Received date: 2024-10-16
Revised date: 2024-12-30
Online published: 2025-03-24
Supported by
the National Natural Science Foundation of China(42175017);Open Grants of the State Key Laboratory of Severe Weather(2024LASW-B29);Natural Science Basic Research Program of Shaanxi(2023-JC-QN-0367)
Short-duration heavy precipitation is one of the most substantial severe convective disasters in China and is prone to causing urban waterlogging and secondary geological disasters, such as mountain torrents, mudslides, and landslides. This paper reviews recent progress in short-duration heavy precipitation research in China and briefly compares relevant findings from the United States and Europe. It covers the spatiotemporal distribution characteristics and diurnal variation patterns of short-duration heavy precipitation, atmospheric circulation patterns and environmental conditions that influence its occurrence and development in major regions of China, radar echo characteristics and raindrop distributions, impact of topography and urbanization on its formation and development, and application of artificial intelligence in potential forecasting, short-term forecasting, and nowcasting of short-duration heavy precipitation in China. With global warming, the frequency and intensity of short-duration heavy precipitation events have increased. In the future, further research will be required to enhance understanding of the formation mechanisms and environmental conditions, improve the spatiotemporal resolution of observations, expand the use of new observation data, and enhance forecasting capabilities in high-resolution, rapid-update cycle assimilation numerical weather prediction models through the fusion and analysis of dense multisource observation data. Additionally, optimizing deep learning models and algorithms—particularly in the development of largescale deep learning models—will be crucial for improving forecasting and early warning capabilities for short-duration heavy precipitation.
Qiang ZHAO , Yongguang ZHENG , Yu JING , Dian FENG , Juju LIU . Research Progress on Short-Duration Heavy Precipitation in China[J]. Advances in Earth Science, 2025 , 40(1) : 21 -38 . DOI: 10.11867/j.issn.1001-8166.2025.002
1 | YU Xiaoding. Nowcasting thinking and method of flash heavy rain[J]. Torrential Rain and Disasters, 2013, 32( 3): 202- 209. |
俞小鼎. 短时强降水临近预报的思路与方法[J]. 暴雨灾害, 2013, 32( 3): 202- 209. | |
2 | LUO Y L, WU M W, REN F M, et al. Synoptic situations of extreme hourly precipitation over China[J]. Journal of Climate, 2016, 29( 24): 8 703- 8 719. |
3 | XIAO C, WU P L, ZHANG L X, et al. Robust increase in extreme summer rainfall intensity during the past four decades observed in China[J]. Scientific Reports, 2016, 6. DOI: 10.1038/srep38506 . |
4 | WU M W, LUO Y L, CHEN F, et al. Observed link of extreme hourly precipitation changes to urbanization over coastal South China[J]. Journal of Applied Meteorology and Climatology, 2019, 58( 8): 1 799- 1 819. |
5 | WU M W, WU C C, YEN T H, et al. Synoptic analysis of extreme hourly precipitation in Taiwan during 2003-12[J]. Monthly Weather Review, 2017, 145( 12): 5 123- 5 140. |
