Advances in Geochemical Cycles and Fractionation Mechanisms of Barium and Its Isotopes

  • Fanchen JIA ,
  • Xi LI ,
  • Guangyou ZHU ,
  • Siyu CHEN ,
  • Yue HUANG ,
  • Wanyan LAN ,
  • Ruilin WANG ,
  • Jianing WANG
Expand
  • School of Geosciences, Yangtze University, Wuhan 430100, China
ZHU Guangyou, research areas include non-traditional isotope geochemistry and deep oil-gas geological accumulation. E-mail:

Received date: 2025-01-23

  Revised date: 2025-04-01

  Online published: 2025-06-18

Supported by

the National Natural Science Foundation of China(42230812)

Abstract

In the intricate domain of marine geochemistry, barium (Ba) and its isotopes emerge as pivotal elements. Their remarkably high preservation rate in marine sediments allows them to withstand post-depositional alterations, making them ideal proxies for long-term geological records. The stable isotope fractionation behavior of barium serves as a powerful tool for reconstructing paleoproductivity with high precision. In this study, we meticulously compiled high-precision isotope analysis data from various sources, including a comprehensive review of existing literature and in-house experimental results. We then conducted an in-depth investigation into the sources and sinks of marine barium. Our findings demonstrate that terrigenous, hydrothermal, and biological inputs are not isolated contributors, but instead interact synergistically to drive the cycling of barium in the ocean. Regarding Ba isotope fractionation, within the mineral-fluid-melt system, we found that the dynamic interplay between equilibrium and kinetic fractionation mechanisms is of critical importance. Equilibrium fractionation, governed by quantum mechanical differences in bond vibrations, and kinetic fractionation, associated with non-equilibrium processes such as diffusion, jointly shape the isotopic composition of marine barium. Observed regional variations in isotope fractionation further suggest that multiple factors, including temperature, pressure, and the presence of various chemical species, jointly influence marine Ba isotope behavior. This spatial heterogeneity provides a valuable framework for tracing the evolution of the paleo-oceanic environment and reconstructing historical changes in oceanic conditions. Looking ahead, the integration of in-situ micro-area analytical techniques is not merely desirable but essential. These advanced methods will enable detailed investigations at the microscale, enhancing our understanding of the interactions among biological, mineral, and fluid components in marine systems. Ultimately, such insights will improve the accuracy of paleo-oceanic reconstructions and contribute to a more comprehensive understanding of Earth’s past oceanic ecosystems.

Cite this article

Fanchen JIA , Xi LI , Guangyou ZHU , Siyu CHEN , Yue HUANG , Wanyan LAN , Ruilin WANG , Jianing WANG . Advances in Geochemical Cycles and Fractionation Mechanisms of Barium and Its Isotopes[J]. Advances in Earth Science, 2025 , 40(6) : 621 -634 . DOI: 10.11867/j.issn.1001-8166.2025.036

1 引 言

古海洋环境重建是探究地球系统演化的核心,其中古生产力的研究对揭示海洋生态系统演变意义重大1-2。传统的地球化学指标因保存率低、易受后期改造,难以满足高精度重建需求3-4。而钡(Ba)及其同位素作为新兴示踪剂,凭借高保存率和显著稳定的同位素分馏特性,为古生产力重建提供了可靠的依据5。自20世纪90年代以来,钡同位素研究历经早期基础探索阶段6-8、模型体系完善阶段9-10以及与古环境深度关联的应用阶段1-211,取得了显著进展,但目前相关研究仍面临两大瓶颈:一是微观分馏机制的整合研究不足11-12,二是多源输入与同位素分馏的协同作用理论框架尚未完善113
因此本文围绕钡的地球化学特征、源汇循环及分馏机制展开系统综述,并探讨其在古海洋环境示踪中的应用潜力。通过梳理最新研究进展,整合矿物—流体—熔体体系的微观分馏机制,为钡同位素分馏机制研究提供系统性框架,助力深化海洋演化历史与生态变迁的认知。

2 钡地球化学特征

钡在地球圈层中的含量与同位素分布呈现出显著的分异特征。其含量自地核至地壳递增,而同位素表现出“源轻汇重”的特点。在岩石圈和水圈中,因地质、岩性与环境的差异,钡含量及同位素值变化多样。在海洋环境中钡垂向分布受陆源、热液和生物物质输入,生物地球化学过程,及水团垂向运动、沉积物垂向再悬浮等物理过程影响;横向分布则因不同海域物质输入强度、生物地球化学过程区域特性,以及水团水平运动、沉积物水平再悬浮等物理过程的区域差异而变化。

2.1 钡含量及分布

钡在地球圈层的分布受核幔分异和地幔熔融等地质过程的调控,具有显著的圈层分异特征(图1)。地球内部圈层中,钡含量从地核到地幔再到地壳递增214-17;在岩石圈钡含量受地质、岩性与环境的影响,表现出复杂多变的特征2;在水圈中,海洋是主体,其中海水、沉积物以及洋中脊热液中的钡浓度各不相同1-29-10
图1 地球上钡库含量分布(数据引自参考文献[1-29-1014-17])

Fig. 1 Barium contents in reservoirs on the Earthdata are cited from references1-29-1014-17])

2.2 钡同位素分布

钡拥有7个稳定同位素18-20,其原子质量与丰度如表1所列。同位素组成通常以δ138/134Ba(或δ138Ba)表示,δ138/134Ba与δ137/134Ba可通过δ138/134Ba=1.33×δ137/134Ba相互转换15。计算公式如下:
δ x / 134 B a ( ) = [ ( x / 134 B a ) s a m p l e / ( x / 134 B a ) s t a n d a r d - 1 ] × 1000
x=137,138)
钡同位素在地球圈层呈“源轻汇重”分布(图2,以上陆壳为基线):岩石圈中地幔、上陆壳等钡同位素值较低2225,洋中脊值偏低24,洋中脊玄武岩与地幔接近22;不同地幔端元和岛弧岩浆岩等因地质过程差异,钡同位素范围各有不同27。而冰川沉积物受搬运影响范围较大25;水圈中海洋δ138/134Ba值高于河流与地下水912-13,呈“汇重”特征。全球海洋沉积物中的钡同位素值可能因来源多样和环境条件复杂而高于远洋沉积物的值1028,现代重晶石样品从热液到陆地也符合这一规律23,但陆地重晶石样品由于受到风化、搬运和成岩作用的影响,钡同位素分馏现象更加显著。
表1 钡同位素原子质量及丰度21

Table 1 Atomic masses and abundances of barium isotopes21

基本属性 130Ba 132Ba 134Ba 135Ba 136Ba 137Ba 138Ba
原子质量 129.906 131.905 133.905 134.906 135.905 136.906 137.905
丰度/% 0.106 0.101 2.417 6.592 7.854 11.232 71.698
图2 不同储库的钡同位素组成(据参考文献[22-23]修改,数据来自参考文献[912-131922-28])

Fig. 2 Isotope compositions of barium in different reservoirsmodified after references22-23], data from references912-131922-28])

海洋中的钡存在溶解态钡(DBa)和颗粒态钡(PBa)两种形态13,其垂向和横向的分布均存在显著差异。垂向上,溶解态钡浓度与类营养盐分布相似18,从表层到深层递增,且与溶解态钡同位素呈保守镜像负相关(图3);垂向分布,以南海为例,颗粒态钡含量在100~600 m的弱光层最大,之后随深度减少,其同位素组成轻于溶解态钡32。横向上,海洋环流调控着钡的分布,如北大西洋暖流携富含钡海水北流,使北欧海域成为钡汇聚区,影响着重晶石沉淀溶解平衡,寒流区则与之相反233
图3 海水剖面的溶解态钡(DBa)和δ138/134BaDBa 镜像分布(数据来自参考文献[9-1029-31])

