨洪水模型,在典型流域不同频次雪面雨洪水事件复演的基础上,开展典型流域雪面雨洪水事件预报应用示范。
(4)区域/流域尺度雪面雨洪水演变规律及潜在风险评估。基于区域/流域实测数据,开展雪面雨洪水演变规律分析,并基于雪面雨洪水模拟模型,开展对未来雪面雨洪水可能变化预估,并评估典型流域未来超标准雪面雨洪水的风险。
[1]
GODARA N BRULAND O ALFREDSEN K. Modelling flash floods driven by rain-on-snow events using rain-on-grid technique in the hydrodynamic model TELEMAC-2D[J]. Water202315(22). DOI: 10.3390/w15223945 .

[2]
JONES J A PERKINS R M. Extreme flood sensitivity to snow and forest harvest, western Cascades, Oregon, United States[J]. Water Resources Research201046(12): 439-445.

[3]
IPCC. Climate change 2022: impacts, adaptation, and vulnerability [M]// Contribution of working group II to the 6th assessment report of the intergovernmental panel on climate change. Cambridge, UK, 2022.

[4]
MUSSELMAN K N LEHNER F IKEDA K, et al. Projected increases and shifts in rain-on-snow flood risk over western North America[J]. Nature Climate Change20188: 808-812.

[5]
HOTOVY O NEDELCEV O JENICEK M. Changes in rain-on-snow events in mountain catchments in the rain-snow transition zone[J]. Hydrological Sciences Journal202368(4): 572-584.

[6]
MORÁN-TEJEDA E LÓPEZ-MORENO J I STOFFEL M, et al. Rain-on-snow events in Switzerland: recent observations and projections for the 21st century[J]. Climate Research201671(2): 111-125.

[7]
ZHOU G ZHANG D H WAN J H, et al. Mapping reveals contrasting change patterns of rain-on-snow events in China during 2001-2018[J]. Journal of Hydrology2023, 617. DOI: 10.1016/j.jhydrol.2023.129089 .

[8]
BENISTON M STOFFEL M. Rain-on-snow events, floods and climate change in the Alps: events may increase with warming up to 4 ℃ and decrease thereafter[J]. Science of the Total Environment2016571: 228-236.

[9]
HIRABAYASHI Y MAHENDRAN R KOIRALA S, et al. Global flood risk under climate change[J]. Nature Climate Change20133: 816-821.

[10]
ARNELL N W GOSLING S N. The impacts of climate change on river flood risk at the global scale[J]. Climatic Change2016134(3): 387-401.

[11]
SCHEGWIDDEN O RUPP D E NIJSSEN B. Climate change alters flood magnitudes and mechanisms in climatically-diverse headwaters across the northwestern United States[J]. Environmental Research Letters202015(9). DOI:10.1088/1748-9326/ab986f .

[12]
LI D Y LETTENMAIER D P MARGULIS S A, et al. The role of rain-on-snow in flooding over the conterminous United States[J]. Water Resources Research201955(11): 8 492-8 513.

[13]
SCHIRMER M WINSTRAL A JONAS T, et al. Natural climate variability is an important aspect of future projections of snow water resources and rain-on-snow events[J]. The Cryosphere202216(9): 3 469-3 488.

[14]
CHEN Rensheng SHEN Yongping MAO Weiyi, et al. Progress and issues on key technologies in forecasting of snowmelt flood disaster in arid areas, northwest China[J]. Advances in Earth Science202136(3): 233-244.

陈仁升, 沈永平, 毛炜峄, 等. 西北干旱区融雪洪水灾害预报预警技术: 进展与展望[J]. 地球科学进展202136(3): 233-244.

[15]
TRUBILOWICZ J W MOORE R D. Quantifying the role of the snowpack in generating water available for run-off during rain-on-snow events from snow pillow records[J]. Hydrological Processes201731(23): 4 136-4 150.

[16]
BLÖSCHL G BIERKENS M F P CHAMBEL A, et al. Twenty-three Unsolved Problems in Hydrology (UPH)—a community perspective [J]. Journal of Hydrology201964: 1 141-1 158.

[17]
YE H C YANG D Q ROBINSON D. Winter rain on snow and its association with air temperature in northern Eurasia[J]. Hydrological Processes200822(15): 2 728-2 736.