6 | YU R C, LI J. Hourly rainfall changes in response to surface air temperature over eastern contiguous China[J]. Journal of Climate, 2012, 25( 19): 6 851- 6 861. |
7 | WU Mengwen, LUO Yali. Extreme hourly precipitation over China: research progress from 2010 to 2019[J]. Torrential Rain and Disasters, 2019, 38( 5): 502- 514. |
吴梦雯, 罗亚丽. 中国极端小时降水2010—2019年研究进展[J]. 暴雨灾害, 2019, 38( 5): 502- 514. | |
8 | CHEN Jiong, ZHENG Yongguang, ZHANG Xiaoling, et al. Analysis of the climatological distribution and diurnal variations of the short-duration heavy rain and its relation with diurnal variations of the MCSs over China during the warm season[J]. Acta Meteorologica Sinica, 2013, 71( 3): 367- 382. |
陈炯, 郑永光, 张小玲, 等. 中国暖季短时强降水分布和日变化特征及其与中尺度对流系统日变化关系分析[J]. 气象学报, 2013, 71( 3): 367- 382. | |
9 | ZHOU Xiaomin, TIAN Fuyou, ZHENG Yongguang, et al. Contribution of short-duration heavy rainfall to rainstorm in China[J]. Meteorological Monthly, 2023, 49( 3): 267- 278. |
周晓敏, 田付友, 郑永光, 等. 中国短时强降雨对暴雨的贡献特征[J]. 气象, 2023, 49( 3): 267- 278. | |
10 | RAN Jinjiang, QI Yulei, LONG Zhiping, et al. Characteristics of short-time heavy rainfall in the Sichuan basin based on high-density station observations[J]. Plateau Meteorology, 2023, 42( 4): 949- 961. |
冉津江, 齐玉磊, 龙治平, 等. 基于高密度站点的四川盆地短时强降水特征分析[J]. 高原气象, 2023, 42( 4): 949- 961. | |
11 | YANG Hao, ZHOU Wen, WANG Xiaokang, et al. Analysis on extremity and characteristics of the “21·7” severe torrential rain in Henan Province[J]. Meteorological Monthly, 2022, 48( 5): 571- 579. |
杨浩, 周文, 汪小康, 等. “ 21·7” 河南特大暴雨降水特征及极端性分析[J]. 气象, 2022, 48( 5): 571- 579. | |
12 | CHEN Tao, CHEN Yun, FANG Chong, et al. Fine characteristics of the July 2023 extreme rainfall in North China and associated synoptic weather patterns[J]. Acta Meteorologica Sinica, 2024, 82( 5): 600- 614. |
陈涛, 谌芸, 方翀, 等.“ 23.7”华北极端暴雨精细特征和天气学成因分析[J]. 气象学报, 2024, 82( 5): 600- 614. | |
13 | SMITH B K, SMITH J A. The flashiest watersheds in the contiguous United States[J]. Journal of Hydrometeorology, 2015, 16( 6): 2 365- 2 381. |
14 | MUSCHINSKI T, KATZ J I. Trends in hourly rainfall statistics in the United States under a warming climate[J]. Nature Climate Change, 2013, 3( 6): 577- 580. |
15 | YU L J, ZHONG S Y, PEI L S, et al. Contribution of large-scale circulation anomalies to changes in extreme precipitation frequency in the United States[J]. Environmental Research Letters, 2016, 11( 4). DOI: 10.1088/1748-9326/11/4/044003 . |
16 | HITCHENS N M, BROOKS H E, SCHUMACHER R S. Spatial and temporal characteristics of heavy hourly rainfall in the United States[J]. Monthly Weather Review, 2013, 141( 12): 4 564- 4 575. |
17 | YU L J, ZHONG S Y, HEILMAN W E, et al. A comparison of the effects of El Ni?o and El Ni?o Modoki on subdaily extreme precipitation occurrences across the contiguous United States[J]. Journal of Geophysical Research: Atmospheres, 2017, 122( 14): 7 401- 7 415. |
18 | LOPEZ-CANTU T, PREIN A F, SAMARAS C. Uncertainties in future U.S. extreme precipitation from downscaled climate projections[J]. Geophysical Research Letters, 2020, 47( 9). DOI: 10.1029/2019GL086797 . |
