Research Progress on the Characteristics of Changes and Greenhouse Gases in the Arctic Subsea Permafrost
Received date: 2025-01-03
Revised date: 2025-03-11
Online published: 2025-05-07
Supported by
the National Key Research and Development Program of China(2020YFA0608500);Independent Deployment Youth Project of State Key Laboratory of Cryospheric Science and Frozen Soil Engineering(CSFSE-ZQ-2410)
Subsea permafrost, formed by the inundation of terrestrial permafrost due to sea-level variations during the interglacial cycles, is primarily distributed across the Arctic continental shelves. However, a substantial uncertainty remains regarding the extent of its distribution (approximately 1~2.7 million square kilometers). Subsea permafrost is considered a significant carbon reservoir in the Earth’s system, storing vast amounts of Organic Carbon (OC) and methane (CH4). With global warming and rising Arctic Ocean temperatures, subsea permafrost is undergoing rapid degradation, potentially exacerbating carbon release risks. Consequently, it plays a significant role in the global carbon cycle and climate dynamics. Large-scale CH4 emissions into the atmosphere have been observed in the East Siberian subsea permafrost region. However, the rates of subsea permafrost degradation, the size of carbon reservoirs, and gas release remain poorly constrained. In particular, rapid Arctic warming, the northward expansion and intensification of the North Atlantic Current (which exacerbates the Atlantification of the Arctic Ocean), and increased human disturbances have intensified climate risks due to accelerated CH4 emissions from Arctic subsea permafrost. These changes have significant implications for future human sustainability. This study systematically summarizes the spatial distribution, degradation rates, and carbon storage of Arctic subsea permafrost. It also examines CH4 monitoring in subsea permafrost, including fixed-point observations, aerial surveys, and remote sensing technologies. Furthermore, it discusses the factors influencing CH4 emissions, emphasizes the importance of understanding Arctic subsea permafrost dynamics within the context of global climate change, identifies key challenges, and suggests future research directions.
Simin XIE , Zhiheng DU , Lei WANG , Fangping YANG , Hao CUI , Changlian TAO , Jiao YANG , Tonghua WU , Cunde XIAO . Research Progress on the Characteristics of Changes and Greenhouse Gases in the Arctic Subsea Permafrost[J]. Advances in Earth Science, 2025 , 40(4) : 360 -373 . DOI: 10.11867/j.issn.1001-8166.2025.026
| 1 | QIN Dahe. Introduction to cryospheric science[M]. Beijing: Science Press, 2017. |
| 秦大河. 冰冻圈科学概论[M]. 北京: 科学出版社, 2017. | |
| 2 | ANGELOPOULOS M, OVERDUIN P P, MIESNER F, et al. Recent advances in the study of Arctic submarine permafrost[J]. Permafrost and Periglacial Processes, 2020, 31(3): 442-453. |
| 3 | MIESNER F, OVERDUIN P P, GROSSE G, et al. Subsea permafrost organic carbon stocks are large and of dominantly low reactivity[J]. Scientific Reports, 2023, 13(1). DOI:10.1038/s41598-023-36471-z . |
| 4 | SAYEDI S S, ABBOTT B W, THORNTON B F, et al. Subsea permafrost carbon stocks and climate change sensitivity estimated by expert assessment[J]. Environmental Research Letters, 2020, 15(12). DOI: 10.1088/1748-9326/abcc29 . |
| 5 | SCH?DEL C, BADER M K F, SCHUUR E A G, et al. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils[J]. Nature Climate Change, 2016, 6: 950-953. |
| 6 | WILD B, SHAKHOVA N, DUDAREV O, et al. Organic matter composition and greenhouse gas production of thawing subsea permafrost in the Laptev Sea[J]. Nature Communications, 2022, 13. DOI: 10.1038/s41467-022-32696-0 . |