[18]
YANG Z W CHEN R S LIU Z W, et al. Spatiotemporal variability of rain-on-snow events in the arid region of northwest China[J]. Journal of Arid Land202416(4): 483-499.

[19]
UHLEMANN S THIEKEN A H MERZ B. A consistent set of trans-basin floods in Germany between 1952-2002[J]. Hydrology and Earth System Sciences201014(7): 1 277-1 295.

[20]
GVOŽDÍKOVÁ B MÜLLER M. Evaluation of extensive floods in western/central Europe[J]. Hydrology and Earth System Sciences201721(7): 3 715-3 725.

[21]
COHEN J YE H C JONES J. Trends and variability in rain-on-snow events[J]. Geophysical Research Letters201542(17): 7 115-7 122.

[22]
MERZ R BLÖSCHL G. A process typology of regional floods[J]. Water Resources Research200339(12): 510-520.

[23]
HARR R D. Some characteristics and consequences of snowmelt during rainfall in western Oregon[J]. Journal of Hydrology198153(3/4): 277-304.

[24]
KATTELMANN R BERG N MCGURK B. A history of rain-on-snow floods in the Sierra Nevada [C]. Proceedings-Western Snow Conference, 1991.

[25]
ARCHER D R BAILEY J O BARRETT E C, et al. The potential of satellite remote sensing of snow over Great Britain in relation to cloud cover[J]. Hydrology Research199425(1/2): 39-52.

[26]
MELGAR D O MEZA F J. Exploring the fingerprints of past rain-on-snow events in a Central Andean Mountain range basin using satellite imagery[J]. Remote Sensing202012(24). DOI:10.3390/rs12244173 .

[27]
OHBA M KAWASE H. Rain-on-snow events in Japan as projected by a large ensemble of regional climate simulations[J]. Climate Dynamics202055(9): 2 785-2 800.

[28]
ŁUPIKASZA E B IGNATIUK D GRABIEC M, et al. The role of winter rain in the glacial system on svalbard[J]. Water201911(2). DOI: 10.3390/w11020334 .

[29]
YANG T LI Q HAMDI R, et al. Trends and spatial variations of rain-on-snow events over the high mountain Asia[J]. Journal of Hydrology2022, 614. DOI: 10.1016/j.jhydrol.2022.128593 .

[30]
MAINA F Z KUMAR S V. Diverging trends in rain-on-snow over high mountain Asia[J]. Earth’s Future202311(3). DOI: 10.1029/2022EF003009 .

[31]
LU Xinyu CHEN Rensheng LIU Yan, et al. Spatiotemporal variation of rain-on-snow days in northern Xinjiang[J]. Journal of Glaciology and Geocryology202143(5): 1 446-1 457.

卢新玉, 陈仁升, 刘艳, 等. 我国新疆北部地区雪面雨日数时空变化特征分析[J]. 冰川冻土202143(5): 1 446-1 457.

[32]
YANG W C YANG H B YANG D W. Classifying floods by quantifying driver contributions in the Eastern Monsoon region of China[J]. Journal of Hydrology2020, 585. DOI: 10.1016/j.jhydrol.2020.124767 .

[33]
SHEN Yongping ZHANG Wei HAN Chuntan, et al. Research report on snowmelt flood disaster in arid regions [R]. Lanzhou: Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 2020.

沈永平,张伟,韩春坛,等. 干旱区融雪洪水灾害调研报告 [R]. 兰州:中国科学院西北生态环境资源研究院,2020.

[34]
RÜCKER A BOSS S KIRCHNER J W, et al. Monitoring snowpack outflow volumes and their isotopic composition to better understand streamflow generation during rain-on-snow events[J]. Hydrology and Earth System Sciences201923(7): 2 983-3 005.

[35]
BRANDT W T HALEAKALA K HATCHETT B J, et al. A review of the hydrologic response mechanisms during mountain rain-on-snow[J]. Frontiers in Earth Science2022, 10. DOI: 10.3389/feart.2022.791760 .

[36]
KATTELMANN R. Macropores in snowpacks of sierra Nevada[J]. Annals of Glaciology19856: 272-273.