19 | KIM J, SHU E, LAI K, et al. Assessment of the standard precipitation frequency estimates in the United States[J]. Journal of Hydrology: Regional Studies, 2022, 44. DOI: 10.1016/j.ejrh.2022.101276 . |
20 | HOERLING M, EISCHEID J, PERLWITZ J, et al. Characterizing recent trends in U.S. heavy precipitation[J]. Journal of Climate, 2016, 29( 7): 2 313- 2 332. |
21 | HOWARTH M E, THORNCROFT C D, BOSART L F. Changes in extreme precipitation in the northeast United States: 1979-2014[J]. Journal of Hydrometeorology, 2019, 20( 4): 673- 689. |
22 | DAVIS R S. Flash flood forecast and detection methods[J]. Meteorological Monographs, 2001, 50: 481- 526. |
23 | DOSWELL C A III, BROOKS H E, MADDOX R A. Flash flood forecasting: an ingredients-based methodology[J]. Weather and Forecasting, 1996, 11( 4): 560- 581. |
24 | MADDOX R A, CHAPPELL C F, HOXIT L R. Synoptic and meso-α scale aspects of flash flood events[J]. Bulletin of the American Meteorological Society, 1979, 60( 2): 115- 123. |
25 | HOSSEINZADEHTALAEI P, TABARI H, WILLEMS P. Climate change impact on short-duration extreme precipitation and intensity-duration-frequency curves over Europe[J]. Journal of Hydrology, 2020, 590. DOI: 10.1016/j.jhydrol.2020.125249 . |
26 | HOSSEINZADEHTALAEI P, TABARI H, WILLEMS P. Regionalization of anthropogenically forced changes in 3 hourly extreme precipitation over Europe[J]. Environmental Research Letters, 2019, 14( 12). DOI: 10.1088/1748-9326/ab5638 . |
27 | SCHAFFER A, LICHTENEGGER T, TRUHETZ H, et al. Drivers of cold frontal hourly extreme precipitation: a climatological study over Europe[J]. Geophysical Research Letters, 2024, 51( 20). DOI: 10.1029/2024GL111025 . |
28 | YANG L, NI G H, TIAN F Q, et al. Urbanization exacerbated rainfall over European suburbs under a warming climate[J]. Geophysical Research Letters, 2021, 48( 21). DOI: 10.1029/2021GL095987 . |
29 | YU Xiaoding. Ingredients based forecasting methodology[J]. Meteorological Monthly, 2011, 37( 8): 913- 918. |
俞小鼎. 基于构成要素的预报方法: 配料法[J]. 气象, 2011, 37( 8): 913- 918. | |
30 | YU Xiaoding, ZHENG Yongguang. Advances in severe convective weather research and operational service in China[J]. Acta Meteorologica Sinica, 2020, 78( 3): 391- 418. |
俞小鼎, 郑永光. 中国当代强对流天气研究与业务进展[J]. 气象学报, 2020, 78( 3): 391- 418. | |
31 | BERG P, HAERTER J O. Unexpected increase in precipitation intensity with temperature: a result of mixing of precipitation types?[J]. Atmospheric Research, 2013, 119: 56- 61. |
32 | SUN Jisong. Differences and relationship between flash heavy rain and heavy rainfall[J]. Torrential Rain and Disasters, 2017, 36( 6): 498- 506. |
孙继松. 短时强降水和暴雨的区别与联系[J]. 暴雨灾害, 2017, 36( 6): 498- 506. | |
33 | ZHANG H, ZHAI P M. Temporal and spatial characteristics of extreme hourly precipitation over Eastern China in the warm season[J]. Advances in Atmospheric Sciences, 2011, 28( 5): 1 177- 1 183. |
34 | TANG Bin, WANG Zongming, HU Wenting, et al. Characteristics and causes of precipitation for a rare rainstorm process in Henan Province in 2021[J]. Chinese Journal of Atmospheric Sciences, 2023, 47( 2): 517- 533. |
汤彬, 王宗明, 胡文婷, 等. 2021年河南省一次罕见暴雨过程的降水特征及成因[J]. 大气科学, 2023, 47( 2): 517- 533. | |