Fig. 3 Mirror distribution of DBa and δ138/134BaDBa in the seawater profiledata are cited from references9-1029-31])

3 海洋中钡的来源

海洋中的钡主要来源于陆地输入和海底热液活动1,此外,海洋生物也是来源之一(图4)。依据表2中的数据估算,陆源输入在全球海洋钡通量占比为56.65%±35.45%,热液输入为7.5%±5.5%,生物输入为30%±10%;此外仍有约5.85%的钡来源尚未明确,需进一步研究。且早期对全球海洋钡通量的估算为18.1 Gmol/a,不过该估算仅涵盖部分河流与热液喷口钡通量,难以反映实际情况38,对全球海洋沉积物钍(Th)—归一化质量积累率(Thorium-normalized Mass Accumulation Rate,AR)汇编分析后,发现水深超1 000 m处,全球海洋钡通量至少为(19±10) Gmol/a39,此外,钡在海洋的滞留时间从原来的约8 500年缩短为3 500~5 000年(颗粒钡)39
图4 海洋钡循环示意图

Fig. 4 Schematic diagram of the ocean barium cycle

表2 钡来源及通量情况

Table 2 Flux situation of barium sources

钡的来源 通量 影响因素
陆源河流134-36 全球平均2.00~6.14 nmol/(cm2·a) 河流流域的岩石类型、土壤性质、水文条件;河口地区水体混合、吸附—解吸附、近岸陆源输入影响较大、远洋海域影响较小
三江源和祁连山海洋输出钡为9.03×10-3 Gmol/a
黄河Baraw年通量为(0.079±0.028) Gmol/a
河口超额钡供应通量约4.5 Gmol/a
陆源地下水112 0.46 nmol/(cm2·a)(约占河流通量的25%) 排放体积流量不确定、溶质通量难约束
全球溶质通量范围为0.078~0.706 Gmol/a
热液110-1117 1.00~1.39 nmol/(cm2·a) 热液活动持续时间、海底深度、溶液温度;重晶石沉淀
2.40~3.35 Gmol/a
2.4~6.8 Gmol/a
生物237 大西洋NAP站点:约2.585 nmol/(cm2·a) 海洋生产力、生物群落结构、海域差异和环境钡浓度
赤道太平洋M站点:约5.388 nmol/(cm2·a)
赤道太平洋H站点:约9.801 nmol/(cm2·a)

3.1 陆源输入

陆源输入是海洋非生物钡的重要来源,河流为主要输送途径。在海洋中,轻钡同位素在真光层与有机质结合,有机质在弱光层被分解,并产生BaSO4过饱和微环境,轻钡同位素会优先吸附并沉淀,形成颗粒钡18。陆源河流对海洋钡通量的贡献显著,但数据差异较大,存在诸多不确定性(表2)。全球陆源河流颗粒钡平均通量因样品代表性不足以及未考虑时空变化等因素,存在一定的不确定性1。此外,不同区域因岩石类型、风化及降水差异,输送钡的能力不同,导致钡的通量容易出现波动,如三江源和祁连山区域生态较为脆弱,而黄河等流域受人类活动影响34-35,这些因素都会影响钡通量。此外通过盐度—钡浓度线性外推法(将高盐度区钡浓度的保守混合线外推至零盐度),其理论值(Baeff)与河流实测零盐度钡浓度(Bariv)的差值,乘以河水流量(Q),即(Baeff-Bariv)×Q,获得的河口超额钡通量约为4.5 Gmol/a,约占全球河流供应通量的37%36,对海洋物质收支影响重大。但由于河口的生态复杂,生物活动、盐度和海平面变化等因素会使超额钡供应通量不稳定,从而增加了海洋钡收支长期预测的难度。

3.2 热液输入

热液输入也是海洋钡的重要非生物来源。热液是通过洋壳岩石与海洋沉积物在高温高压条件下发生的水—岩作用而形成的,在此过程中,源岩中的钡被释放到热液中,使热液钡浓度远高于海水中的钡浓度17。热液输入的钡同位素情况较为复杂。热液中钡的同位素值为-0.26‰~+0.91‰17。热液口附近,理论上会因热液钡浓度高且同位素组成独特,而出现钡浓度与同位素的异常,如大西洋中脊热液系统δ138Ba=+0.08±0.03‰,与海水背景值δ138Ba=+0.05±0.02‰差异明显12
热液钡输入对海洋钡循环影响重大(表2)。Hsieh等17的研究表明,全球热液钡排放通量估计值为0.66~0.93 nmol/(cm2·a),其输入占部分大西洋深层水钡含量的3%~9%,影响海水钡同位素组成及分布。Carter等1的研究指出,热液喷口对海洋中钡输入贡献为2%~13%,通量为1.00~1.39 nmol/(cm2·a),因重晶石沉淀,有效热液钡通量远低于初始排放通量,且他们均认为通量被高估117。Zhang等11近期给出全球热液钡通量为0.66~1.88 nmol/(cm2·a),刷新了热液的通量记录,整体稍低于河流输入量[2.00~6.14 nmol/(cm2·a)]。而这些差异主要源于研究的区域、时间和方法的不同,且重晶石沉淀过程较为复杂,导致有效通量的估算存在一定的不确定性。

3.3 生物输入

生物活动在海洋钡循环中具有独特地位,主要由硅藻和颗石藻等浮游植物从海水中吸收钡离子来驱动。浮游植物借助代谢活动摄取钡元素用于生长发育,其吸收量在海洋生产力较高的区域显著增加,且可能随环境钡浓度的升高而增加,如南海北部浮游生物吸收钡约占海洋总输入通量的30%40,赤道太平洋部分高生产力区域浮游植物对钡的吸收量更多,而大西洋NAP(Nares Abyssal Plain)站点生物钡通量较低37,这反映出不同海域生物钡源的贡献差异,影响着钡在海洋中的初始分布。

4 海洋中钡的汇聚

海洋中的钡以重晶石为依据,分为重晶石钡汇和非重晶石钡汇,明确其成因与特征意义重大。也可按照生物与非生物区分:生物钡由浮游生物吸收、微生物代谢以及珊瑚矿化等生物活动形成,与生物泵相关,可用于重建古生产力;而非生物钡则由热液活动和化学沉淀等物理化学过程形成,分布受地质构造控制,二者均为海洋钡循环的重要组成部分。本节将综合考虑一同叙述。

4.1 重晶石钡汇

重晶石钡汇主要包括沉积型和成岩型两类,其形成机理不同,鉴定特征各异(表3)。
表3 重晶石成因分类与环境、鉴定特征汇总(据参考文献[141]修改)

Table 3 Summary of the genetic classificationenvironmentsand identification characteristics of baritemodified after references141])