| 7 | WANG P K, ZHANG X H, ZHU Y H, et al. Effect of permafrost properties on gas hydrate petroleum system in the Qilian Mountains, Qinghai, northwest China[J]. Environmental Science: Processes & Impacts, 2014, 16(12): 2 711-2 720. |
| 8 | ROMANOVSKII N N, HUBBERTEN H W. Results of permafrost modelling of the Lowlands and shelf of the Laptev Sea region, Russia[J]. Permafrost and Periglacial Processes, 2001, 12(2): 191-202. |
| 9 | SHAKHOVA N, SEMILETOV I, LEIFER I, et al. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf[J]. Nature Geoscience, 2014, 7: 64-70. |
| 10 | WANG Kang, ZHANG Tingjun, MU Cuicui, et al. From the third pole to the Arctic: changes and impacts of the climate and cryosphere[J]. Journal of Glaciology and Geocryology, 2020, 42(1): 104-123. |
| 王康, 张廷军, 牟翠翠, 等. 从第三极到北极: 气候与冰冻圈变化及其影响[J]. 冰川冻土, 2020, 42(1): 104-123. | |
| 11 | FRIEDLINGSTEIN P, COX P, BETTS R, et al. Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison[J]. Journal of Climate, 2006, 19(14): 3 337-3 353. |
| 12 | KOVEN C D, RINGEVAL B, FRIEDLINGSTEIN P, et al. Permafrost carbon-climate feedbacks accelerate global warming[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(36): 14 769-14 774. |
| 13 | SHAKHOVA N, SEMILETOV I, LEIFER I, et al. Geochemical and geophysical evidence of methane release over the East Siberian Arctic Shelf[J]. Journal of Geophysical Research: Oceans, 2010, 115(C8). DOI: 10.1029/2009JC005602 . |
| 14 | LINDGREN A, HUGELIUS G, KUHRY P, et al. GIS-based maps and area estimates of Northern Hemisphere permafrost extent during the Last Glacial Maximum[J]. Permafrost and Periglacial Processes, 2016, 27(1): 6-16. |
| 15 | OVERDUIN P P, von DEIMLING T S, MIESNER F, et al. Submarine permafrost map in the Arctic modeled using 1-D transient heat flux (supermap)[J]. Journal of Geophysical Research: Oceans, 2019, 124(6): 3 490-3 507. |
| 16 | BROTHERS L L, HERMAN B M, HART P E, et al. Subsea ice-bearing permafrost on the U.S. Beaufort Margin: 1. minimum seaward extent defined from multichannel seismic reflection data[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(11): 4 354-4 365. |
| 17 | RUPPEL C D, HERMAN B M, BROTHERS L L, et al. Subsea ice-bearing permafrost on the U.S. Beaufort Margin: 2. borehole constraints[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(11): 4 333-4 353. |
| 18 | BROTHERS L L, HART P E, RUPPEL C D. Minimum distribution of subsea ice-bearing permafrost on the U.S. Beaufort Sea continental shelf[J]. Geophysical Research Letters, 2012, 39(15). DOI: 10.1029/2012GL052222 . |
| 19 | HINZ K, DELISLE G, BLOCK M. Proceedings of the seventh international conference on permafrost[C]. Ottawa: NRC Research Press, 1998, 55: 453-457. |
| 20 | SHAKHOVA N, SEMILETOV I, GUSTAFSSON O, et al. Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf[J]. Nature Communications, 2017, 8. DOI: 10.1038/ncomms15872 . |
| 21 | TAYLOR D I. Nearshoreshallow gas around the U.K. coast[J]. Continental Shelf Research, 1992, 12(10): 1 135-1 144. |
| 22 | ANGELOPOULOS M, RYBERG T, RASMUSSEN C F, et al. Passive seismology: lightweight and rapid detection of Arctic subsea and sub-aquatic permafrost[J]. Journal of Geophysical Research: Earth Surface, 2024, 129(9). DOI: 10.1029/2023JF007290 . |
| 23 | CREEL R C, MIESNER F, WILKENSKJELD S, et al. Glacial isostatic adjustment reduces past and future Arctic subsea permafrost[J]. Nature Communications, 2024, 15(1). DOI: 10.1038/s41467-024-45906-8 . |