35 | ZHENG Y G, XUE M, LI B, et al. Spatial characteristics of extreme rainfall over China with hourly through 24-hour accumulation periods based on national-level hourly rain gauge data[J]. Advances in Atmospheric Sciences, 2016, 33( 11): 1 218- 1 232. |
36 | ZHOU Xuan, LUO Yali, GUO Xueliang. Application of a CMORPH-aws merged hourly gridded precipitation product in analyzing characteristics of short-duration heavy rainfall over Southern China[J]. Journal of Tropical Meteorology, 2015, 31( 3): 333- 344. |
周璇, 罗亚丽, 郭学良. CMORPH卫星—地面自动站融合降水数据在中国南方短时强降水分析中的应用[J]. 热带气象学报, 2015, 31( 3): 333- 344. | |
37 | MAO Dongyan, CAO Yancha, ZHU Wenjian, et al. Climatic characteristics of short-time severe precipitation in southwest China[J]. Meteorological Monthly, 2018, 44( 8): 1 042- 1 050. |
毛冬艳, 曹艳察, 朱文剑, 等. 西南地区短时强降水的气候特征分析[J]. 气象, 2018, 44( 8): 1 042- 1 050. | |
38 | ZHAO Yufei, ZHANG Qiang, JU Xiaohui, et al. Analysis of the characteristics of short-term extreme precipitation in China in the last 30 years[J]. Chinese Journal of Atmospheric Sciences, 2024, 48( 3): 1 144- 1 156. |
赵煜飞, 张强, 鞠晓慧, 等. 中国近30年短时极端降水特征分析[J]. 大气科学, 2024, 48( 3): 1 144- 1 156. | |
39 | JIANG Fan, WANG Donghai, ZENG Zhilin. Spatiotemporal evolution characteristics and causes of short-duration heavy rainfall in the presummer rainy season over the Pearl River Delta Region before and after the South China Sea summer monsoon onset in the past 20 years[J]. Chinese Journal of Atmospheric Sciences, 2024, 48( 2): 715- 734. |
江帆, 王东海, 曾智琳. 近20年季风爆发前后珠江三角洲前汛期短时强降水的时空演变特征与成因[J]. 大气科学, 2024, 48( 2): 715- 734. | |
40 | YU Pei. Temporal and spatial distribution characteristics of short-time heavy rainfall in Zhejiang Province[J]. Climatic and Environmental Research, 2022, 27( 3): 397- 407. |
俞佩. 浙江省短时强降水的时空分布特征[J]. 气候与环境研究, 2022, 27( 3): 397- 407. | |
41 | BAI Xiaoping, JIN Shuanglong, WANG Shigong, et al. Spatio-temporal characteristics of the short-time heavy rainfall in the east of northwest China[J]. Journal of Desert Research, 2018, 38( 2): 410- 417. |
白晓平, 靳双龙, 王式功, 等. 中国西北地区东部短时强降水时空特征[J]. 中国沙漠, 2018, 38( 2): 410- 417. | |
42 | WANG Jingyu, LI Zhe, WANG Xiaokang, et al. Temporal and spatial distribution characteristics of flash heavy rain in Henan during rainy season[J]. Torrential Rain and Disasters, 2019, 38( 2): 152- 160. |
王婧羽, 李哲, 汪小康, 等. 河南省雨季短时强降水时空分布特征[J]. 暴雨灾害, 2019, 38( 2): 152- 160. | |
43 | LI Yurui, CHEN Chaoping, CHEN Quanliang, et al. Temporal and spatial evolution characteristics of the short-duration strong rainfall events in Sichuan[J]. Plateau and Mountain Meteorology Research, 2021, 41( 3): 42- 49. |
李昱锐, 陈朝平, 陈权亮, 等. 四川地区短时强降水事件时空演变特征研究[J]. 高原山地气象研究, 2021, 41( 3): 42- 49. | |
44 | WU Zhaoxian, LUO Yali, LIU Xi, et al. Statistical characteristics of the hourly heavy rainfall events over Anhui Province during the 2011-2018 warm seasons and the associated synoptic circulation patterns[J]. Meteorological Monthly, 2022, 48( 8): 963- 978. |
吴照宪, 罗亚丽, 刘希, 等. 2011—2018年安徽暖季短时强降水及其环流背景统计特征[J]. 气象, 2022, 48( 8): 963- 978. | |
