Influence Analysis of Chinese Earth & Climate System Model in CMIP6 and Overview of CMIP7
Received date: 2024-09-18
Revised date: 2024-12-27
Online published: 2025-04-17
Supported by
the National Natural Science Foundation of China(U21A6001)
As the climate crisis intensifies, Earth system models have become increasingly significant as critical numerical simulation tools for evaluating and addressing future climate change. The Coupled Model Intercomparison Project (CMIP), aimed at promoting model development and deepening the scientific understanding of the Earth's climate system, has become a central platform for international model exchange and application. This paper provides an overview of China’s participation in the Sixth Phase of CMIP (CMIP6), including a statistical analysis of citations, research trends, and key characteristics of the Chinese Earth system models in CMIP6-related studies. In addition, the Seventh Coupled Model Intercomparison Project (CMIP7), which is currently under preparation, is briefly introduced, and the opportunities and challenges faced by China in model development are summarized. Through continuous technological innovation, international cooperation, and exchanges, Chinese scientists are expected to make greater breakthroughs in the field of Earth and Climate System Models and contribute to Chinese wisdom and solutions for global climate change response and governance.
Chenhao LI , Wenjun LIANG , Hui HU , Wenjie DONG , LüJianhua . Influence Analysis of Chinese Earth & Climate System Model in CMIP6 and Overview of CMIP7[J]. Advances in Earth Science, 2025 , 40(2) : 155 -168 . DOI: 10.11867/j.issn.1001-8166.2025.010
1 | ZHOU Tianjun, CHEN Ziming, ZOU Liwei, et al. Development of climate and Earth system models in China: past achievements and new CMIP6 fesults[J]. Acta Meteorologica Sinica, 2020, 78(3): 332-350. |
周天军, 陈梓明, 邹立维, 等. 中国地球气候系统模式的发展及其模拟和预估[J]. 气象学报, 2020, 78(3): 332-350. | |
2 | WANG Bin, ZHOU Tianjun, YU Yongqiang. A perspective on earth system model development[J]. Acta Meteorologica Sinica, 2008, 66(6): 857-869. |
王斌,周天军,俞永强. 地球系统模式发展展望[J].气象学报,2008, 66(6): 857-869. | |
3 | National Academies of Sciences, Engineering, and Medicine. A national strategy for advancing climate modeling [M]. Washington, D.C.: The National Academies Press, 2012. |
4 | Office Met. Weather and climate science and services in a changing world [R/OL]. [2024-01-02]. . |
5 | DURACK P J, TAYLOR K E, MIZIELINSKI M, et al. CMIP6 Controlled Vocabularies (CVs) (6.2.58.73) [DB]. Zenodo, 2024. |
6 | WU T W, YU R C, LU Y X, et al. BCC-CSM2-HR: a high-resolution version of the Beijing climate center climate system model[J]. Geoscientific Model Development, 2021, 14(5): 2 977-3 006. |
7 | WU T W, LU Y X, FANG Y J, et al. The Beijing Climate Center Climate System Model (BCC-CSM): the main progress from CMIP5 to CMIP6[J]. Geoscientific Model Development, 2019, 12(4): 1 573-1 600. |
8 | WU T W, ZHANG F, ZHANG J, et al. Beijing Climate Center Earth System Model Version 1 (BCC-ESM1): model description and evaluation of aerosol simulations[J]. Geoscientific Model Development, 2020, 13(3): 977-1 005. |
9 | JI D, WANG L, FENG J, et al. Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1[J]. Geoscientific Model Development, 2014, 7(5): 2 039-2 064. |