类型 成因分类 形成机理 形成环境 鉴定特征
沉积型 生物 表层水体重晶石的过饱和状态由初级生产者分解,并伴生有机质降解,在微环境中触发 开阔海洋及浅海陆棚带受光照、温度和营养盐驱动形成生物繁育核心带 微晶颗粒,粒径<5 μm,常呈自形微级椭圆体沉淀
化学 海水过饱和条件下Ba2+与SO 4 2 -自发结合生成微溶硫酸钡沉淀 局限海相富Ba2+-SO 4 2 -水体 晶体形态多样,有规则板状、柱状晶体,粒径通常较大
成岩型 I型 硫酸盐亏损带富Ba2+流体上涌与海水硫酸盐下渗在硫酸盐—甲烷转换带顶部附近交汇 沉积物孔隙水区域 晶体较大(>20 μm),扁平板柱状,以铁锰结核、透镜体和纹层等形式分布于沉积物中
II型 冷泉区富Ba2+流体与海水SO 4 2 -垂向交汇低温成矿形成自生硫酸钡 冷泉附近,有冷泉流体活动,气液和含甲烷冷溶液 晶体较大且不规则,呈脉状、烟囱体、丘状等,如20 m高重晶石丘,重晶石体积占比25%~80%
III型 深部富Ba2+热液通过断裂带垂向运移,与海水SO 4 2 -混合形成硫酸钡 洋中脊及弧后盆地等高热液通量区的硫酸盐—硫化物成矿 晶体常呈粗大柱状和板状,晶形完整,常伴金属硫化物共生

4.1.1 沉积型

沉积型包括生物沉积和化学沉积两种类型。
生物沉积型重晶石的形成与生物活动密切相关(表3),主要分布于海洋水深≤200 m的大陆边缘与大陆架区域(图5)。生物驱动作用包括直接与间接作用: 直接作用方面,微生物(如异足虫和蓝藻)体内可发生Ba2+与SO 4 2 -反应,形成微晶重晶石颗粒。当生物死亡后,颗粒释放并参与沉积物构建41。浮游生物(如Acantharia)的代谢活动或细胞破裂也可能释放钡,并与硫酸根结合成矿42-43。此外,放射虫外壳中的天青石溶解可能释放出高浓度的钡,从而触发过饱和沉淀1 间接作用则是通过生物活动改变微环境化学性质来实现的。微生物代谢产物可调节水体的酸碱度,从而影响钡和硫酸根的溶解度;细菌生物膜或沉积物中的富含磷组分优先吸附钡离子,随后硫酸根替代磷,从而形成重晶石44-45。在高生产力区域,浮游生物分泌的胞外聚合物(Extracellular Polymeric Substances,EPS)为Ba2+富集提供成核位点45。值得注意的是,生物膜对钡同位素存在选择性利用:轻钡同位素因脱水能垒较低,更容易被富集;而有机质降解释放的重钡同位素则改变环境中的同位素分布4246图6)。然而,生物驱动的直接机制仍存在复杂争议47
图5 重晶石颗粒轨迹循环图(据参考文献[1-2111341]修改)

括号中数据为钡通量,单位nmol/(cm2·a)

Fig. 5 Circulation diagram of barite particle trajectoriesmodified after references1-2111341])

Barium flux data in parentheses, units: nmol/(cm²·a)

图6 生物驱动作用示意图

Fig. 6 Schematic diagram of the barium isotope fractionation mechanism under biological action

化学沉积型重晶石在海洋中由钡离子和硫酸根离子过饱和直接沉淀而成,不依赖热液活动与沉积物成岩过程(图4),反应式为Ba2++SO 4 2 -→BaSO4↓,其分布受控于离子浓度、水体理化条件及生产力水平48,主要发育于开放水体或硫酸盐还原/热液喷口等特殊环境2
在正常海洋环境的特定区域(如硫酸盐还原区、甲烷生成区及大洋中脊热液喷口处),会产生大量H2S。在富含有机质且有硫酸盐还原菌的海洋沉积物环境中,SO 4 2 -被还原为H2S。H2S进入缺氧环境,HS-被氧化使SO 4 2 - -增多,进而与Ba2+反应生成重晶石沉淀49
重晶石溶解受硫酸根亏损与还原物质浓度影响:现代海洋沉积物中,硫酸盐—甲烷转换带以下因微生物作用致硫酸根耗尽,使生物重晶石溶解;新元古代氧化事件前,还原物质含量高、硫酸根浓度极低(<0.4 mmol/L),重晶石难形成且易溶解;氧化事件后,区域性还原水体里,硫酸根浓度与还原性物质共同作用致重晶石溶解50。化学沉积重晶石的晶体形态、元素组成等详情如表3所列。与成岩型重晶石不同,化学沉积重晶石晶体形态多样。由于其形成于过饱和溶液中,晶体的生长时空较为充足,常见板状和柱状形态,粒径较大。且其元素组成较为纯净,主要以钡、硫和氧元素为主,其中锶和硫等同位素可用来追溯海洋环境信息51-52

4.1.2 成岩型

成岩型重晶石按照成矿流体来源(孔隙水、冷泉和热液)分为I型、II型和III型2
I型为生物重晶石转化型。主要发育于大陆斜坡区(图5,水深通常<1 000 m),此处沉积物厚度大,有机质输入丰富,微生物活动强烈,初始形成的生物重晶石容易积累沉降至海底埋藏,后在硫酸盐还原及甲烷厌氧氧化形成的硫酸盐亏损带中溶解53-54,产生富钡流体,向上迁移至硫酸盐—甲烷转换带(Sulfate-Methane Transition Zone,SMTZ)顶部,与残余硫酸根离子相遇,在孔隙水化学梯度控制下过饱和沉淀,形成层状活结核状I型重晶石24252
II型为冷泉活动驱动型。主要分布于半深海(图5,水深1 000~1 200 m)的大陆边缘冷泉系统或泥火山活动区,该区域活跃的甲烷一钡流体(富含Ba2+和CH4)沿梨隙向上运移,与海水中硫酸盐在硫酸盐一甲烷转换带顶部微环境发生混合反应,形成II型重晶石55。成岩迁移导致富钡流体δ138/134Ba值变化大(-0.44‰~+0.31‰)55-56
III型热液型重晶石形成于大洋中脊(图5,水深1 500~2 500 m)、火山活动区等地质活跃带,热液沿岩石裂隙上升至海底,与冷海水或周围岩石孔隙流体剧烈混合,导致温度、压力骤降及化学成分改变,Ba2+与海水中的SO 4 2 -因溶解度大幅降低而快速沉淀57,形成重晶石(表3)。与热液活动直接相关,热液为其提供Ba2+来源,沉淀发生于热液与海水、岩石孔隙流体等周围介质的混合区域,温度和压力变化显著影响其形成过程。如密西西比河谷型和爱尔兰型矿床,其重晶石形成分别与白云石化作用、热液活动及深部热液循环等有关58。热液流体富集轻钡同位素,形成的热液喷流重晶石钡同位素偏轻,为0.17‰±0.05‰11。该类型重晶石常与硫化物和石英等热液矿物共生,且形成的地质环境多具热液蚀变岩石等明显的热液活动痕迹(表3)。

4.2 非重晶石钡汇

海洋非重晶石钡汇主要包括硅铝含钡颗粒、铁锰含钡颗粒与非重晶石生物钡汇(图4)。

4.2.1 含钡颗粒

硅铝含钡颗粒广泛存在于海洋悬浮物质中,在不同水层及底部浊积层中贡献各异44;铁锰含钡颗粒由铁锰氧化物颗粒与Ba2+吸附或共沉淀形成,外部环境及结核自身因素对其钡同位素分馏影响显著59,其钡汇情况尚待深入研究。

