2022 Summertime Heat Extremes in the Yangtze River Basin: Review and Prospect
Received date: 2025-01-07
Revised date: 2025-03-21
Online published: 2025-03-29
Supported by
the National Key Research and Development Program of China(2022YFF0801601);The National Natural Science Foundation of China(42075022)
In the summer of 2022, the Yangtze River Basin experienced unprecedented heat waves, drawing considerable attention from the scientific community. Affected by over a month of record-breaking high temperatures and droughts, this extreme event not only caused escalating losses to human health, the economy, and the environment, but also exacerbated food insecurity and hindered sustainable development. Therefore, a more comprehensive understanding of extreme heat in the Yangtze River Basin during the summer of 2022 is essential to identify the drivers of extreme event variability under global warming, assess the impacts of human activity and natural variability, and evaluate potential climate risks. This study first reviews the main characteristics, formation mechanisms, and causes of the extreme heat in the Yangtze River Basin in the summer of 2022, and further summarizes the research progress on the event over the past three years. The results showed that the 2022 summer high temperature in the Yangtze River Basin was a rare extreme heat event. Its occurrence was primarily driven by atmospheric circulation anomalies related to the western Pacific subtropical high and the South Asian high, the triple La Niña phenomenon, the Atlantic and Indian SST forcing, and land-atmosphere feedback mechanism (e.g., soil moisture and air temperature). In addition to natural variability, human activity is the dominant factor influencing heat extremes. Without anthropogenic forcing, such extremes would have been highly unlikely. Such rare heat waves are projected to become more frequent under ongoing global warming. Finally, the paper highlights key research challenges and knowledge gaps associated with extreme heat events.
Wenjian HUA , Huiting FENG , Yazhu CUI , Yuhan HU . 2022 Summertime Heat Extremes in the Yangtze River Basin: Review and Prospect[J]. Advances in Earth Science, 2025 , 40(5) : 456 -472 . DOI: 10.11867/j.issn.1001-8166.2025.023
[1] | LU R Y, XU K, CHEN R D, et al. Heat waves in summer 2022 and increasing concern regarding heat waves in general[J]. Atmospheric and Oceanic Science Letters, 2023, 16(1). DOI: 10.1016/j.aosl.2022.100290 . |
[2] | ZHANG L X, YU X J, ZHOU T J, et al. Understanding and attribution of extreme heat and drought events in 2022: current situation and future challenges[J]. Advances in Atmospheric Sciences, 2023, 40(11): 1 941-1 951. |
[3] | MALLAPATY S. China’s extreme weather challenges scientists trying to study it[J]. Nature, 2022, 609. DOI: 10.1038/d41586-022-02954-8 . |
[4] | HAO Z C, CHEN Y, FENG S F, et al. The 2022 Sichuan-Chongqing spatio-temporally compound extremes: a bitter taste of novel hazards[J]. Science Bulletin, 2023, 68(13): 1 337-1 339. |
[5] | SENEVIRATNE S I, ZHANG X, ADNAN M, et al. Weather and climate extreme events in a changing climate [M]// MASSON-DELMOTTE V. Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2021: 1 513-1 766. |