| 24 | ANISIMOV O A, KOKOREV V A. Comparative analysis of land, marine, and satellite observations of methane in the lower atmosphere in the Russian Arctic under conditions of climate change[J]. Izvestiya, Atmospheric and Oceanic Physics, 2015, 51(9): 979-991. |
| 25 | OSADCHIEV A, ADAMOVSKAYA P, MYSLENKOV S, et al. Satellite-based evaluation of submarine permafrost erosion at shallow offshore areas in the Laptev Sea[J]. Remote Sensing, 2023, 15(20). DOI: 10.3390/rs15205065 . |
| 26 | QIN Dahe. Glossary of cryospheric science[M]. 2nd ed. Beijing: China Meteorological Press, 2016. |
| 秦大河. 冰冻圈科学辞典[M]. 2版. 北京: 气象出版社, 2016. | |
| 27 | SHAKHOVA N E, NICOLSKY D Y, SEMILETOV I P. Current state of subsea permafrost on the East Siberian Shelf: tests of modeling results based on field observations[J]. Doklady Earth Sciences, 2009, 429(2): 1 518-1 521. |
| 28 | DMITRENKO I A, KIRILLOV S A, TREMBLAY L B, et al. Recent changes in shelf hydrography in the Siberian Arctic: potential for subsea permafrost instability[J]. Journal of Geophysical Research, 2011, 116(C10). DOI: 10.1029/2011JC007218 . |
| 29 | SOLOVIEV V A, GINZBURG G D, TELEPNEV E V, et al. Cryothermia and gas hydrates in the Arctic Ocean[J]. Sevmorgeologia, 1987: 150. |
| 30 | SHAKHOVA N, SEMILETOV I, CHUVILIN E. Understanding the permafrost-hydrate system and associated methane releases in the East Siberian Arctic shelf[J]. Geosciences, 2019, 9(6). DOI: 10.3390/geosciences9060251 . |
| 31 | WMO. The global climate 2011-2020[R]. Geneva, Switzerland, 2023. |
| 32 | CHYLEK P, FOLLAND C, KLETT J D, et al. Annual mean Arctic amplification 1970-2020: observed and simulated by CMIP6 climate models[J]. Geophysical Research Letters, 2022, 49(13). DOI: 10.1029/2022gl099371 . |
| 33 | IPCC. AR6 synthesis report: climate change 2023[R]. Geneva, Switzerland: IPCC, 2023. |
| 34 | OVERDUIN P P, WETTERICH S, GüNTHER F, et al. Coastal dynamics and submarine permafrost in shallow water of the central Laptev Sea, East Siberia[J]. The Cryosphere, 2016, 10(4): 1 449-1 462. |
| 35 | ABRAMOV A, DAVYDOV S, IVASHCHENKO A, et al. Two decades of active layer thickness monitoring in northeastern Asia[J]. Polar Geography, 2021, 44(3): 186-202. |
| 36 | PAULL C K, DALLIMORE S R, JIN Y K, et al. Rapid seafloor changes associated with the degradation of Arctic submarine permafrost[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(12). DOI: 10.1073/pnas.2119105119 . |
| 37 | SCHUUR E A G, MCGUIRE A D, SCH?DEL C, et al. Climate change and the permafrost carbon feedback[J]. Nature, 2015, 520: 171-179. |
| 38 | TARNOCAI C, CANADELL J G, SCHUUR E A G, et al. Soil organic carbon pools in the northern circumpolar permafrost region[J]. Global Biogeochemical Cycles, 2009, 23(2). DOI: 10.1029/2008GB003327 . |
| 39 | HUGELIUS G, STRAUSS J, ZUBRZYCKI S, et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps[J]. Biogeosciences, 2014, 11(23): 6 573-6 593. |
| 40 | ZIMOV S A, SCHUUR E A G, CHAPIN F S III. Permafrost and the global carbon budget[J]. Science, 2006, 312(5 780): 1 612-1 613. |
| 41 | HUGELIUS G, LOISEL J, CHADBURN S, et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(34): 20 438-20 446. |
| 42 | MISHRA U, HUGELIUS G, SHELEF E, et al. Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks[J]. Science Advances, 2021, 7(9). DOI: 10.1126/sciadv.aaz5236 . |
| 43 | STRAUSS J, SCHIRRMEISTER L, GROSSE G, et al. Deep Yedoma permafrost: a synthesis of depositional characteristics and carbon vulnerability[J]. Earth-Science Reviews, 2017, 172: 75-86. |
| 44 | MARTENS J, ROMANKEVICH E, SEMILETOV I, et al. CASCADE-the circum-Arctic sediment CArbon DatabasE[J]. Earth System Science Data, 2021, 13(6): 2 561-2 572. |