4.2.2 非重晶石生物钡汇

在非重晶石钡汇中,海洋生物从微观到宏观层面均参与了海洋钡循环(图4图6),浮游生物、微生物和底栖生物通过积累、代谢和扰动等方式,影响钡迁移转化过程60-61。此外在生物构建碳酸盐岩的过程中,Ba2+随碳酸钙沉淀固定4262,以珊瑚为例,其Ba/Ca值及同位素分馏受生物与海水因素共同调控,也可记录海水钡同位素信号4663

5 生物钡重建古生产力

浮游生物、底栖生物及珊瑚等造礁生物的微观分馏机制深刻影响着钡同位素的海洋分布,对海洋及古生产力具有重要的指示意义。
钡作为海洋生产力的示踪指标的前提是与有机碳(Corg)存在耦合关系,海洋中颗粒有机碳(Particulate Organic Carbon,POC)与钡通量强相关,颗粒Corg/Ba值约为200,且随深度减小,反映出有机碳降解与钡吸收的耦合,表明钡的去除与生物过程相连。浮游、底栖生物及珊瑚等造礁生物的微观分馏机制影响钡同位素分布,关联海洋生产力。学者们据此建立了定量关系,如Dymond等64用深海沉积物数据估算新生产力,Francois等65建立了有机碳与颗粒生物源钡的通量关系,Murray等66以Ba/Ti值作为输出生产代理指标。在海洋古生产力重建的研究中,利用生物钡精准指示古生产力,并有效去除非生物钡的干扰,是重要的研究方向,当前主流的研究方法有过剩钡法、重晶石积累速率法、Ba/Ti与Ba/Al元素比值法、综合多元素比值法以及新兴的钡同位素法,但这些方法仍在不断发展和完善中,且各自面临着诸多挑战(表4)。
表4 古生产力重建方法及局限性分析

Table 4 Methods and limitations analysis of paleoproductivity reconstruction

重建方法 原理 局限性
过剩钡(Baexcess4667-70

总钡含量减去碎屑铝硅酸盐贡献

B a e x c e s s = B a t o t a l - A l × 0.0067

式中: B a t o t a l为沉积物中总钡含量; A l为沉积物中铝元素含量

①生物因素复杂:物种特异性差异,生长阶段及生理状态,死亡后成岩改造;

②环境因素多样:化学条件,环流与水团混合,钡源及迁移复杂;

③分析方法和数据解释不确定:参数关系不明,校准关系适用性受限;

④地质样品干扰剔除不彻底;

⑤假设模型局限性,无法全面适配

重晶石积累速率

A R B a S O 4771-72

A R B a S O 4 = B a t o t a l × M A R × D B D 1000 × T

式中: M A R(Mass Accumulation Rate)为物质堆积速率; D B D(Dry Bulk Density)为干体积密度,指单位体积干沉积物的质量; T为沉积时间

计算重晶石在沉积物中的积累速率

Ba/Ti值和Ba/Al值73 假设铝、钛主要源于陆源碎屑且通量稳定,通过计算钡与铝、钛比值,排除陆源碎屑干扰,凸显生物源钡信号
综合多元素比值74 分析元素(钡、磷、铝、钛、钙等)比值作为输出生产代理指标
钡同位素104675-76 过剩钡和沉积物δ138/134Ba正相关

6 非生物钡同位素分馏机制

深入解析钡同位素微观分馏机制,是揭示钡循环规律、判断古生产力的关键。当前钡同位素分馏机制研究中,非生物机制(平衡与动力学分馏)涉及矿物—矿物、矿物—流体及熔体—流体多方面深入研究1977-78,平衡分馏基于量子力学与密度泛函理论,而动力学分馏因同位素非平衡条件下产生分配不均,二者协同分析可探讨矿物—流体—熔体体系的分馏机制(表5)。与之相比,生物机制对钡同位素分馏影响的研究较少,有待拓展。但生物活动在海洋钡循环中具有重要地位,未来需要深入探究生物分馏机制,有望为揭示钡循环规律、判断古生产力提供新视角与依据。
表5 微观分馏机制汇总

Table 5 Summary of microscopic fractionation mechanisms

体系 模型及主导因素 影响因素 数据支撑
平衡 动力学 平衡 动力学 平衡 动力学
矿物—矿物7779 质量因素 扩散速率、沉淀溶解速率和离子交换速率 晶体结构、健长和替代离子 温度和浓度 重晶石矿物间103lnβ≈0.06379 矿物间扩散β为0.010~0.01177
重晶石—流体6877-7880-82 Ba2+与SO 4 2 -形成特定配位键,吸附 离子交换 配位、健长和结构 固液比 沉淀α precip=0.99968±0.00002,溶解α diss=0.99985±0.0000677 重晶石扩散实验钡β因子在0.010~0.01177
毒重石—流体1977-7880 溶液Ba2+结构 溶液酸碱度和离子种类 晶体结构、配位和健长 固液比 300 K时△138/134Baminerals-fluid=0.094‰19 沉淀过程(α)=0.99993±0.0000478
岩浆—热液83 水化作用、Ba2+水合数和水化壳结构 结晶速率 钡浓度、Al-Si无序,钡浓度 矿物结晶和热液流体 103lnβ累计平均值=0.0798±0.005‰83
地幔熔体—流体1984-86 力常数和健长 地幔部分熔融及熔体—地幔流体作用 温度、流体盐度和铝指数 103lnα 流体-熔体落在-0.62‰~-0.14‰内84

注:“—”表示无对应内容。

6.1 矿物—矿物

矿物—矿物间钡同位素分馏以平衡分馏和动力学分馏为核心,受晶体结构、键长及替代离子共同调控7779
平衡分馏中,化学平衡时钡同位素因质量差异在矿物间分配,本质受矿物结构支配,含钡硅酸盐矿物对重钡同位素富集能力呈现金云母(Mg2+取代)>透闪石>绿帘石>钠长石的序列,可通过钡相对分配因子(β因子)量化,短Ba-O键长的矿物因平均力常数大,更易富集重同位素77。动力学分馏中,沉淀溶解和离子交换等过程影响分馏,如134Ba因质量小扩散更快,温度和初始浓度提升会增强扩散分馏效应,与平衡分馏机制共同作用77。替代离子方面,其半径、电荷及晶格环境决定分馏差异,离子半径越大、M-O键长越长,越利于轻同位素富集,不同矿物类别分馏特性也因替代离子各异79

6.2 矿物—流体

在矿物—流体体系中,钡同位素平衡分馏是基于稳定态化学键和矿物结构差异来确立同位素分布基准的,动力学分馏反映了离子交换、沉淀和溶解等动态过程对平衡的偏离。化学键特性、矿物结构、温压以及酸碱度等是影响钡同位素的关键影响因素7786。下面以重晶石—流体和毒重石—流体体系为例进行说明。

(1) 重晶石—流体

在平衡分馏中,吸附平衡时重钡同位素富集于重晶石81;化学平衡时水溶液相对富集重钡2482;而在动力学分馏中,离子交换受固液比影响,沉淀与溶解的不平衡主导着钡同位素组成的演化与平衡分配7787,导致沉淀富集重同位素,溶解释放轻同位素77

(2) 毒重石—流体

平衡分馏中,水溶液Ba2+分馏不显著(分馏因子-0.02‰±0.03‰),结构差异小导致分馏较弱80。而在动力学分馏中,沉淀和溶解过程的钡同位素分馏受多种因素调控。沉淀过程中,溶液酸碱度与离子种类影响钡的化学形态,进而改变同位素在固液间的分配。如加入Na2CO3加速沉淀,分馏-0.13‰;加入NaHCO3减缓沉淀,分馏-0.31‰,且可推测出较低沉淀速率更利于分馏77;在溶解阶段,毒重石的Ba-O键长(2.80Å)与八水合钡离子的Ba-O键长(2.79Å)差异微小,因此溶解初期无明显分馏,后期轻同位素优先释放77