[6] | ROGERS C D W, KORNHUBER K, PERKINS-KIRKPATRICK S E, et al. Sixfold increase in historical Northern Hemisphere concurrent large heatwaves driven by warming and changing atmospheric circulations[J]. Journal of Climate, 2022, 35(3): 1 063-1 078. |
[7] | WANG Qiong, ZHANG Mingjun, WANG Shengjie, et al. Extreme temperature events in Yangtze River Basin during 1962-2011[J]. Acta Geographica Sinica, 2013, 68(5): 611-625. |
王琼, 张明军, 王圣杰, 等. 1962—2011年长江流域极端气温事件分析[J]. 地理学报, 2013, 68(5): 611-625. | |
[8] | WANG Xiyuan, YAN Yechao, YUE Shuping, et al. On spatiotemporal variations of heat waves in the Yangtze River Basin from 1961 to 2010[J]. Journal of Yunnan University: Natural Sciences Edition, 2016, 38(4): 602-609. |
王喜元, 闫业超, 岳书平, 等. 1961—2010年长江流域高温热浪时空变化特征 [J]. 云南大学学报(自然科学版), 2016, 38(4): 602-609. | |
[9] | ZHANG S Q, REN G Y, ZHENG X, et al. Changes in the mean and extreme temperature in the Yangtze River Basin over the past 120 years[J]. Weather and Climate Extremes, 2023, 40. DOI: 10.1016/j.wace.2023.100557 . |
[10] | China Meteorological Administration Climate Change Center. Blue book on climate change in China (2023) [M]. Beijing: Science Press, 2023. |
中国气象局气候变化中心. 中国气候变化蓝皮书(2023)[M]. 北京: 科学出版社, 2023. | |
[11] | YUAN Y F, LIAO Z, ZHOU B Q, et al. Unprecedented hot extremes observed in city clusters in China during summer 2022[J]. Journal of Meteorological Research, 2023, 37(2): 141-148. |
[12] | TANG S K, QIAO S B, WANG B, et al. Linkages of unprecedented 2022 Yangtze River Valley heatwaves to Pakistan flood and triple-dip La Ni?a[J]. NPJ Climate and Atmospheric Science, 2023, 6. DOI:10.1038/s41612-023-00386-3 . |
[13] | HUA W J, DAI A G, QIN M H, et al. How unexpected was the 2022 summertime heat extremes in the middle reaches of the Yangtze River?[J]. Geophysical Research Letters, 2023, 50(16). DOI: 10.1029/2023GL104269 . |
[14] | ZHU Z, HUANG H, CHEN H, et al. The record-breaking hot summer of 2022 in Yangtze River Basin (in “State of the Climate in 2022”)[J]. Bulletin of the American Meteorological Society, 2023, 104: S443-S444. |
[15] | LIN Shu, LI Hongying, HUANG Pengcheng, et al. Characteristics of high temperature, drought and circulation situation in summer 2022 in China[J]. Journal of Arid Meteorology, 2022, 40(5): 748-763. |
林纾, 李红英, 黄鹏程, 等. 2022年夏季我国高温干旱特征及其环流形势分析[J]. 干旱气象, 2022, 40(5): 748-763. | |
[16] | ZHOU J, ZHAO J H, LI Y H, et al. The hottest center: characteristics of high temperatures in midsummer of 2022 in Chongqing and its comparison with 2006[J]. Theoretical and Applied Climatology, 2024, 155(1): 151-162. |
[17] | LI L, ZHOU T J, ZHANG W X, et al. Quantifying the extremity of 2022 Chinese Yangtze River Valley daily hot extreme: fixed or moving baseline matters[J]. Environmental Research Letters, 2024, 19(6). DOI: 10.1088/1748-9326/ad4e49 . |
[18] | MA F, YUAN X. When will the unprecedented 2022 summer heat waves in Yangtze River Basin become normal in a warming climate?[J]. Geophysical Research Letters, 2023, 50(4). DOI: 10.1029/2022GL101946 . |
[19] | JIANG Yutong, HOU Aizhong, HAO Zengchao, et al. Evolution and historical comparison of hot droughts in Yangtze River Basin in 2022[J]. Journal of Hydroelectric Engineering, 2023, 42(8): 1-9. |