10 | RONG Xinyao, LI Jian, CHEN Haoming, et al. Introduction of CAMS-CSM model and its participation in CMIP6[J]. Climate Change Research, 2019, 15(5): 540-544. |
容新尧, 李建, 陈昊明, 等. CAMS-CSM模式及其参与CMIP6的方案[J]. 气候变化研究进展, 2019, 15(5): 540-544. | |
11 | ZHANG H, ZHANG M H, JIN J B, et al. Description and climate simulation performance of CAS-ESM version 2[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(12). DOI:10.1029/2020MS002210 . |
12 | LIN Y L, HUANG X M, LIANG Y S, et al. Community Integrated Earth System Model (CIESM): description and evaluation[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(8). DOI:10.1029/2019MS002036 . |
13 | BAO Q, LIU Y M, WU G X, et al. CAS FGOALS-f3-H and CAS FGOALS-f3-L outputs for the high-resolution model intercomparison project simulation of CMIP6[J]. Atmospheric and Oceanic Science Letters, 2020, 13(6): 576-581. |
14 | HE B, BAO Q, WANG X C, et al. CAS FGOALS-f3-L model datasets for CMIP6 historical atmospheric model intercomparison project simulation[J]. Advances in Atmospheric Sciences, 2019, 36(8): 771-778. |
15 | LI L J, LIN P F, YU Y Q, et al. The flexible global ocean-atmosphere-land system model, Grid-point Version 2: FGOALS-g2[J]. Advances in Atmospheric Sciences, 2013, 30(3): 543-560. |
16 | BAO Y, SONG Z Y, QIAO F L. FIO-ESM version 2.0: model description and evaluation[J]. Journal of Geophysical Research: Oceans, 2020, 125(6). DOI:10.1029/2019JC016036 . |
17 | CAO Jian, MA Libin, LI Juan, et al. Introduction of NUIST-ESM model and its CMIP6 activities[J]. Advances in Climate Change Research, 2019, 15(5): 566-570. |
曹剑,马利斌, 李娟,等. NUIST-ESM模式及其参与CMIP6的方案. 气候变化研究进展,2019, 15(5): 566-570. | |
18 | LEE W L, WANG Y C, SHIU C J, et al. Taiwan Earth system model version 1: description and evaluation of mean state[J]. Geoscientific Model Development, 2020, 13(9): 3 887-3 904. |
19 | ZHOU Tianjun, ZOU Liwei, CHEN Xiaolong. Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP6)[J]. Climate Change Research, 2019, 15(5): 445-456. |
周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 2019, 15(5): 445-456. | |
20 | NIE S P, FU S W, CAO W H, et al. Comparison of monthly air and land surface temperature extremes simulated using CMIP5 and CMIP6 versions of the Beijing Climate Center climate model[J]. Theoretical and Applied Climatology, 2020, 140(1): 487-502. |
21 | LI J D, MIAO C Y, WEI W, et al. Evaluation of CMIP6 global climate models for simulating land surface energy and water fluxes during 1979-2014[J]. Journal of Advances in Modeling Earth Systems, 2021, 13(6). DOI:10.1029/2021MS002515 . |
22 | HAYASHI M, SHIOGAMA H, OGURA T. The contribution of climate change to increasing extreme ocean warming around Japan[J]. Geophysical Research Letters, 2022, 49(19). DOI: 10.1029/2022GL100785 . |
23 | CHEN Yue, CHEN Chaomei, LIU Zeyuan, et al. The methodology function of CiteSpace mapping knowledge domains[J]. Studies in Science of Science, 2015, 33(2): 242-253. |
陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能[J]. 科学学研究, 2015, 33(2): 242-253. | |
24 | CAI W J, NG B, WANG G J, et al. Increased ENSO sea surface temperature variability under four IPCC emission scenarios[J]. Nature Climate Change, 2022, 12: 228-231. |