6.3 熔体—流体

熔体—流体间分馏机制研究主要围绕平衡分馏,涵盖岩浆—热液和地幔熔体—流体两大体系,动力学分馏尚处于分馏行为分析阶段。

(1) 岩浆—热液

在岩浆—热液体系中(表5),钡同位素分馏受水化作用、钡浓度和Al-Si无序等因素影响83。水化作用下,高温高压使热液流体中的Ba2+水合数降低,改变水化壳结构;因Ba2+与K+半径相近,钡浓度变化对同位素分馏影响可忽略;Al-Si无序虽影响晶格结构和分馏,但高温下难以区分83。在岩浆演化过程中,早期斜长石的结晶作用导致析出的流体δ138/134Ba值较低,随着钾长石的结晶,改变熔体钡同位素组成,后期热液与贫钡的钠质熔体混合,降低了混合熔体的δ138/134Ba值。这些发现为理解岩浆—热液成矿机制提供了理论支撑83

(2) 地幔熔体—流体

在地幔熔体—流体体系中,钡同位素分馏受挥发分、力常数、温度、盐度及熔体铝指数等多因素制约:地幔部分熔融时,流体挥发分促使钡进入流体相,且流体因物性差异常富集轻钡同位素;基于第一性原理,由Ba-O键长和配位数所决定的力常数会影响钡同位素的平衡分馏系数,重钡同位素倾向于富集在Ba-O键长较短的物相中;温度升高会削弱分馏程度,盐度增加有利于轻钡同位素进入流体;熔体铝指数通过改变熔体结构调控分馏过程1883-84
Guo等84的实验显示,硅酸盐熔体析出流体时流体富集轻钡同位素;Gu等85在大别山造山带发现俯冲带变质流体富集重钡同位素;Li等86指出东阿尔卑斯山不同流体交代作用改变岩石钡含量与δ138/134Ba值;Zhang等88发现马里亚纳弧熔岩中的重钡同位素可能源于俯冲物质;王琳等89研究证实俯冲板片脱水过程中,流体会富集重钡同位素(图7)。
图7 俯冲带中钡同位素行为(据参考文献[89]修改)

Fig. 7 Behavior of barium isotopes in subduction zonesmodified after reference89])

7 结语与展望

本文聚焦于钡及其同位素海洋地球化学循环驱动机制,得出以下结论:①钡在地球圈层中的分布呈现显著的“源轻汇重”特征,其含量从地核到地壳递增,同位素组成则表现为岩石圈较轻、水圈较重。这一分异规律为理解钡的跨圈层迁移及海洋循环机制提供了重要依据。②海洋钡循环受陆源、热液及生物过程协同驱动,其中生物端元的代谢释放形成动态源;后随陆源热液端元一同沉降埋藏形成物质汇,其在源与汇间的动态切换,驱动钡循环的持续运转与动态平衡。③阐明钡同位素微观分馏机制受平衡与动力学分馏共同控制,在不同体系中多因素交织,决定其在海洋环境中的分布格局。
当前钡及其同位素在海洋地球化学循环的研究中存在微观分馏机制认知不足、欠缺对多源输入与分馏协同研究、生物—矿物—流体交互机制不明、钡的通量计算不确定性强及古海洋演化模型不完善等局限。未来亟待优化钡通量算法、统一标准并降低空间异质性影响,以实现海洋钡循环的精准量化,同时整合多源数据构建高分辨率古海洋演化模型,深入探究不同地质时期海洋钡循环主控因素及对古环境的响应,利用钡同位素分馏识别古海洋环境变化事件并重建生态系统演变,借助原位微区技术深化生物—矿物—流体交互机制研究,优化古生产力重建方法,为海洋资源勘探与生态保护提供支撑,特别是,油气勘探迈入万米深层领域90-91,古老烃源岩发育的海洋环境与生产力重建92-93、万米深层白云岩优质储层形成机理94等,都需要高端的分析测试技术95-96,因此钡同位素作为地质过程重建的新示踪指标,在未来一定能发挥重要作用。
[1]
CARTER S C PAYTAN A GRIFFITH E M. Toward an improved understanding of the marine barium cycle and the application of marine barite as a paleoproductivity proxy[J]. Minerals202010(5). DOI: 10.3390/min10050421 .

[2]
LEIN A Y KRAVCHISHINA M D. Barium geochemical cycle in the ocean[J]. Lithology and Mineral Resources202156(4): 293-308.

[3]
ZHU Guangyou AI Yifei LI Tingting, et al. Application of unconventional isotopes in petroleum geology and new progress in petroleum geochemistry[J]. Acta Petrolei Sinica202445(4): 718-754.

朱光有, 艾依飞, 李婷婷, 等. 非常规同位素在石油地质学中的应用与油气地球化学新进展[J]. 石油学报202445(4): 718-754.

[4]
LI Xi ZHU Guangyou LI Tingting, et al. Uranium isotope fractionation and application of uranium isotopes in environmental geosciences: a review[J]. Earth Science Frontiers202431(2): 447-471.

李茜, 朱光有, 李婷婷, 等. U同位素分馏行为及其在环境地球科学中的应用研究进展[J]. 地学前缘202431(2): 447-471.

[5]
LIGUORI B T P ALMEIDA M G REZENDE C E. Barium and its importance as an indicator of (paleo)productivity[J]. Anais da Academia Brasileira de Ciencias201688(4): 2 093-2 103.

[6]
FALKNER K K KLINKHAMMER G P BOWERS T S, et al. The behavior of barium in anoxic marine waters[J]. Geochimica et Cosmochimica Acta199357(3): 537-554.

[7]
PAYTAN A GRIFFITH E M. Marine barite: recorder of variations in ocean export productivity[J]. Deep Sea Research Part II: Topical Studies in Oceanography200754(5/6/7): 687-705.

[8]
YAN Detian WANG Jianguo WANG Zhuozhuo. Biogenetic barium distribution from the Upper Ordovician to Lower Silurian in the Yangtze area and its significance to paleoproductivity[J]. Journal of Xi’an Shiyou University (Natural Science Edition)200924(4): 16-19, 108-109.

严德天, 汪建国, 王卓卓. 扬子地区上奥陶—下志留统生物钡特征及其古生产力意义[J]. 西安石油大学学报(自然科学版)200924(4): 16-19, 108-109.

[9]
HORNER T J KINSLEY C W NIELSEN S G. Barium-isotopic fractionation in seawater mediated by barite cycling and oceanic circulation[J]. Earth and Planetary Science Letters2015430: 511-522.

[10]
BRIDGESTOCK L HSIEH Y T PORCELLI D, et al. Controls on the barium isotope compositions of marine sediments[J]. Earth and Planetary Science Letters2018481: 101-110.

[11]
ZHANG Z L ZHOU L B CHEN X G, et al. Introduction of isotopically light barium from the Rainbow hydrothermal system into the deep Atlantic Ocean[J]. Earth and Planetary Science Letters2024, 625. DOI: 10.1016/j.epsl.2023.118476 .

[12]
MAYFIELD K K EISENHAUER A SANTIAGO R D P, et al. Groundwater discharge impacts marine isotope budgets of Li, Mg, Ca, Sr, and Ba[J]. Nature Communications202112(1) . DOI: 10.1038/s41467-020-20248-3 .