[37]
HUNTINGTON T G HODGKINS G A KEIM B D, et al. Changes in the proportion of precipitation occurring as snow in new England (1949-2000)[J]. Journal of Climate200417(13): 2 626-2 636.

[38]
USACE. Snow hydrology [M]. Portland, Oregon: North Pacific Division, 1956.

[39]
MARKS D LINK T WINSTRAL A, et al. Simulating snowmelt processes during rain-on-snow over a semi-arid mountain basin[J]. Annals of Glaciology200132: 195-202.

[40]
GARVELMANN J POHL S WEILER M. Variability of observed energy fluxes during rain-on-snow and clear sky snowmelt in a midlatitude mountain environment[J]. Journal of Hydrometeorology201415(3): 1 220-1 237.

[41]
OSTERHUBER R. Precipitation intensity during rain-on-snow [C]. South Lake Yahoe, California, USA: Western Snow Conference, 1999.

[42]
PALL P TALLAKSEN L M STORDAL F. A climatology of rain-on-snow events for Norway[J]. Journal of Climate201932(20): 6 995-7 016.

[43]
SWANSTON D N. Slope stability problems associated with timber harvesting in mountainous regions of the western United States [R]. Portland: General Technical Reports, 1974.

[44]
STIMBERIS J RUBIN C M. Glide avalanche response to an extreme rain-on-snow event, Snoqualmie Pass, Washington, USA[J]. Journal of Glaciology201157(203): 468-474.

[45]
HALEAKALA K TYLER B W HATCHETT B J, et al. Watershed memory amplified the Oroville rain-on-snow flood of February 2017[J]. PNAS Nexus20222(1). DOI: 10.1093/pnasnexus/pgac295 .

[46]
WAANANEN A O HARRIS D D WILLIAMS R C. Floods of December 1964 and 763 January 1965 in the Far Western States: Part 1 description (No. 1866-A) [M]. Washington D.C.: United States Geological Survey, 1971.

[47]
POMEROY J W STEWART R E WHITFIELD P H. The 2013 flood event in the south Saskatchewan and Elk river basins: causes, assessment and damages[J]. Revue Canadienne Des Ressources Hydriques201641(1/2): 105-117.

[48]
ANDRES N BADOUX A HILKER N. Unwetterschäden in der Schweiz im Jahre 2011. Rutschungen, Murgänge, Hochwasser und Sturzereignisse, Wasser, Energie, Luft, Baden [Z]. 2021.

[49]
RICHARD D. Australia-evacuations in Tasmania as Huon River overflows-flood list [N/OL]. (2025-03-01).

[50]
MCCABE G J CLARK M P HAY L E. Rain-on-snow events in the western United States[J]. Bulletin of the American Meteorological Society200788(3): 319-328.

[51]
FREUDIGER D KOHN I STAHL K, et al. Large-scale analysis of changing frequencies of rain-on-snow events with flood-generation potential[J]. Hydrology and Earth System Sciences201418(7): 2 695-2 709.

[52]
HUANG H L FISCHELLA M R LIU Y F, et al. Changes in mechanisms and characteristics of western U.S. floods over the last sixty years[J]. Geophysical Research Letters202249(3). DOI: 10.1029/2021gl097022 .

[53]
SINGH P SPITZBART G HÜBL H, et al. Hydrological response of snowpack under rain-on-snow events: a field study[J]. Journal of Hydrology1997202(1/2/3/4): 1-20.

[54]
WAYAND N E LUNDQUIST J D CLARK M P. Modeling the influence of hypsometry, vegetation, and storm energy on snowmelt contributions to basins during rain-on-snow floods[J]. Water Resources Research201551(10): 8 551-8 569.

[55]
HARPOLD A A KAPLAN M L KLOS P Z, et al. Rain or snow: hydrologic processes, observations, prediction, and research needs[J]. Hydrology and Earth System Sciences201721(1): 1-22.

[56]
CONWAY H BENEDICT R. Infiltration of water into snow[J]. Water Resources Research199430(3): 641-649.

[57]
PRADHANANG S M FREI A ZION M, et al. Rain-on-snow runoff events in New York[J]. Hydrological Processes201327(21): 3 035-3 049.