25 | PLANTON Y Y, GUILYARDI E, WITTENBERG A T, et al. Evaluating climate models with the CLIVAR 2020 ENSO metrics package[J]. Bulletin of the American Meteorological Society, 2021, 102(2): E193-E217. |
26 | HIRABAYASHI Y, TANOUE M, SASAKI O, et al. Global exposure to flooding from the new CMIP6 climate model projections[J]. Scientific Reports, 2021, 11(1). DOI:10.1038/s41598-021-83279-w . |
27 | IYAKAREMYE V, ZENG G, YANG X Y, et al. Increased high-temperature extremes and associated population exposure in Africa by the mid-21st century[J]. Science of the Total Environment, 2021, 790. DOI: 10.1016/j.scitotenv.2021.148162 . |
28 | MONDAL S K, HUANG J L, WANG Y J, et al. Doubling of the population exposed to drought over south Asia: CMIP6 multi-model-based analysis[J]. Science of the Total Environment, 2021, 771. DOI: 10.1016/j.scitotenv.2021.145186 . |
29 | CHIANG F, MAZDIYASNI O, AGHAKOUCHAK A. Evidence of anthropogenic impacts on global drought frequency, duration, and intensity[J]. Nature Communications, 2021, 12(1). DOI:10.1038/s41467-021-22314-w . |
30 | DONG S Y, SUN Y, LI C, et al. Attribution of extreme precipitation with updated observations and CMIP6 simulations[J]. Journal of Climate, 34(3): 871-881. |
31 | TURNOCK S T, ALLEN R J, ANDREWS M, et al. Historical and future changes in air pollutants from CMIP6 models[J]. Atmospheric Chemistry and Physics, 2020, 20(23): 14 547-14 579. |
32 | SHI X D, WANG J W, ZHANG L, et al. Prediction of the potentially suitable areas of Litsea cubeba in China based on future climate change using the optimized MaxEnt model[J]. Ecological Indicators, 2023, 148. DOI:10.1016/j.ecolind.2023.110093 . |
33 | XIN X G, WU T W, ZHANG J, et al. Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon[J]. International Journal of Climatology, 2020, 40(15): 6 423-6 440. |
34 | ZHENG Y Q, CHEN S F, CHEN W, et al. A continuing increase of the impact of the spring north Pacific meridional mode on the following winter El Ni?o and Southern Oscillation[J]. Journal of Climate, 2023, 36(2): 585-602. |
35 | YAZDANDOOST F, MORADIAN S, IZADI A, et al. Evaluation of CMIP6 precipitation simulations across different climatic zones: uncertainty and model intercomparison[J]. Atmospheric Research, 2021, 250. DOI:10.1016/j.atmosres.2020.105369 . |
36 | TRAN T N D, DO S K, NGUYEN B Q, et al. Investigating the future flood and drought shifts in the transboundary srepok river basin using CMIP6 projections[C]// IEEE journal of selected topics in applied earth observations and remote sensing. IEEE, 2024: 7 516-7 529. |
37 | XIN X G, WU T W, ZHENG M Z, et al. Decadal prediction of Northeast Asian winter precipitation with CMIP6 models[J]. Climate Dynamics, 2024, 62(5): 3 245-3 259. |
38 | ZHAO C B, LI Q Q, NIE Y, et al. The reversal of surface air temperature anomalies in China between early and late winter 2021/2022: observations and predictions[J]. Advances in Climate Change Research, 2023, 14(5): 660-670. |
39 | AL-YAARI A, ZHAO Y, CHERUY F, et al. Heatwave characteristics in the recent climate and at different global warming levels: a multimodel analysis at the global scale[J]. Earth’s Future, 2023, 11(9). DOI: 10.1029/2022EF003301 . |