45 | YANG Lijie, CAO Yanchao, LIU Weicheng, et al. Research on spatio-temporal distribution characteristics of short-term heavy rainfall and terrain influence in the Loess Plateau arid region of eastern Gansu[J]. Journal of Arid Meteorology, 2022, 40( 6): 945- 953. |
杨丽杰, 曹彦超, 刘维成, 等. 陇东黄土高原旱区短时强降水的时空分布特征及地形影响研究[J]. 干旱气象, 2022, 40( 6): 945- 953. | |
46 | WANG Xiaokang, CUI Chunguang, LIU Ke, et al. Spatio-temperal distribution and diurnal variation of extreme hourly precipitation in China during the main rainy season[J]. Meteorological Monthly, 2024, 50( 4): 393- 406. |
汪小康, 崔春光, 刘柯, 等. 中国主雨季极端小时降水时空分布和日变化特征[J]. 气象, 2024, 50( 4): 393- 406. | |
47 | ZHENG Y G, GONG Y D, CHEN J, et al. Warm-season diurnal variations of total, stratiform, convective, and extreme hourly precipitation over central and Eastern China[J]. Advances in Atmospheric Sciences, 2019, 36( 2): 143- 159. |
48 | SHI Juan, ZHENG Yan, KE Yuanhui, et al. Characteristics of weather patterns and environmental parameters of short-term heavy rainfall from April to September over Hainan Island[J]. Meteorological Science and Technology, 2024, 52( 1): 55- 65. |
石娟, 郑艳, 柯元惠, 等. 海南岛4—9月短时强降水的天气型和环境参数特征[J]. 气象科技, 2024, 52( 1): 55- 65. | |
49 | DOSWELL C A III. The distinction between large-scale and mesoscale contribution to severe convection: a case study example[J]. Weather and Forecasting, 1987, 2( 1): 3- 16. |
50 | HAO Ying, YAO Yeqing, ZHENG Yuanyuan, et al. Multi-scale analysis and nowcasting of short-time heavy rainfall[J]. Meteorological Monthly, 2012, 38( 8): 903- 912. |
郝莹, 姚叶青, 郑媛媛, 等. 短时强降水的多尺度分析及临近预警[J]. 气象, 2012, 38( 8): 903- 912. | |
51 | BROWNING K A. Towards the more effective use of radar and satellite imagery in weather forecasting [M]. Dordrecht: Meteorological office Radar Research Laboratory, 1985. |
52 | CHEN Yuanzhao, YU Xiaoding, CHEN Xunlai. Characteristics of short-time severe rainfall events based on weather flow and key environmental parameters in Pearl River Delta[J]. Meteorological Monthly, 2016, 42( 2): 144- 155. |
陈元昭, 俞小鼎, 陈训来. 珠江三角洲地区重大短时强降水的基本流型与环境参量特征[J]. 气象, 2016, 42( 2): 144- 155. | |
53 | ZHANG Yiping, QIAO Chungui, LIANG Junping. Tentative discussion on synoptic type and physical diagnostic threshold of short-time strong precipitation in upper reaches of the Huaihe River[J]. Torrential Rain and Disasters, 2014, 33( 2): 129- 138. |
张一平, 乔春贵, 梁俊平. 淮河上游短时强降水天气学分型与物理诊断量阈值初探[J]. 暴雨灾害, 2014, 33( 2): 129- 138. | |
54 | ZHOU Fang, ZHANG Ying, CHEN Xiangxiang, et al. Weather system classification of local hourly heavy rainfall in Jiangxi Province[J]. Torrential Rain and Disasters, 2024, 43( 3): 352- 362. |
周芳, 张瑛, 陈翔翔, 等. 江西局地短时强降水的天气学分型研究[J]. 暴雨 灾害, 2024, 43( 3): 352- 362. | |
55 | MIN Jingjing, DENG Changju, CAO Xiaozhong, et al. Synoptic circulation pattern clustering analysis of severe convective weather based on Self-Organizing Maps(SOM)[J]. Meteorological Science and Technology, 2015, 43( 2): 244- 249. |
闵晶晶, 邓长菊, 曹晓钟, 等. 强对流天气形势聚类分析中SOM方法应用[J]. 气象科技, 2015, 43( 2): 244- 249. | |
56 | YANG Bo, SUN Jisong, MAO Xu, et al. Multi-scale characteristics of atmospheric circulation related to short-time strong rainfall events in Beijing[J]. Acta Meteorologica Sinica, 2016, 74( 6): 919- 934. |