[13]
JIN Chenyang GOU Longfei LI Chao, et al. Research progresses on geochemistry of marine barium isotopes[J]. Geochimica202150(3): 229-236.

金晨阳, 苟龙飞, 李超, 等. 海洋钡同位素地球化学研究进展[J]. 地球化学202150(3): 229-236.

[14]
MCDONOUGH W F SUN S S. The composition of the Earth [J]. Chemical Geology1995120(3/4):223-253.

[15]
RUDNICK R L GAO S. Composition of the continental crust[M]// Treatise on geochemistry. Amsterdam: Elsevier, 2014.

[16]
TIAN Lanlan YU Huimin Xiaoyun NAN, et al. A review of barium isotope analytical methods[J]. Geological Journal of China Universities202127(3): 289-305.

田兰兰, 于慧敏, 南晓云, 等. Ba同位素分析方法综述[J]. 高校地质学报202127(3): 289-305.

[17]
HSIEH Y T BRIDGESTOCK L SCHEUERMANN P P, et al. Barium isotopes in mid-ocean ridge hydrothermal vent fluids: a source of isotopically heavy Ba to the ocean[J]. Geochimica et Cosmochimica Acta2021292: 348-363.

[18]
HUANG Fang Xiaoyun NAN YU Huimin, et al. Barium (Ba) isotope geochemistry [C]// Proceedings of the 2016 China Earth science joint academic conference. China Earth Science Joint Academic Conference, 2016: 2 104-2 105.

黄方, 南晓云, 于慧敏, 等. 钡(Ba)同位素地球化学[C]//中国地球科学联合学术年会2016论文集. 中国地球科学联合学术年会, 2016: 2 104-2 105.

[19]
HUANG Fang YU Huimin Xiaoyun NAN, et al. Ba isotope geochemistry of the mantle[J]. Acta Petrologica Sinica202238(12): 3 659-3 672.

黄方, 于慧敏, 南晓云, 等. 地幔的Ba同位素地球化学[J]. 岩石学报202238(12): 3 659-3 672.

[20]
WANG Yibo. Application of barium isotopes in supergene environment[J]. Modern Chemical Research2023(3): 13-15.

王艺博. 钡同位素在表生环境中的应用研究[J]. 当代化工研究2023(3): 13-15.

[21]
LIN Wei. Biogeochemistry of barium in the western North Pacific and its application of tracing organic carbon remineralization in the twilight zone [D]. Xiamen: Xiamen University, 2021.

林玮. 西北太平洋钡生物地球化学及其对弱光层有机碳再矿化的指示[D]. 厦门: 厦门大学, 2021.

[22]
NIELSEN S G HORNER T J PRYER H V, et al. Barium isotope evidence for pervasive sediment recycling in the upper mantle[J]. Science Advances20184(7). DOI: 10.1126/sciadv.aas8675 .

[23]
CHEN A X CHEN Y X GU X F, et al. Barium isotope behavior during interaction between serpentinite-derived fluids and metamorphic rocks in the continental subduction zone[J]. Geochimica et Cosmochimica Acta2023353: 61-75.

[24]
ZHANG L L SUN R Y GONG Y Z, et al. Leaching methods for Ba isotope studies of carbonates[J]. Analytical Sciences202036(12): 1 473-1 477.

[25]
NAN X Y YU H M RUDNICK R L, et al. Barium isotopic composition of the upper continental crust[J]. Geochimica et Cosmochimica Acta2018233: 33-49.

[26]
BAI R X JACKSON M G HUANG F, et al. Barium isotopes in ocean island basalts as tracers of mantle processes[J]. Geochimica et Cosmochimica Acta2022336: 436-447.

[27]
WU F TURNER S SCHAEFER B F. Mélange versus fluid and melt enrichment of subarc mantle: a novel test using barium isotopes in the Tonga-Kermadec arc[J]. Geology202048(11): 1 053-1 057.

[28]
CROCKFORD P W WING B A PAYTAN A, et al. Barium-isotopic constraints on the origin of post-Marinoan barites[J]. Earth and Planetary Science Letters2019519: 234-244.

[29]
BATES S L HENDRY K R PRYER H V, et al. Barium isotopes reveal role of ocean circulation on barium cycling in the Atlantic[J]. Geochimica et Cosmochimica Acta2017204: 286-299.

[30]
YU Y SIEBERT C FIETZKE J, et al. The impact of MC-ICP-MS plasma conditions on the accuracy and precision of stable isotope measurements evaluated for barium isotopes[J]. Chemical Geology2020, 549. DOI: 10.1016/j.chemgeo.2020.119697 .

[31]
WHITMORE L M SHILLER A M HORNER T J, et al. Strong margin influence on the Arctic Ocean barium cycle revealed by pan-Arctic synthesis[J]. Journal of Geophysical Research Oceans2022127(4). DOI: 10.1029/2021JC017417 .

[32]
LI Yating. On the distributions, fractionation, and controls of stable barium isotopic compositions in the upper water column of the South China Sea [D]. Xiamen: Xiamen University, 2021.

李雅婷. 南海上层水体钡稳定同位素组成的分布、分馏与控制[D]. 厦门: 厦门大学, 2021.

[33]
CAO Z M LI Y T RAO X T, et al. Constraining barium isotope fractionation in the upper water column of the South China Sea[J]. Geochimica et Cosmochimica Acta2020288: 120-137.

[34]
YAO Z X SUN G Y LIN L, et al. Distribution, source identification, and output flux of barium in surface waters in the Sanjiangyuan Region and Qilian Mountain Region of Tibetan Plateau[J]. Bulletin of Environmental Contamination and Toxicology2023111(1). DOI: 10.1007/s00128-023-03747-z .

[35]
GOU L F JIN Z D GALY A, et al. Seasonal riverine barium isotopic variation in the middle Yellow River: sources and fractionation[J]. Earth and Planetary Science Letters2020, 531.DOI: 10.1016/j.epsl.2019.115990 .

[36]
CAO Z M RAO X T YU Y, et al. Stable barium isotope dynamics during estuarine mixing[J]. Geophysical Research Letters202148(19). DOI: 10.1029/2021gl095680 .

[37]
PAYTAN A KASTNER M. Benthic Ba fluxes in the central Equatorial Pacific, implications for the oceanic Ba cycle[J]. Earth and Planetary Science Letters1996142(3/4): 439-450.

[38]
HAYES C T COSTA K M ANDERSON R F, et al. Global ocean sediment composition and burial flux in the deep sea[J]. Global Biogeochemical Cycles202135(4). DOI: 10.1029/2020GB006769 .

[39]
RAHMAN S SHILLER A M ANDERSON R F, et al. Dissolved and particulate barium distributions along the US GEOTRACES north Atlantic and east Pacific zonal transects (GA03 and GP16): global implications for the marine barium cycle[J]. Global Biogeochemical Cycles202236(6). DOI: 10.1029/2022GB007330 .

[40]
NI Jianyu ZHAO Jun JIANG Qiaowen, et al. Biogenic barium, carbon and nitrogen isotopes features in sediments of the northern South China Sea and their correlation with primary productivity of surface ocean[J]. Haiyang Xuebao201941(2): 41-51.

倪建宇, 赵军, 江巧文, 等. 南海北部海域沉积物中生物钡、碳氮同位素的组成特征及其与表层水体初级生产之间的关系[J]. 海洋学报201941(2): 41-51.