姜雨彤, 侯爱中, 郝增超, 等. 长江流域2022年高温干旱事件演变及历史对比[J]. 水力发电学报, 2023, 42(8): 1-9. | |
[20] | YUAN X, WANG Y M, ZHOU S Y, et al. Multiscale causes of the 2022 Yangtze mega-flash drought under climate change[J]. Science China Earth Sciences, 2024, 67(8): 2 649-2 660. |
[21] | YANG S Q, SUN H Q, ZHAO R X, et al. Was the 2022 drought in the Yangtze River Basin, China more severe than other typical drought events by considering the natural characteristics and the actual impacts?[J]. Theoretical and Applied Climatology, 2024, 155(6): 5 543-5 556. |
[22] | ZHANG Y, LIU X M, WANG K W, et al. Response of evapotranspiration to the 2022 unprecedented extreme drought in the Yangtze River Basin[J]. International Journal of Climatology, 2024, 44(8): 2 779-2 791. |
[23] | WANG Y M, YUAN X. High temperature accelerates onset speed of the 2022 unprecedented flash drought over the Yangtze River Basin[J]. Geophysical Research Letters, 2023, 50(22). DOI: 10.1029/2023GL105375 . |
[24] | YUAN X, WANG Y M, JI P, et al. A global transition to flash droughts under climate change[J]. Science, 2023, 380(6 641): 187-191. |
[25] | BARRIOPEDRO D, GARCíA-HERRERA R, ORDó?EZ C, et al. Heat waves: physical understanding and scientific challenges[J]. Reviews of Geophysics, 2023, 61(2). DOI: 10.1029/2022RG000780 . |
[26] | WANG Z Q, LUO H L, YANG S. Different mechanisms for the extremely hot central-eastern China in July-August 2022 from a Eurasian large-scale circulation perspective[J]. Environmental Research Letters, 2023, 18(2). DOI:10.1088/1748-9326/acb3e5 . |
[27] | CHEN R D, LI X Q. Causes of the persistent merging of the western North Pacific subtropical high and the Iran high during late July 2022[J]. Climate Dynamics, 2023, 61(5): 2 285-2 297. |
[28] | LI X F, HU Z Z, LIU Y Y, et al. Causes and predictions of 2022 extremely hot summer in East Asia[J]. Journal of Geophysical Research: Atmospheres, 2023, 128(13). DOI: 10.1029/2022JD038442 . |
[29] | HE C, COLLINS M, ZHOU T J, et al. Contrasting East Asian climate extremes in 2020 and 2022 tied to zonal flow[J]. Environmental Research Letters, 2024, 19(10). DOI:10.1088/1748-9326/ad6a72 . |
[30] | SUN Bo, WANG Huijun, HAUNG Yanyan, et al. Characteristics and causes of the hot-dry climate anomalies in China during summer of 2022[J]. Transactions of Atmospheric Sciences, 2023, 46(1): 1-8. |
孙博, 王会军, 黄艳艳, 等. 2022年夏季中国高温干旱气候特征及成因探讨[J]. 大气科学学报, 2023, 46(1): 1-8. | |
[31] | PENG Jingbei, SUN Shuqing, LIN Dawei. The extreme hot event along the Yangtze Basins in August 2022[J]. Journal of Applied Meteorological Science, 2023, 34(5): 527-539. |
彭京备, 孙淑清, 林大伟. 2022年8月长江流域持续性极端高温事件成因[J]. 应用气象学报, 2023, 34(5): 527-539. | |
[32] | HAO Lisheng, MA Ning, HE Liye. Circulation anomalies characteritics of the abnormal drought and high temperature event in the middle and lower reaches of the Yangtze River in summer of 2022[J]. Journal of Arid Meteorology, 2022, 40(5): 721-732. |
郝立生, 马宁, 何丽烨. 2022年长江中下游夏季异常干旱高温事件之环流异常特征[J]. 干旱气象, 2022, 40(5): 721-732. | |
[33] | LIU Y, YUAN S S, ZHU Y, et al. The patterns, magnitude, and drivers of unprecedented 2022 mega-drought in the Yangtze River Basin, China[J]. Environmental Research Letters, 2023, 18(11). DOI:10.1088/1748-9326/acfe21 . |