杨波, 孙继松, 毛旭, 等. 北京地区短时强降水过程的多尺度环流特征[J]. 气象学报, 2016, 74( 6): 919- 934. | |
57 | BAI Xiaoping, WANG Shigong, ZHAO Lu, et al. Conceptual models of short-time heavy rainfall in the east of northwest China[J]. Plateau Meteorology, 2016, 35( 5): 1 248- 1 256. |
白晓平, 王式功, 赵璐, 等. 西北地区东部短时强降水概念模型[J]. 高原气象, 2016, 35( 5): 1 248- 1 256. | |
58 | ROY B S K, ROY S SEN, KUNDU P K. Analysis of large-scale conditions associated with convection over the Indian Monsoon region[J]. International Journal of Climatology, 2008, 28( 6): 797- 821. |
59 | SUN Jisong, DAI Jianhua, HE Lifu, et al. Basic principles and technical methods of severe convective weather forecast: manual of severe convective weather forecast in China[M]. Beijing: China Meteorological Press, 2014. |
孙继松, 戴建华, 何立富, 等. 强对流天气预报的基本原理与技术方法: 中国强对流天气预报手册[M]. 北京: 气象出版社, 2014. | |
60 | TIAN F Y, ZHENG Y G, ZHANG T, et al. Statistical characteristics of environmental parameters for warm season short-duration heavy rainfall over central and Eastern China[J]. Journal of Meteorological Research, 2015, 29( 3): 370- 384. |
61 | FAN Limiao, YU Xiaoding. Characteristic analyses on environmental parameters in short-term severe convective weather in China[J]. Plateau Meteorology, 2013, 32( 1): 156- 165. |
樊李苗, 俞小鼎. 中国短时强对流天气的若干环境参数特征分析[J]. 高原气象, 2013, 32( 1): 156- 165. | |
62 | ZHENG Yuanyuan, YAO Chen, HAO Ying, et al. The short-time forecasting and early-warning reasearch on severe convective weather under different types of large-scale circulation background[J]. Meteorological Monthly, 2011, 37( 7): 795- 801. |
郑媛媛, 姚晨, 郝莹, 等. 不同类型大尺度环流背景下强对流天气的短时临近预报预警研究[J]. 气象, 2011, 37( 7): 795- 801. | |
63 | HUANG Yan, YU Xiaoding, CHEN Tianyu, et al. Analysis of conceptual models and ambient parameter of short-time severe rainfall in south Xinjiang[J]. Meteorological Monthly, 2018, 44( 8): 1 033- 1 041. |
黄艳, 俞小鼎, 陈天宇, 等. 南疆短时强降水概念模型及环境参数分析[J]. 气象, 2018, 44( 8): 1 033- 1 041. | |
64 | ZHANG Wulong, KANG Lan, YANG Kangquan, et al. Comparative analysis on characteristics of physical quantity of flash-rain under different intensities in Sichuan Basin[J]. Meteorological Monthly, 2021, 47( 4): 439- 449. |
张武龙, 康岚, 杨康权, 等. 四川盆地不同强度短时强降水物理量特征对比分析[J]. 气象, 2021, 47( 4): 439- 449. | |
65 | HE Yu, CHEN Xiaohua, LI Yaosun, et al. Radar echo characteristics of short-time severe rainfall in the periphery of subtropical high in Yunnan Province[J]. Meteorological Monthly, 2021, 47( 4): 450- 462. |
何钰, 陈小华, 李耀孙, 等. 云南省副热带高压外围类短时强降水的雷达回波特征[J]. 气象, 2021, 47( 4): 450- 462. | |
66 | DUAN He, XIA Wenmei, SU Xiaoli, et al. Features statistics and warning of flash heavy rains[J]. Meteorological Monthly, 2014, 40( 10): 1 194- 1 206. |
段鹤, 夏文梅, 苏晓力, 等. 短时强降水特征统计及临近预警[J]. 气象, 2014, 40( 10): 1 194- 1 206. | |
67 | SUN Jisong, LEI Lei, YU Bo, et al. The fundamental features of the extreme severe rain events in the recent 10 years in the Beijing area[J]. Acta Meteorologica Sinica, 2015, 73( 4): 609- 623. |
孙继松, 雷蕾, 于波, 等. 近10年北京地区极端暴雨事件的基本特征[J]. 气象学报, 2015, 73( 4): 609- 623. | |