[41]
ZAN Bowen. Paleoenvironmental reconstruction in the Middle-Upper Yangtze Block during the Late Ordovician to Early Silurian time: implications from silica, organic matter and barium enrichment processes [D]. Beijing: China University of Geosciences, 2024.

昝博文. 中上扬子地区晚奥陶世—早志留世古海洋环境研究——来自富硅、富有机质和富钡过程的启示 [D]. 北京:中国地质大学, 2024.

[42]
MEHTA N COUTAUD M BOUCHEZ J, et al. Barium and strontium isotope fractionation by cyanobacteria forming intracellular carbonates[J]. Geochimica et Cosmochimica Acta2023356: 165-178.

[43]
HOHL S V LIN Y B WEI H Z, et al. Barium isotopes in stromatolites through deep-time: a novel tracer for metal cycling in the photic zone[J]. Earth and Planetary Science Letters2024, 632. DOI: 10.1016/j.epsl.2024.118639 .

[44]
DEHAIRS F CHESSELET R JEDWAB J. Discrete suspended particles of barite and the barium cycle in the open ocean[J]. Earth and Planetary Science Letters198049(2): 528-550.

[45]
MARTINEZ-RUIZ F JROUNDI F PAYTAN A, et al. Barium bioaccumulation by bacterial biofilms and implications for Ba cycling and use of Ba proxies[J]. Nature Communications20189(1). DOI: 10.1038/s41467-018-04069-z .

[46]
LIU Y LI X H ZENG Z, et al. Annually-resolved coral skeletal δ138/134Ba records: a new proxy for oceanic Ba cycling[J]. Geochimica et Cosmochimica Acta2019247: 27-39.

[47]
BERNSTEIN R E BYRNE R H SCHIJF J. Acantharians: a missing link in the oceanic biogeochemistry of barium[J]. Deep Sea Research Part I: Oceanographic Research Papers199845(2/3): 491-505.

[48]
WEI Wei SUI Peishan CHEN Tingting, et al. Changes in oceanic Ba cycle driven by the Neoproterozoic oxygenation event[J]. Geological Journal of China Universities202430(3): 288-296.

卫炜, 隋佩珊, 陈婷婷, 等. 新元古代氧化事件驱动海洋Ba循环变化[J]. 高校地质学报202430(3): 288-296.

[49]
WEI W ZENG Z SHEN J, et al. Dramatic changes in the carbonate-hosted barium isotopic compositions in the Ediacaran Yangtze Platform[J]. Geochimica et Cosmochimica Acta2021299: 113-129.

[50]
CHARBONNIER Q MOYNIER F BOUCHEZ J. Barium isotope cosmochemistry and geochemistry[J]. Science Bulletin201863(6): 385-394.

[51]
ZHOU Xiqiang YU Hao HUANG Taiyu, et al. Genetic classification of sedimentary barites and discussion on the origin of the lower Cambrian barite-rich deposits in the Yangtze Block, South China[J]. Acta Sedimentologica Sinica201634(6): 1 044-1 056.

周锡强, 遇昊, 黄泰誉, 等. 重晶石沉积类型及成因评述: 兼论扬子地区下寒武统重晶石的富集机制[J]. 沉积学报201634(6): 1 044-1 056.

[52]
PAYTAN A MEARON S COBB K, et al. Origin of marine barite deposits: Sr and S isotope characterization[J]. Geology200230(8). DOI: 10.1130/0091-7613(2002)030<0747:OOMBDS>2.0.CO;2 .

[53]
ARNING E T GAUCHER E C van BERK W, et al. Hydrogeochemical models locating sulfate-methane transition zone in marine sediments overlying black shales: a new tool to locate biogenic methane?[J]. Marine and Petroleum Geology201559: 563-574.

[54]
LASH G G. Authigenic barite nodules and carbonate concretions in the Upper Devonian shale succession of western New York—a record of variable methane flux during burial[J]. Marine and Petroleum Geology201559: 305-319.

[55]
von ALLMEN K BÖTTCHER M E SAMANKASSOU E, et al. Barium isotope fractionation in the global barium cycle: first evidence from barium minerals and precipitation experiments[J]. Chemical Geology2010277(1/2): 70-77.

[56]
ZHOU X LI R TANG D, et al. Cold seep activity in the early Cambrian: evidence from the world-class shale-hosted Tianzhu barite deposit, South China [J]. Sedimentary Geology2022, 439. DOI: 10.1016/j.sedgeo.2022.106220 .

[57]
EICKMANN B THORSETH I H PETERS M, et al. Barite in hydrothermal environments as a recorder of subseafloor processes: a multiple-isotope study from the Loki’s Castle vent field[J]. Geobiology201412(4): 308-321.

[58]
MIDDLETON J T PAYTAN A AURO M, et al. Barium isotope signatures of barite-fluid ion exchange in Equatorial Pacific sediments[J]. Earth and Planetary Science Letters2023, 612. DOI: 10.1016/j.epsl.2023.118150 .

[59]
LIU Yi. Barium Isotope compositions of corals and ferromanganese nodules and their environmental significance [C] //Abstracts of papers of the 17th annual conference of the chinese society of mineralogy, petrology and geochemistry. Chinese Society of Mineralogy, Petrology and Geochemistry, 2019.

刘羿. 珊瑚和铁锰结核的钡同位素组成及其环境指示意义 [C]//中国矿物岩石地球化学学会第17届学术年会论文摘要集. 中国矿物岩石地球化学学会, 2019.

[60]
LEA D W BOYLE E A. Determination of carbonate-bound barium in foraminifera and corals by isotope dilution plasma-mass spectrometry[J]. Chemical Geology1993103(1/2/3/4): 73-84.

[61]
RICHEY J N FEHRENBACHER J S REYNOLDS C E, et al. Barium enrichment in the non-spinose planktic foraminifer, Globorotalia truncatulinoides [J]. Geochimica et Cosmochimica Acta2022333: 184-199.

[62]
KERSHAW J STEWART J A STRAWSON I, et al. Ba/Ca of stylasterid coral skeletons records dissolved seawater barium concentrations[J]. Chemical Geology2023, 622.DOI: 10.1016/j.chemgeo.2023.121355 .

[63]
GEYMAN B M PTACEK J L la VIGNE M, et al. Barium in deep-sea bamboo corals: phase associations, barium stable isotopes, & prospects for paleoceanography[J]. Earth and Planetary Science Letters2019, 525.DOI: 10.1016/j.epsl.2019.115751 .

[64]
DYMOND J SUESS E LYLE M. Barium in deep-sea sediment: a geochemical proxy for paleoproductivity[J]. Paleoceanography19927(2): 163-181.

[65]
FRANCOIS R HONJO S MANGANINI S J, et al. Biogenic barium fluxes to the deep sea: implications for paleoproductivity reconstruction[J]. Global Biogeochemical Cycles19959(2): 289-303.

[66]
MURRAY R W KNOWLTON C LEINEN M, et al. Export production and carbonate dissolution in the central equatorial Pacific Ocean over the past 1 Myr [J]. Paleoceanography200015(6):570-592.

[67]
PRETET C van ZUILEN K NÄGLER T F, et al. Constraints on barium isotope fractionation during aragonite precipitation by corals[J]. The Depositional Record20151(2): 118-129.

[68]
MAVROMATIS V van ZUILEN K PURGSTALLER B, et al. Barium isotope fractionation during witherite (BaCO3) dissolution, precipitation and at equilibrium[J]. Geochimica et Cosmochimica Acta2016190: 72-84.