[34] | LYU Z Z, GAO H, GAO R, et al. Extreme characteristics and causes of the drought event in the whole Yangtze River Basin in the midsummer of 2022[J]. Advances in Climate Change Research, 2023, 14(5): 642-650. |
[35] | MA Y Y, CHEN Y T, HU X X, et al. The 2022 record-breaking high temperature in China: sub-seasonal stepwise enhanced characteristics, possible causes and its predictability[J]. Advances in Climate Change Research, 2023, 14(5): 651-659. |
[36] | LI Yiping, ZHANG Jinyu, YUE Ping, et al. Study on characteristics of severe drought event over Yangtze River Basin in summer of 2022 and its causes[J]. Journal of Arid Meteorology, 2022, 40(5): 733-747. |
李忆平, 张金玉, 岳平, 等. 2022年夏季长江流域重大干旱特征及其成因研究[J]. 干旱气象, 2022, 40(5): 733-747. | |
[37] | ZHANG D P, HUANG Y Y, ZHOU B T, et al. Who is the major player for 2022 China extreme heat wave? Western Pacific Subtropical high or South Asian high?[J]. Weather and Climate Extremes, 2024, 43: 100640. |
[38] | ZHANG D Q, CHEN L J, YUAN Y, et al. Why was the heat wave in the Yangtze River valley abnormally intensified in late summer 2022?[J]. Environmental Research Letters, 2023, 18(3). DOI: 10.1088/1748-9326/acba30 . |
[39] | ZHU Chuandong, REN Rongcai. Relationship between two types of East-West Oscillations of the South Asia High in summer and their influences on weather [J]. Chinese Journal of Atmospheric Sciences, 2023, 47(1): 53-69. |
祝传栋, 任荣彩. 夏季南亚高压两类东—西振荡过程的联系及其天气效应对比[J]. 大气科学, 2023, 47(1):53-69. | |
[40] | DING T, GAO H, LI X. Increasing risk of a “hot eastern-pluvial western” Asia[J]. Earth’s Future, 2024, 12(5). DOI:10.1029/2023EF004333 . |
[41] | LU G M, LI Q Q, SUN X T, et al. Comparative analysis of peak-summer heatwaves in the Yangtze-Huaihe River Basin of China in 2022 and 2013: thermal effects of the Tibetan Plateau[J]. Atmospheric Research, 2024, 300. DOI:10.1016/j.atmosres.2024.107222 . |
[42] | HE C, ZHOU T J, ZHANG L X, et al. Extremely hot East Asia and flooding western South Asia in the summer of 2022 tied to reversed flow over Tibetan Plateau[J]. Climate Dynamics, 2023, 61(5): 2 103-2 119. |
[43] | YIN Z J, YANG S, WEI W. Prevalent atmospheric and oceanic signals of the unprecedented heatwaves over the Yangtze River Valley in July-August 2022[J]. Atmospheric Research, 2023, 295. DOI: 10.1016/j.atmosres.2023.107018 . |
[44] | LIU W C, SHI N, WANG H J, et al. Thermodynamic characteristics of extreme heat waves over the middle and lower reaches of the Yangtze River Basin[J]. Climate Dynamics, 2024, 62(5): 3 877-3 889. |
[45] | ZHANG Ling, GUO Guangfen, XIONG Kaiguo, et al. Causes of the high temperature process in the Yangtze River Basin in 2022[J]. Progress in Geography, 2023, 42(5): 971-981. |
张灵, 郭广芬, 熊开国, 等. 长江流域2022年夏季高温过程的成因分析[J]. 地理科学进展, 2023, 42(5): 971-981. | |
[46] | YIN Qiuchao, WANG Lu, GE Zian, et al. Dominant modes of interannual variation in extremely-high-temperature days in summer in China and associated mechanisms [J]. Chinese Journal of Atmospheric Sciences, 2024, 48(4): 1 657-1 673. |
尹秋超, 王璐, 葛子安, 等. 中国夏季极端高温日数年际变化的主要模态及产生机理[J]. 大气科学, 48(4):1 657-1 673. | |