| 45 | NIE Yunfeng, YU Jing, CHEN Hongwen, et al. Climatic, environmental and biological impacts of gas hydrate decomposition in Arctic svalbard and its surrounding areas[J]. Geoscience, 2018, 32(5): 1 012-1 024. |
| 聂云峰, 于晶, 陈宏文, 等. 北极斯瓦尔巴特群岛及邻区天然气水合物分解对气候、海洋环境和生物的影响[J]. 现代地质, 2018, 32(5): 1 012-1 024. | |
| 46 | MAU S, R?MER M, TORRES M E, et al. Widespread methane seepage along the continental margin off Svalbard-from Bj?rn?ya to Kongsfjorden[J]. Scientific Reports, 2017, 7. DOI: 10.1038/srep42997 . |
| 47 | MYHRE C L, FERRé B, PLATT S M, et al. Extensive release of methane from Arctic seabed west of Svalbard during summer 2014 does not influence the atmosphere[J]. Geophysical Research Letters, 2016, 43(9): 4 624-4 631. |
| 48 | WESTBROOK G K, THATCHER K E, ROHLING E J, et al. Escape of methane gas from the seabed along the West Spitsbergen continental margin[J]. Geophysical Research Letters, 2009, 36. DOI: 10.1029/2009GL039191 . |
| 49 | NARBAUD C, PARIS J D, WITTIG S, et al. Disentangling methane and carbon dioxide sources and transport across the Russian Arctic from aircraft measurements[J]. Atmospheric Chemistry and Physics, 2023, 23(3): 2 293-2 314. |
| 50 | WORKMAN E, FISHER R E, FRANCE J L, et al. Methane emissions from seabed to atmosphere in polar oceans revealed by direct methane flux measurements[J]. Journal of Geophysical Research: Atmospheres, 2024, 129(14). DOI: 10.1029/2023JD040632 . |
| 51 | THORNTON B F, PRYTHERCH J, ANDERSSON K, et al. Shipborne eddy covariance observations of methane fluxes constrain Arctic Sea emissions[J]. Science Advances, 2020, 6(5). DOI: 10.1126/sciadv.aay7934 . |
| 52 | STEINBACH J, HOLMSTRAND H, SHCHERBAKOVA K, et al. Source apportionment of methane escaping the subsea permafrost system in the outer Eurasian Arctic Shelf[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(10). DOI: 10.1073/pnas.2019672118 . |
| 53 | GREINERT J. Monitoring temporal variability of bubble release at seeps: the hydroacoustic swath system GasQuant[J]. Journal of Geophysical Research: Oceans, 2008, 113(C7). DOI: 10.1029/2007JC004704 . |
| 54 | von DEIMLING J S, GREINERT J, CHAPMAN N R, et al. Acoustic imaging of natural gas seepage in the North Sea: sensing bubbles controlled by variable currents[J]. Limnology and Oceanography: Methods, 2010, 8(5): 155-171. |
| 55 | SHE M K, WEI? T, SONG Y F, et al. Marine bubble flow quantification using wide-baseline stereo photogrammetry[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 190: 322-341. |
| 56 | YURGANOV L, CARROLL D, PNYUSHOV A, et al. Ocean stratification and sea-ice cover in Barents and Kara seas modulate sea-air methane flux: satellite data[J]. Advances in Polar Science, 2021, 32(2): 118-140. |
| 57 | FREDERICK J M, BUFFETT B A. Taliks in relict submarine permafrost and methane hydrate deposits: pathways for gas escape under present and future conditions[J]. Journal of Geophysical Research: Earth Surface, 2014, 119(2): 106-122. |
| 58 | FREDERICK J M, BUFFETT B A. Effects of submarine groundwater discharge on the present-day extent of relict submarine permafrost and gas hydrate stability on the Beaufort Sea continental shelf[J]. Journal of Geophysical Research: Earth Surface, 2015, 120(3): 417-432. |
| 59 | ANGELOPOULOS M, WESTERMANN S, OVERDUIN P, et al. Heat and salt flow in subsea permafrost modeled with CryoGRID2[J]. Journal of Geophysical Research Earth Surface, 2019, 124(4): 920-937. |
| 60 | BOGORODSKII P V, PNYUSHKOV A V, KUSTOV V Y. Seasonal freezing of a subwater ground layer at the Laptev Sea shelf[M]// The ocean in motion. Cham: Springer International Publishing, 2018: 611-625. |