[69]
HEMSING F HSIEH Y T BRIDGESTOCK L, et al. Barium isotopes in cold-water corals[J]. Earth and Planetary Science Letters2018491: 183-192.

[70]
CHARBONNIER Q BOUCHEZ J GAILLARDET J, et al. The influence of black shale weathering on riverine barium isotopes[J]. Chemical Geology2022, 594. DOI: 10.1016/j.chemgeo.2022.120741 .

[71]
TORFSTEIN A WINCKLER G TRIPATI A. Productivity feedback did not terminate the Paleocene-Eocene Thermal Maximum (PETM)[J]. Climate of the Past20106(2): 265-272.

[72]
JIWARUNGRUEANGKUL T LIU Z F SOMPONGCHAIYAKUL P, et al. Multi-proxy reconstructions of productivity on the continental slope off the Mekong River in the southern South China Sea over the past 30, 000 years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology2022, 597. DOI: 10.1016/j.palaeo.2022.111005 .

[73]
HORNER T J LITTLE S H CONWAY T M, et al. Bioactive trace metals and their isotopes as paleoproductivity proxies: an assessment using GEOTRACES-era data[J]. Global Biogeochemical Cycles202135(11). DOI: 10.1029/2020GB006814 .

[74]
DIESTER-HAASS L FAUL K. Paleoproductivity reconstructions for the Paleogene southern ocean: a direct comparison of geochemical and micropaleontological proxies[J]. Paleoceanography and Paleoclimatology201934(1): 79-97.

[75]
ZHANG F F XIAO S H KENDALL B, et al. Extensive marine Anoxia during the terminal Ediacaran period[J]. Science Advances20184(6). DOI: 10.1126/sciadv.aan8983 .

[76]
WEI G Y LING H F SHIELDS G A, et al. Revisiting stepwise ocean oxygenation with authigenic barium enrichments in marine mudrocks[J]. Geology202149(9): 1 059-1 063.

[77]
van ZUILEN K MÜLLER T NÄGLER T F, et al. Experimental determination of barium isotope fractionation during diffusion and adsorption processes at low temperatures[J]. Geochimica et Cosmochimica Acta2016186: 226-241.

[78]
MIDDLETON J T PAYTAN A AURO M, et al. Barium isotope signatures of barite-fluid ion exchange in Equatorial Pacific sediments[J]. Earth and Planetary Science Letters2023, 612. DOI: 10.1016/j.epsl.2023.118150 .

[79]
XIAO Z C WANG W Z GU X F, et al. First-principles calculations of equilibrium barium isotope fractionation among silicate minerals[J]. Geochimica et Cosmochimica Acta2023360: 163-174.

[80]
WANG W Z WU Z Q HUANG F. Equilibrium barium isotope fractionation between minerals and aqueous solution from first-principles calculations[J]. Geochimica et Cosmochimica Acta2021292: 64-77.

[81]
JI Xinyue. Theoretical calculation research on Ba isotope fractionation in adsorption reactions under epigenetic conditions [D]. Handan:Hebei University of Engineering, 2022.

季新月. 表生条件下吸附反应中Ba同位素分馏的理论计算研究 [D]. 邯郸:河北工程大学, 2022.

[82]
MIDDLETON J T HONG W L PAYTAN A, et al. Barium isotope fractionation in barite-fluid systems at chemical equilibrium[J]. Chemical Geology2023, 627. DOI: 10.1016/j.chemgeo.2023.121453 .

[83]
WANG J L WEI H Z PALMER M R, et al. Barium isotope fractionation during granitic magmatism and potential of δ138/134Ba for distinguishing magmatic-hydrothermal transition in granitic Magma systems[J]. Geochimica et Cosmochimica Acta2023360: 138-150.

[84]
GUO H LI W Y, NAN X, et al. Experimental evidence for light Ba isotopes favouring aqueous fluids over silicate melts[J]. Geochemical Perspectives Letters202016: 6-11.

[85]
GU X F GUO S YU H M, et al. Behavior of barium isotopes during high-pressure metamorphism and fluid evolution[J]. Earth and Planetary Science Letters2021, 575. DOI: 10.1016/j.epsl.2021.117176 .

[86]
LI X L CHEN Y X DEMÉNY A, et al. Barium isotope variation during fluid-rock interaction at forearc depths: evidence from high-pressure fluid-metasomatized rocks in the Eastern Alps[J]. Lithos2024, 480. DOI: 10.1016/j.lithos.2024.107665 .

[87]
van ZUILEN K HARRISON A L STAMMEIER J A, et al. Barium isotope (re-) equilibration in the barite-fluid system and its implications for marine barite archives[J]. Earth and Planetary Science Letters2023, 618. DOI: 10.1016/j.epsl.2023.118280 .

[88]
ZHANG Y X SHU Y C TURNER S, et al. Deciphering contribution of recycled altered oceanic crust to arc magmas using Ba-Sr-Nd isotopes[J]. Journal of Geophysical Research: Solid Earth2024129(3). DOI: 10.1029/2023JB028407 .

[89]
WANG Lin ZHANG Guibin. Fractionation behavior of stable isotopes (Fe-K-Li-B-Ba) in subducted plates[J]. Earth Science202449(2): 685-699.

王琳, 张贵宾. 俯冲板片稳定同位素(Fe-K-Li-B-Ba)的分馏行为[J]. 地球科学202449(2): 685-699.

[90]
ZHU Guangyou ZHANG Zhiyao JIANG Hua, et al. Evolution of the Cryogenian cratonic basins in China, paleo-oceanic environment and hydrocarbon generation mechanism of ancient source rocks, and exploration potential in 10,000 m-deep strata[J]. Earth-Science Reviews2023244: 1-20.

[91]
ZHU Guangyou HOU Jiakai REN Rong, et al. Tectonic-sedimentary responses to major geological events, source rock formation mechanisms, and resource potential at depths greater than 10,000 m in the cratonic basins of China[J]. American Association of Petroleum Geologists Bulletin2025109(4): 497-544.

[92]
ZHU Guangyou LI Tingting ZHAO Kun, et al. Mo isotope records from Lower Cambrian black shales, northwestern Tarim Basin (China): implications for the early Cambrian ocean[J]. Geological Society of America Bulletin2021134(1/2): 3-14.

[93]
ZHU Guangyou LI Tingting ZHANG Zhiyao, et al. Nitrogen isotope evidence for oxygenated upper ocean during the Cryogenian interglacial period[J]. Chemical Geology2022, 604. DOI: 10.1016/j.chemgeo.2022.120929 .

[94]
ZHU Guangyou LI Xi LI Tingting, et al. Genesis mechanism and Mg isotope difference between the Sinian and Cambrian dolomites in Tarim Basin[J]. Science China Earth Sciences202366(2): 334-357.

[95]
CHEN Siyu LI Xi ZHU Guangyou, et al. Advances and challenges of gallium isotopes in Earth sciences[J/OL]. Acta Geologica Sinica2025. [2025-02-14].

陈思钰, 李茜, 朱光有, 等. 镓同位素在地球科学研究中的进展与挑战[J/OL]. 地质学报2025. [2025-02-14].

[96]
HUANG Yue ZHU Ziguang LI Sheng, et al. Geochemical characteristics and isotopic fractionation effects of cerium (Ce) and its applications in Earth sciences[J]. Earth Science Frontiers202531(2): 447-471.

黄月,朱紫光,李生,等. 铈(Ce)的地球化学特征与同位素分馏效应及其在地球科学中的应用[J]. 地学前缘202531(2): 447-471.

Outlines

/