[47] | HU Y P, ZHOU B T, WANG H J, et al. Record-breaking summer-autumn drought in Southern China in 2022: roles of tropical sea surface temperature and Eurasian warming[J]. Science China Earth Sciences, 2024, 67(2): 420-431. |
[48] | WANG R L, LI X, MA H D, et al. Persistent meteorological drought in the Yangtze River basin during summer-autumn 2022: relay effects of different atmospheric internal variabilities[J]. Atmosphere, 2023, 14(9). DOI: 10.3390/atmos14091402 . |
[49] | HUANG H J, ZHU Z W, LI J. Disentangling the unprecedented Yangtze River basin extreme high temperatures in summer 2022: combined impacts of the reintensified La Ni?a and strong positive NAO[J]. Journal of Climate, 2024, 37(3): 927-942. |
[50] | YIN Zejiang, WEI Wei, YANG Song. Extreme hot events in the middle and lower reaches of the Yangtze River in peak summer 2022: roles of the North Atlantic Oscillation and the British-Okhotsk corridor patter[J]. Transactions of Atmospheric Sciences, 2023, 46(3): 345-353. |
尹泽疆, 魏维, 杨崧. 北大西洋涛动和英国—鄂霍次克海走廊型遥相关对2022年盛夏长江中下游极端高温的影响[J]. 大气科学学报, 2023, 46(3): 345-353. | |
[51] | ZHANG T T, TAM C Y, LAU N C, et al. Influences of the boreal winter Arctic Oscillation on the peak-summer compound heat waves over the Yangtze-Huaihe River Basin: the North Atlantic capacitor effect[J]. Climate Dynamics, 2022, 59(7): 2 331-2 343. |
[52] | LIU B Q, ZHU C W, MA S M, et al. Subseasonal processes of triple extreme heatwaves over the Yangtze River valley in 2022[J]. Weather and Climate Extremes, 2023, 40. DOI: 10.1016/j.wace.2023.100572 . |
[53] | LIANG P, ZHANG Z Q, DING Y H, et al. The 2022 extreme heatwave in Shanghai, lower reaches of the Yangtze River valley: combined influences of multiscale variabilities[J]. Advances in Atmospheric Sciences, 2024, 41(4): 593-607. |
[54] | CHEN X L, ZHOU T J. Relative contributions of external SST forcing and internal atmospheric variability to July-August heat waves over the Yangtze River valley[J]. Climate Dynamics, 2018, 51(11): 4 403-4 419. |
[55] | JEONG H, PARK H S, CHOWDARY J S, et al. Triple-dip La Ni?a contributes to Pakistan flooding and Southern China drought in summer 2022[J]. Bulletin of the American Meteorological Society, 2023, 104(9): E1570-E1586. |
[56] | LIAO Z, YUAN Y F, CHEN Y, et al. Extraordinary hot extreme in summer 2022 over the Yangtze River basin modulated by the La Ni?a condition under global warming[J]. Advances in Climate Change Research, 2024, 15(1): 21-30. |
[57] | ZHANG P, WANG B, WU Z W, et al. Intensified gradient La Ni?a and extra-tropical thermal patterns drive the 2022 East and South Asian “Seesaw” extremes[J]. NPJ Climate and Atmospheric Science, 2024, 7. DOI: 10.1038/s41612-024-00597-2 . |
[58] | CUI L L, ZHONG L H, MENG J C, et al. Spatiotemporal evolution features of the 2022 compound hot and drought event over the Yangtze River Basin[J]. Remote Sensing, 2024, 16(8). DOI: 10.3390/rs16081367 . |
[59] | JIANG J L, LIU Y M, MAO J Y, et al. Extreme heatwave over Eastern China in summer 2022: the role of three oceans and local soil moisture feedback[J]. Environmental Research Letters, 2023, 18(4). DOI: 10.1088/1748-9326/acc5fb . |
[60] | XU W S, MA S M, ZHU C W. Enhanced subseasonal variability of spring temperature over Eastern China in 2022: initial role of extremely heavy Arctic sea ice in previous winter[J]. Geophysical Research Letters, 2023, 50(23). DOI: 10.1029/2023gl106017 . |