40 | PAIK S, MIN S K, ZHANG X B, et al. Determining the anthropogenic greenhouse gas contribution to the observed intensification of extreme precipitation[J]. Geophysical Research Letters, 2020, 47(12). DOI: 10.1029/2019GL086875 . |
41 | DONG B W, SUTTON R T, SHAFFREY L, et al. Recent decadal weakening of the summer Eurasian westerly jet attributable to anthropogenic aerosol emissions[J]. Nature Communications, 2022, 13(1). DOI:10.1038/s41467-022-28816-5 . |
42 | FANG Y J, WU T W, HU A X, et al. A modified thermodynamic sea ice model and its application[J]. Ocean Modelling, 2022, 178. DOI:10.1016/j.ocemod.2022.102096 . |
43 | MUILWIJK M, NUMMELIN A, HEUZé C, et al. Divergence in climate model projections of future Arctic atlantification[J]. Journal of Climate, 2023, 36(6): 1 727-1 748. |
44 | HEUZé C, LIU H L. No emergence of deep convection in the Arctic ocean across CMIP6 models[J]. Geophysical Research Letters, 2024, 51(4). DOI: 10.5194/egusphere-egu24-3080 . |
45 | DING Yihui, LIU Yanju, XU Ying, et al. Regional responses to global climate change: progress and prospects for trend, causes, and projection of climatic warming-wetting in northwest China[J]. Advances in Earth Science, 2023, 38(6): 551-562. |
丁一汇, 柳艳菊, 徐影, 等. 全球气候变化的区域响应: 中国西北地区气候 “暖湿化” 趋势、成因及预估研究进展与展望[J]. 地球科学进展, 2023, 38(6): 551-562. | |
46 | DUNNE J P, HEWITT H T, ARBLASTER J, et al. An evolving Coupled Model Intercomparison Project phase 7 (CMIP7) and fast track in support of future climate assessment[J]. EGUsphere, 2024. DOI:10.5194/egusphere-2024-3874 . |
47 | ROBERTS M J, REED K A, BAO Q, et al. High-Resolution Model Intercomparison Project phase 2 (HighResMIP2) towards CMIP7[J]. Geoscientific Model Development, 2025, 18(4): 1 307-1 332. |
48 | SANDERSON B M, BOOTH B B B, DUNNE J, et al. The need for carbon emissions-driven climate projections in CMIP7[J]. EGUsphere, 2024,17(22): 8 141-8 172. |
49 | WANG Huijun, XU Yongfu, ZHOU Tianjun, et al. Atmospheric science: a vigorous frontier science[J]. Advances in Earth Science, 2004, 19(4): 525-532. |
王会军,徐永福,周天军, 等. 大气科学:一个充满活力的前沿科学[J]. 地球科学进展,2004, 19(4): 525-532. | |
50 | WANG Bin, ZHOU Tianjun, YU Yongqiang, et al. A perspective on Earth system model development[J]. Acta Meteorologica Sinica, 2008, 66(6): 857-869. |
王斌, 周天军, 俞永强, 等. 地球系统模式发展展望[J]. 气象学报, 2008, 66(6): 857-869. | |
51 | ZHOU Tianjun, ZOU Liwei, WU Bo, et al. Development of earth/climate system models in China: a review from the Coupled Model Intercomparison Project perspective[J]. Journal of Meteorological Research, 2014, 72(5): 892-907. |
周天军,邹立维,吴波,等. 中国地球气候系统模式研究进展:计划实施近20年回顾[J]. 气象学报,2014,72(5): 892-907. | |
52 | ZHOU Tianjun, ZHANG Wenxia, CHEN Deliang, et al. Understanding and building upon the pioneering work of Nobel Prize in Physics 2021 laureates Syukuro Manabe and Klaus Hasselmann: from the greenhouse effect to Earth system science and beyond[J]. Science China Earth Sciences, 2022, 52(4): 579-594. |
周天军,张文霞,陈德亮,等. 2021年诺贝尔物理学奖解读:从温室效应到地球系统科学[J].中国科学:地球科学,2022,52(4):579-594. | |
53 | ZHOU Guangqing, ZHANG Yunquan, JIANG Jinrong, et al. Earth system model: CAS-ESM[J]. Frontiers of Data & Computing, 2020, 2(1): 38-54. |
周广庆,张云泉,姜金荣,等. 地球系统模式CAS-ESM[J]. 数据与计算发展前沿, 2020, 2(1): 38-54. |
/
〈 |
|
〉 |