[58]
EIRIKSSON D WHITSON M LUCE C H, et al. An evaluation of the hydrologic relevance of lateral flow in snow at hillslope and catchment scales[J]. Hydrological Processes201327(5): 640-654.

[59]
JURAS R PAVLÁSEK J VITVAR T, et al. Isotopic tracing of the outflow during artificial rain-on-snow event[J]. Journal of Hydrology2016541: 1 145-1 154.

[60]
YANG Z W CHEN R S LIU Y W, et al. The impact of rain-on-snow events on the snowmelt process: a field study[J]. Hydrological Processes202337(11). DOI: 10.1002/hyp.15019 .

[61]
RÖSSLER O FROIDEVAUX P BÖRST U, et al. Retrospective analysis of a nonforecasted rain-on-snow flood in the Alps—a matter of model limitations or unpredictable nature?[J]. Hydrology and Earth System Sciences201418(6): 2 265-2 285.

[62]
GROTE T. A synoptic climatology of rain-on-snow flooding in mid-Atlantic region using NCEP/NCAR re-analysis[J]. Physical Geography202142(5): 452-471.

[63]
SHANLEY J B CHALMERS A. The effect of frozen soil on snowmelt runoff at Sleepers River, Vermont[J]. Hydrological Processes199913(12/13): 1 843-1 857.

[64]
WÜRZER S WEVER N JURAS R, et al. Modelling liquid water transport in snow under rain-on-snow conditions-considering preferential flow[J]. Hydrology and Earth System Sciences201721(3): 1 741-1 756.

[65]
BOUCHARD B NADEAU D F DOMINÉ F, et al. Impact of rain-on-snow events on snowpack structure and runoff under a boreal canopy[J]. Cryosphere Discu2004. DOI:10.5194/egusphere-2023-3012 .

[66]
HARR R D. Effects of clearcutting on rain-on-snow runoff in western Oregon: a new look at old studies[J]. Water Resources Research198622(7): 1 095-1 100.

[67]
WICKSTRÖM S JONASSEN M O CASSANO J J. Present temperature, precipitation and rain-on-snow climate in Svalbard [J]. Journal of Geophysical Research: Atmospheres2020, 125. DOI: 10.1029/2019JD032155 .

[68]
GUAN B WALISER D E RALPH F M, et al. Hydrometeorological characteristics of rain-on-snow events associated with atmospheric rivers[J]. Geophysical Research Letters201643(6): 2 964-2 973.

[69]
WÜRZER S JONAS T WEVER N, et al. Influence of initial snowpack properties on runoff formation during rain-on-snow events[J]. Journal of Hydrometeorology201617(6): 1 801-1 815.

[70]
WEVER N JONAS T FIERZ C, et al. Model simulations of the modulating effect of the snow cover in a rain-on-snow event[J]. Hydrology and Earth System Sciences201418(11): 4 657-4 669.

[71]
YANG Y CHEN R S LIU G H, et al. Trends and variability in snowmelt in China under climate change[J]. Hydrology and Earth System Sciences202226(2): 305-329.

[72]
ZHOU G CUI M Y WAN J H, et al. A review on snowmelt models: progress and prospect[J]. Sustainability2021, 13. DOI:10.3390/su132011485 .

[73]
BARTSCH A BERGSTEDT H MURI X, et al. Monitoring the impact of rain-on-snow events across the Arctic with satellite data [C]. EGU General Assembly 2023, EG U23-8142, 2024.

[74]
KRUG A PRIMO C FISCHER S, et al. On the temporal variability of widespread rain-on-snow floods[J]. Meteorologische Zeitschrift202029(2): 147-163.

[75]
JASPER K GURTZ J LANG H. Advanced flood forecasting in Alpine watersheds by coupling meteorological observations and forecasts with a distributed hydrological model[J]. Journal of Hydrology2002267(1/2): 40-52.

[76]
DING Yongjian ZHANG Shiqiang WU Jinkui, et al. Recent progress on studies on cryospheric hydrological processes changes in China[J]. Advances in Water Science202031(5): 690-702.

丁永建, 张世强, 吴锦奎, 等. 中国冰冻圈水文过程变化研究新进展[J]. 水科学进展202031(5): 690-702.