[61] | ZHANG J, CHEN H S, FANG X Y, et al. Warming-induced hydrothermal anomaly over the Earth’s three poles amplifies concurrent extremes in 2022[J]. NPJ Climate and Atmospheric Science, 2024, 7. DOI:10.1038/s41612-023-00553-6 . |
[62] | MIRALLES D G, TEULING A J, van HEERWAARDEN C C, et al. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation[J]. Nature Geoscience, 2014, 7: 345-349. |
[63] | QIAO L, ZUO Z Y, ZHANG R H, et al. Soil moisture-atmosphere coupling accelerates global warming[J]. Nature Communications, 2023, 14(1). DOI: 10.1038/s41467-023-40641-y . |
[64] | CHEN X, WANG J L, PAN F F, et al. Land-atmosphere feedback exacerbated the mega heatwave and drought over the Yangtze River Basin of China during summer 2022[J]. Agricultural and Forest Meteorology, 2025, 361. DOI: 10.1016/j.agrformet.2024.110321 . |
[65] | NI Y Y, QIU B, MIAO X, et al. Shift of soil moisture-temperature coupling exacerbated 2022 compound hot-dry event in Eastern China[J]. Environmental Research Letters, 2024, 19(1). DOI:10.1088/1748-9326/ad178c . |
[66] | CUI Caizhen, YU Jinhua, DAI Kan, et al. The impact of soil moisture-surface temperature coupling on the compound heat wave event in the middle and lower reaches of the Yangtze River in August 2022[J]. Chinese Journal of Geophysics, 2024, 67(5): 1 709-1 720. |
崔彩珍, 余锦华, 代刊, 等. 土壤湿度—地表气温耦合对长江中下游地区2022年8月复合型热浪事件的影响[J]. 地球物理学报, 2024, 67(5): 1 709-1 720. | |
[67] | ZHOU B Q, HU S J, PENG J J, et al. The extreme heat wave in China in August 2022 related to extreme northward movement of the eastern center of SAH[J]. Atmospheric Research, 2023, 293. DOI: 10.1016/j.atmosres.2023.106918 . |
[68] | HU S, ZHOU T J, PENG D D, et al. Extreme dry advection dominates the record-breaking Yangtze River heatwave in midsummer of 2022[J]. Climate Dynamics, 2024, 62(6): 5 049-5 060. |
[69] | ZHANG C, JIA X J, WEN Z. Increased impact of the Tibetan Plateau spring snow cover to the Mei-yu rainfall over the Yangtze River valley after the 1990s[J]. Journal of Climate, 2021, 34(14): 5 985-5 997. |
[70] | LI Z Q, XIAO Z N, LING J. Impact of extremely warm Tibetan Plateau in spring on the rare rainfall anomaly pattern in the regions west and east to Plateau in late summer 2022[J]. Atmospheric Research, 2023, 290. DOI:10.1016/j.atmosres.2023.106797 . |
[71] | GENTINE P, GREEN J K, GUéRIN M, et al. Coupling between the terrestrial carbon and water cycles: a review[J]. Environmental Research Letters, 2019, 14(8). DOI:10.1088/1748-9326/ab22d6 . |
[72] | WANG J, YAN R, WU G X, et al. Unprecedented decline in photosynthesis caused by summer 2022 record-breaking compound drought-heatwave over Yangtze River Basin[J]. Science Bulletin, 2023, 68(19): 2 160-2 163. |
[73] | CAO D, ZHANG J H, HAN J Q, et al. Projected increases in global terrestrial net primary productivity loss caused by drought under climate change[J]. Earth’s Future, 2022, 10(7). DOI: 10.1029/2022EF002681 . |
[74] | XU W F, YUAN W P, WU D H, et al. Impacts of record-breaking compound heatwave and drought events in 2022 China on vegetation growth[J]. Agricultural and Forest Meteorology, 2024, 344. DOI:10.1016/j.agrformet.2023.109799 . |