| 61 | SHAKHOVA N, SEMILETOV I, SALYUK A, et al. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf[J]. Science, 2010, 327(5 970): 1 246-1 250. |
| 62 | MAKOGON Y F, HOLDITCH S A, MAKOGON T Y. Natural gas-hydrates: a potential energy source for the 21st century[J]. Journal of Petroleum Science and Engineering, 2007, 56(1/3): 14-31. |
| 63 | DANIEL B. Distribution and pathways of dissolved methane (CH4) in the water column of the East Greenland shelf[D]. Germany: Christian-Albrechts-Universit?t zu Kiel, 2021. |
| 64 | BRUSSEE M, HOLMSTRAND H, WILD B, et al. Multi-isotope source fingerprinting for methane hotspots in the East Siberian Arctic shelf region[C]// IMOG 2023. Montpellier: European Association of Geoscientists & Engineers, 2023: 1-2. |
| 65 | BUSSMANN I, FEDOROVA I V, JUHLS B, et al. Dissolved methane concentrations and oxidation rates in the Lena Delta area, 2016-2018[DB]. PANGAEA, 2020. DOI: 10.1594/PANGAEA.920015 . |
| 66 | BUSSMANN I, HACKBUSCH S, SCHAAL P, et al. Methane concentration and oxidation in the Lena Delta, September 2013 [DB]. PANGAEA, 2016. DOI: 10.1594/PANGAEA.868494 . |
| 67 | MANNING C C M, ZHENG Z Y, FENWICK L, et al. Methane and nitrous oxide dissolved gas concentrations in seawater from the North American Arctic Ocean(2015-2018)[DB]. PANGAEA, 2022. DOI: 10.1594/PANGAEA.941194 . |
| 68 | SAMYLINA O S, RUSANOV I I, TARNOVETSKII I Y, et al. On the possibility of aerobic methane production by pelagic microbial communities of the Laptev Sea[J]. Microbiology, 2021, 90(2): 145-157. |
| 69 | VERDUGO J, DAMM E. Biogeochemical data during POLARSTERN cruise PS106/1 (ARK-XXXI/ 1.1)[DB]. PANGAEA, 2021. DOI: 10.1594/PANGAEA.937242 . |
| 70 | VERDUGO J, DAMM E. Biogeochemical data during RV POLARSTERN cruise PS109[DB]. PANGAEA, 2022. DOI: 10.1594/PANGAEA.945768 . |
| 71 | JOHNSON M S, MATTHEWS E, DU J Y, et al. Methane emission from global lakes: new spatiotemporal data and observation-driven modeling of methane dynamics indicates lower emissions[J]. Journal of Geophysical Research: Biogeosciences, 2022, 127(7). DOI: 10.1029/2022JG006793 . |
| 72 | WIK M, VARNER R K, ANTHONY K W, et al. Climate-sensitive northern lakes and ponds are critical components of methane release[J]. Nature Geoscience, 2016, 9: 99-105. |
| 73 | SEGERS A J, HOUWELING S. Description of the CH4 inversion production chain, CAMS (Copernicus Atmospheric Monitoring Service) report[R]. Reading: European Centre for Medium-Range Weather Forecasts (ECMWF), 2018. |
| 74 | ZHENG B, CHEVALLIER F, CIAIS P, et al. On the role of the flaming to smoldering transition in the seasonal cycle of African fire emissions[J]. Geophysical Research Letters, 2018, 45(21): 11 998-12 007. |
| 75 | SAUNOIS M, BOUSQUET P, POULTER B, et al. The global methane budget 2000-2012[J]. Earth System Science Data, 2016, 8(2): 697-751. |
| 76 | WEBER T, WISEMAN N A, KOCK A. Global ocean methane emissions dominated by shallow coastal waters[J]. Nature Communications, 2019, 10(1). DOI: 10.1038/s41467-019-12541-7 . |
| 77 | SEMILETOV I P, SHAKHOVA N E, SERGIENKO V I, et al. On carbon transport and fate in the East Siberian Arctic land-shelf-atmosphere system[J]. Environmental Research Letters, 2012, 7(1). DOI: 10.1088/1748-9326/7/1/015201 . |
| 78 | SAYEDI S S, ABBOTT B, FREDERICK J M, et al. Expert assessment of organic carbon stocks and vulnerability in subsea permafrost[C]. American Geophysical Union, 2018. |
| 79 | PETRENKO V V, ETHERIDGE D M, WEISS R F, et al. Methane from the East Siberian Arctic shelf[J]. Science, 2010, 329(5 996): 1 146-1 147. |