[77]
ABLIMITJAN Ablikim CHEN Chunyan YUSUP Abdula,et al. The temporal and spatial distribution features of snowmelt flood events in Xinjiang from 2001 to 2012[J]. Journal of Glaciology and Geocrology201537(1): 226-232.

阿不力米提江·阿布力克木,陈春艳,玉素甫·阿不都拉. 2001—2012年新疆融雪型洪水时空分布特征 [J]. 冰川冻土201537 (1): 226-232.

[78]
HASYETI Rehman RUAN Xinmin KURBAN Yiming, et al. Flood disaster investigation and characteristic analysis in Xinjiang from 1949 to 2019[J]. Journal of China Institute of Water Resources and Hydropower Research202018(5): 331-336.

哈斯也提·热合曼, 阮新民, 库尔班·依明, 等. 新疆1949—2019年洪水灾害调查与特征分析[J]. 中国水利水电科学研究院学报202018(5): 331-336.

[79]
SHEN Yongping SU Hongchao WANG Guoya, et al. The responses of glaciers and snow cover to climate change in Xinjiang (II): hazards effects [J]. Journal of Glaciology and Geocrology201335(6): 1 355-1 370.

沈永平,苏宏超,王国亚,等 .新疆冰川、积雪对气候变化的响应(II):灾害效应 [J].冰川冻土201335(6): 1 355-1 370.

[80]
YU Qiying HU Caihong BAI Yungang, et al. Application of snowmelt runoff model in flood forecasting and warning in Xinjiang [J]. Arid Land Geography202346(12):1 951-1 962.

余其鹰,胡彩虹,白云岗,等. 新疆洪水预报预警中融雪径流模型应用进展 [J]. 干旱区地理202346(12):1 951-1 962.

[81]
MAO Weiyi YUSUP Abudula CHENG Peng, et al. Extreme flood events in 1999 and their formation conditions in northern slopes of the Middle Kunlun Mountains [J]. Journal of Glaciology and Geocrology200729(5): 553-558.

毛炜峄,玉素甫·阿布都拉,程鹏,等. 1999年夏季中昆仑山北坡诸河冰雪大洪水及其成因分析[J]. 冰川冻土200729(5): 553-558.

[82]
LIU Zhihui. Decision support system for water supply management in drainage basin[J]. Arid Land Geography200023(3): 259-263.

刘志辉. 流域供水管理决策支持系统总体设计[J]. 干旱区地理200023(3): 259-263.

[83]
LIU Yongqiang LIU Zhihui. Development about decision support system for snowmelt flood prediction of Xinjiang[J]. Journal of Arid Land Resources and Environment200721(2): 110-113.

刘永强, 刘志辉. 新疆融雪洪水预警决策支持系统研究[J]. 干旱区资源与环境200721(2): 110-113.

[84]
LIU Zhihui. Research on forecasting, early warning and decision support of snowmelt flood in Xinjiang based on “3S” technology[D]. Xuzhou: China University of Mining and Technology, 2009.

刘志辉. 基于“3S” 技术的新疆融雪洪水预测预警及决策支持研究[D]. 徐州: 中国矿业大学, 2009.

[85]
FANG S F XU L D ZHU Y Q, et al. An integrated information system for snowmelt flood early-warning based on internet of things[J]. Information Systems Frontiers201517(2): 321-335.

[86]
LIU D ZHONG S HUANG Q. Study on risk assessment framework for snowmelt flood and hydro-network extraction from watersheds [M]. Berlin Heidelberg: Springer-verlag, 2016.

[87]
LI Wen HOU Litao ZHANG Shiqiang. Study on the relationship between elevation dependent warming and snowfall/rainfall ratio in northwest China from 1980 to 2019 [J]. Geographical Research202342(7):1 957-1 970.

李雯,侯丽陶,张世强. 1980—2019 年西北地区海拔依赖性变暖与雪雨比的关系研究 [J]. 地理研究202342(7):1 957-1 970.

[88]
MA L Y CHEN P YAO J Q, et al. Interdecadal variation of spring extreme high-temperature events in the western Tianshan mountains and its relationship with the tropical SST [J]. Advances in Meteorology2023. DOI: 10.1155/2023/3560009 .