[75] | HUANG Z Q, TAN X Z, LIU B J. Relative contributions of large-scale atmospheric circulation dynamics and anthropogenic warming to the unprecedented 2022 Yangtze River Basin heatwave[J]. Journal of Geophysical Research: Atmospheres, 2024, 129(4). DOI: 10.1029/2023JD039330 . |
[76] | FAN X W, MIAO C Y, ZSCHEISCHLER J, et al. Escalating hot-dry extremes amplify compound fire weather risk[J]. Earth’s Future, 2023, 11(11). DOI: 10.1029/2023EF003976 . |
[77] | LIAO Z, AN N, CHEN Y, et al. On the possibility of the 2022-like spatio-temporally compounding event across the Yangtze River Valley[J]. Environmental Research Letters, 2024, 19(1). DOI:10.1088/1748-9326/ad178e . |
[78] | BELLPRAT O, GUEMAS V, DOBLAS-REYES F, et al. Towards reliable extreme weather and climate event attribution[J]. Nature Communications, 2019, 10(1). DOI: 10.1038/s41467-019-09729-2 . |
[79] | ZHANG T T, DENG Y, CHEN J W, et al. An energetics tale of the 2022 mega-heatwave over central-eastern China[J]. NPJ Climate and Atmospheric Science, 2023, 6. DOI:10.1038/s41612-023-00490-4 . |
[80] | MA Q R, SUN Y X, HU R, et al. Multiscale interaction underlying 2022 concurrent extreme precipitation in Pakistan and heatwave in Yangtze River Valley[J]. NPJ Climate and Atmospheric Science, 2024, 7. DOI: 10.1038/s41612-024-00725-y . |
[81] | GONG H N, MA K J, HU Z Y, et al. Attribution of the August 2022 extreme heatwave in Southern China: role of dynamical and thermodynamical processes[J]. Bulletin of the American Meteorological Society, 2024, 105(1): E193-E199. |
[82] | CAO C Y, GUAN X D, LI C, et al. Anthropogenic contribution to the unprecedented 2022 midsummer extreme high-temperature event in Southern China[J]. Bulletin of the American Meteorological Society, 2024, 105(1): E233-E238. |
[83] | MENG Y, HAO Z C, ZHANG Y T, et al. The 2022-like compound dry and hot extreme in the Northern Hemisphere: extremeness, attribution, and projection[J]. Atmospheric Research, 2023, 295. DOI: 10.1016/j.atmosres.2023.107009 . |
[84] | LI W, JIANG Z H, LI L. Anthropogenic influence on the record-breaking compound hot and dry event in summer 2022 in the Yangtze River Basin in China[J]. Bulletin of the American Meteorological Society, 2023, 104(11): E1928-E1934. |
[85] | ZHOU B Q, ZHAI P M, LIAO Z. Bivariate attribution of the compound hot and dry summer of 2022 on the Tibetan Plateau[J]. Science China Earth Sciences, 2024, 67(7): 2 122-2 136. |
[86] | FU B, LI B G, GASSER T, et al. The contributions of individual countries and regions to the global radiative forcing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(15). DOI: 10.1073/pnas.2018211118 . |
[87] | WANG D Q, SUN Y, HU T, et al. The 2022 record-breaking heat event over the middle and lower reaches of the Yangtze River: the role of anthropogenic forcing and atmospheric circulation[J]. Bulletin of the American Meteorological Society, 2024, 105(1): E200-E205. |
[88] | CHEN D, QIAO S B, YANG J, et al. Contribution of anthropogenic influence to the 2022-like Yangtze River valley compound heatwave and drought event[J]. NPJ Climate and Atmospheric Science, 2024, 7. DOI:10.1038/s41612-024-00720-3 . |