| 80 | CANADELL J G, MONTEIRO P M S, COSTA M H, et al. Chapter 5: global carbon and other biogeochemical cycles and feedbacks[M]// MASSON-DELMOTTE V, ZHAI P, PIRANI A, et al. Climate change 2021: the physical science basis. Cambridge: Cambridge University Press, 2021: 673-815. |
| 81 | SAUNOIS M, STAVERT A R, POULTER B, et al. The global methane budget 2000-2017[J]. Earth System Science Data, 2020, 12(3): 1 561-1 623. |
| 82 | THORNTON B F, GEIBEL M C, CRILL P M, et al. Methane fluxes from the sea to the atmosphere across the Siberian shelf seas[J]. Geophysical Research Letters, 2016, 43(11): 5 869-5 877. |
| 83 | SHAKHOVA N, SEMILETOV I, SERGIENKO V, et al. The East Siberian Arctic shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice[J]. Philosophical Transactions Series A: Mathematical, Physical, and Engineering Sciences, 2015, 373(2 052). DOI: 10.1098/rsta.2014.0451 . |
| 84 | RUPPEL C D, KESSLER J D. The interaction of climate change and methane hydrates[J]. Reviews of Geophysics, 2017, 55(1): 126-168. |
| 85 | PANOV A, PROKUSHKIN A, KüBLER K R, et al. Continuous CO2 and CH4 observations in the coastal Arctic atmosphere of the western Taimyr peninsula, Siberia: the first results from a new measurement station in Dikson[J]. Atmosphere, 2021, 12(7). DOI: 10.3390/atmos12070876 . |
| 86 | OVERDUIN P P, LIEBNER S, KNOBLAUCH C, et al. Methane oxidation following submarine permafrost degradation: measurements from a central Laptev Sea shelf borehole[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(5): 965-978. |
| 87 | STEWART R H. Introduction to physical oceanography[M]. College Station: Texas A & M University, 2008. |
| 88 | GENTZ T, DAMM E, von DEIMLING J S, et al. A water column study of methane around gas flares located at the West Spitsbergen continental margin[J]. Continental Shelf Research, 2014, 72: 107-118. |
| 89 | YURGANOV L, MULLER-KARGER F, LEIFER I. Methane increase over the Barents and Kara seas after the autumn pycnocline breakdown: satellite observations[J]. Advances in Polar Science, 2019, 30(4): 382-390. |
| 90 | LECHER A L, KESSLER J, SPARROW K, et al. Methane transport through submarine groundwater discharge to the North Pacific and Arctic Ocean at two Alaskan sites[J]. Limnology and Oceanography, 2016, 61(): S344-S355. |
| 91 | JAMES R H, BOUSQUET P, BUSSMANN I, et al. Effects of climate change on methane emissions from seafloor sediments in the Arctic Ocean: a review[J]. Limnology and Oceanography, 2016, 61(S1): S283-S299. |
| 92 | MU C C, SONG J Y, LIU H B, et al. Impacts of increasing land-ocean interactions on carbon cycles in the Arctic[J]. Earth Critical Zone, 2024, 1(1). DOI: 10.1016/j.ecz.2024.100010 . |
| 93 | RAYMOND P A, MCCLELLAND J W, HOLMES R M, et al. Flux and age of dissolved organic carbon exported to the Arctic Ocean: a carbon isotopic study of the five largest arctic rivers[J]. Global Biogeochemical Cycles, 2007, 21(4). DOI: 10.1029/2007GB002934 . |
| 94 | SáNCHEZ-GARCíA L, ALLING V, PUGACH S, et al. Inventories and behavior of particulate organic carbon in the Laptev and East Siberian seas[J]. Global Biogeochemical Cycles, 2011, 25(2). DOI: 10.1029/2010GB003862 . |
| 95 | HE X, SUN L G, XIE Z Q, et al. Sea ice in the Arctic Ocean: role of shielding and consumption of methane[J]. Atmospheric Environment, 2013, 67: 8-13. |
| 96 | HORDOIR R, SKAGSETH ?, INGVALDSEN R B, et al. Changes in Arctic stratification and mixed layer depth cycle: a modeling analysis[J]. Journal of Geophysical Research: Oceans, 2022, 127(1). DOI: 10.1029/2021JC017270 . |
| 97 | IPCC. Climate change 2021: the physical science basis[M]. Cambridge: Cambridge University Press, 2021. |
/
| 〈 |
|
〉 |