[89]
CUI Manyi ZHOU Gang ZHANG Dahong, et al. Global snowmelt flood disasters and their impact from 1900 to 2020[J]. Journal of Glaciology and Geocryology202244(6):1 898-1 911.

崔曼仪,周刚,张大弘,等. 1900—2020年全球融雪洪水灾害及其影响 [J]. 冰川冻土202244(6):1 898-1 911.

[90]
CHEN P MAO W Y YAO J Q, et al. Classification and mechanism of spring and summer floods in northern Xinjiang from 2006 to 2011 [J]. Atmospheric and Oceanic Science Letters2023. DOI:1002/asl.1193 .

[91]
HU X J HAO X H WANG J, et al. Can the depth of seasonal snow be estimated from ICESat-2 products: a case investigation in Altay, northwest China [J]. IEEE Geoscience and Remote Sensing Letters2021, 19. DOI: 10.1109/LGRS.2021.3078805 .

[92]
DOU G CHEN R S HAN C T, et al. Research on water-level recognition method based on image processing and convolutional neural networks [J]. Water2022, 14. DOI: 10.3390/w14121890 .

[93]
ZHANG W HE J CHEN A, et al. Observations of drifting snow using flowcapt sensors in the southern Altai mountains, Central Asia [J]. Water2022, 14. DOI: 10.3390/w14060845 .

[94]
ZHANG Z L MAO W Y WANG M Q, et al. Forecasting snowmelt season temperatures in the mountainous area of northern Xinjiang of China [J]. Water2023, 15. DOI: 10.3390/w15193337 .

[95]
HAO X HUANG G ZHENG Z, et al. Development and validation of a new MODIS snow-cover-extent product over China [J]. Hydrology and Earth System Sciences202226: 1 937-1 952.

[96]
YANG Z W CHEN R S LIU Z W, et al. Estimating snow water equivalence using observed snow depth data in China [J]. Journal of Hydrology: Regional Studies2024, 51. DOI: 10.1016/j.ejrh.2024.101664 .

[97]
LI Fei GUO Jiakai ZHANG Shiqiang. Improvement of VIC-CAS algorithm for thermal conductivity and unfrozen water and its experimental study on simulation of hydrothermal process of permafrost[J]. Journal of Glaciology and Geocryology202143(6):1 888-1 903.

李飞,郭佳锴,张世强. VIC-CAS导热率和未冻水算法改进及其对多年冻土水热过程模拟的实验研究 [J]. 冰川冻土202143(6):1 888-1 903.

[98]
ZHOU G CUI M Y WAN J H, et al. A review on snowmelt models: progress and prospect [J]. Sustainability2021,13. DOI:10.3390/su132011485 .

[99]
MENG X LIU Y QIN Y, et al. Adaptability of MODIS daily cloud-free snow cover 500 m dataset over China in Hutubi River basin based on snowmelt runoff model [J]. Sustainability2022, 14. DOI: 10.3390/su14074067 .

[100]
YANG P ZHANG S XIA J, et al. Analysis of drought and flood alternation and its driving factors in the Yangtze River Basin under climate change [J]. Atmospheric Research2022, 270. DOI: 10.1016/j.atmosres.2022.106087 .

[101]
LIN Yu Haishen ZHU Yonghua, et al. Simulation of ice-thawing flood by Muskingum routing model [J]. Journal of Water Rsources & Water Engineering202132(4): 86-92.

林瑜,吕海深,朱永华,等. 融冰洪水演进的马斯京根模型[J]. 水资源与水工程学报202132(4): 86-92.

[102]
LIU M W H S LINDENSCHMID K E, et al. Hazard assessment and prediction of ice-jam flooding for a river regulated by reservoirs using an integrated probabilistic modelling approach [J]. Journal of Hydrology2022, 615. DOI: 10.1016/j.jhydrol.2022.128611 .

[103]
LIU Yongqiang QIN Yan CHEN Rensheng, et al. Decision support and prevention of snowmelt flood forecast and early warning in arid regions [M]. Beijing: Emergency Management Press, 2025.

刘永强,秦艳,陈仁升,等. 干旱区融雪洪水预报预警决策支持与防控 [M]. 北京:应急管理出版社, 2025.

Outlines

/