[89] | ZHANG L X, ZHOU T J, ZHANG X, et al. Attribution of the extreme 2022 summer drought along the Yangtze River valley in China based on detection and attribution system of Chinese academy of sciences[J]. Bulletin of the American Meteorological Society, 2024, 105(7): E1062-E1067. |
[90] | HAO Zengchao, CHEN Yang. Research progresses and prospects of multi-sphere compound extremes from the Earth system perspective[J]. Science China Earth Sciences, 2024, 54(2): 360-393. |
郝增超, 陈阳. 地球系统视角下的多圈层复合极端事件研究进展与展望[J]. 中国科学: 地球科学, 2024, 54(2): 360-393. | |
[91] | HUA W J, QIN M H, DAI A G, et al. Reconciling human and natural drivers of the tripole pattern of multidecadal summer temperature variations over Eurasia[J]. Geophysical Research Letters, 2021, 48(14). DOI: 10.1029/2021GL093971 . |
[92] | HUA W J, DAI A G, CHEN H S. Little influence of Asian anthropogenic aerosols on summer temperature in central east Asia since 1960[J]. Geophysical Research Letters, 2022, 49(7). DOI: 10.1029/2022GL097946 . |
[93] | HONG C C, HUANG A Y, HSU H H, et al. Causes of 2022 Pakistan flooding and its linkage with China and Europe heatwaves[J]. NPJ Climate and Atmospheric Science, 2023, 6. DOI: 10.1038/s41612-023-00492-2 . |
[94] | LU X Y, DOI T, YUAN C X, et al. Anatomy of the 2022 scorching summer in the Yangtze River Basin using the SINTEX-F2 seasonal prediction system[J]. Geophysical Research Letters, 2024, 51(15). DOI: 10.1029/2024GL109554 . |
[95] | FU Z H, ZHOU W, XIE S P, et al. Dynamic pathway linking Pakistan flooding to East Asian heatwaves[J]. Science Advances, 2024, 10(17). DOI: 10.1126/sciadv.adk9250 . |
[96] | HAO Z C, HAO F H, XIA Y L, et al. Compound droughts and hot extremes: characteristics, drivers, changes, and impacts[J]. Earth-Science Reviews, 2022, 235. DOI:10.1016/j.earscirev.2022.104241 . |
[97] | ZHAI P M, ZHOU B Q, CHEN Y. A review of climate change attribution studies[J]. Journal of Meteorological Research, 2018, 32(5): 671-692. |
[98] | van OLDENBORGH G J, van der WIEL K, KEW S, et al. Pathways and pitfalls in extreme event attribution[J]. Climatic Change, 2021, 166(1). DOI: 10.1007/s10584-021-03071-7 . |
[99] | TRENBERTH K E, FASULLO J T, SHEPHERD T G. Attribution of climate extreme events[J]. Nature Climate Change, 2015, 5: 725-730. |
[100] | LIANG M J, HAN Z W, LI J W, et al. Aerosol effects during heat waves in summer 2022 and responses to emission change over China[J]. NPJ Climate and Atmospheric Science, 2024, 7. DOI: 10.1038/s41612-024-00744-9 . |
[101] | CHEN Haishan, ZHANG Yaocun, ZHANG Wenjun, et al. Research on weather and climate extremes over China: brief introduction and recent progress of the national key R & D program of China for Earth system and global change[J]. Transactions of Atmospheric Sciences, 2024, 47(1): 23-45. |
陈海山, 张耀存, 张文君, 等. 中国极端天气气候研究: “地球系统与全球变化” 重点专项项目简介及最新进展[J]. 大气科学学报, 2024, 47(1): 23-45. | |
[102] | WANG Huijun, SUN Jianqi, CHEN Huopo, et al. Global warming acceleration and climate extremization:comments on major climate research advances in China 2024[J]. Transactions of Atmospheric Sciences, 2025, 48(1): 1-7. |
王会军, 孙建奇, 陈活泼, 等. 全球变暖加速和气候极端化——2024年中国气候研究重大进展速评[J]. 大气科学学报, 2025, 48(1): 1-7. |
/
〈 |
|
〉 |