68 | MA Li, MIAO Aimei, DONG Chunqing, et al. Analysis of the potential and triggering characteristics of short-term heavy precipitation in Shanxi on July 13, 2018[J]. Transactions of Atmospheric Sciences, 2020, 43( 4): 663- 672. |
马丽, 苗爱梅, 董春卿, 等. “ 0713"山西短时强降水天气的潜势及触发条件分析[J]. 大气科学学报, 2020, 43( 4): 663- 672. | |
69 | LI Dejun, TANG Renmao, XIONG Shouquan, et al. Radar features and nowcasting of severe hail and short-time heavy rainfall[J]. Meteorological Monthly, 2011, 37( 4): 474- 480. |
李德俊, 唐仁茂, 熊守权, 等. 强冰雹和短时强降水天气雷达特征及临近预警[J]. 气象, 2011, 37( 4): 474- 480. | |
70 | ZHUANG Xiaocui, ZHANG Yunhui, ZHOU Xueying, et al. Radar echo characteristics of short-time severe precipitation in Xinjiang[J]. Meteorological Monthly, 2021, 47( 11): 1 402- 1 415. |
庄晓翠, 张云惠, 周雪英, 等. 新疆短时强降水天气雷达回波特征[J]. 气象, 2021, 47( 11): 1 402- 1 415. | |
71 | WANG Jun, WANG Wenqing, WANG Hong, et al. Characteristics of the raindrop size distribution during a short-time heavy rainfall and a squall line accompanied by hail[J]. Plateau Meteorology, 2021, 40( 5): 1 071- 1 086. |
王俊, 王文青, 王洪, 等. 短时强降水和冰雹云降水个例雨滴谱特征分析[J]. 高原气象, 2021, 40( 5): 1 071- 1 086. | |
72 | CHEN G, ZHAO K, WEN L, et al. Microphysical characteristics of three convective events with intense rainfall observed by polarimetric radar and disdrometer in Eastern China[J]. Remote Sensing, 2019, 11( 17). DOI: 10.3390/rs11172004 . |
73 | LI Shanshan, WANG Xiaofang, LI Guoping, et al. Comparative analysis on characteristics of raindrop spectrum of short-term and persistent heavy rain[J]. Torrential Rain and Disasters, 2023, 42( 1): 1- 12. |
李山山, 王晓芳, 李国平, 等. 短时强降水和持续性强降水的雨滴谱特征对比[J]. 暴雨灾害, 2023, 42( 1): 1- 12. | |
74 | CHEN B J, WANG J, GONG D L. Raindrop size distribution in a midlatitude continental squall line measured by thies optical disdrometers over East China[J]. Journal of Applied Meteorology and Climatology, 2016, 55( 3): 621- 634. |
75 | ZHANG Zhe, QI Youcun, LI Donghuan, et al. Raindrop size distribution characteristics of the extreme rainstorm event in Zhengzhou 20 July, 2021 and its impacts on radar quantitative precipitation estimation[J]. Chinese Journal of Atmospheric Sciences, 2022, 46( 4): 1 002- 1 016. |
张哲, 戚友存, 李东欢, 等. 2021年郑州“7·20”极端暴雨雨滴谱特征及其对雷达定量降水估测的影响[J]. 大气科学, 2022, 46( 4): 1 002- 1 016. | |
76 | WEI P, XU X, XUE M, et al. On the key dynamical processes supporting the 21.7 Zhengzhou record-breaking hourly rainfall in China[J]. Advances in Atmospheric Sciences, 2023, 40( 3): 337- 349. |
77 | BI Baogui, LIU Yuewei, LI Zechun. The effect of surface thermal forcing on the extremely heavy rainfall in the southern Shaanxi province during June 8 and 9, 2002[J]. Geographical Research, 2005, 24( 5): 681- 691. |
毕宝贵, 刘月巍, 李泽椿. 地表热通量对陕南强降水的影响[J]. 地理研究, 2005, 24( 5): 681- 691. | |
78 | RAN Lingkun, LI Shuwen, ZHOU Yushu, et al. Observational analysis of the dynamic, thermal, and water vapor characteristics of the“7.20” extreme rainstorm event in Henan Province, 2021[J]. Chinese Journal of Atmospheric Sciences, 2021, 45( 6): 1 366- 1 383. |
冉令坤, 李舒文, 周玉淑, 等. 2021年河南“7.20”极端暴雨动、热力和水汽特征观测分析[J]. 大气科学, 2021, 45( 6): 1 366- 1 383. | |
79 | LUO Y H, DU Y. The roles of low-level jets in “21·7” Henan extremely persistent heavy rainfall event[J]. Advances in Atmospheric Sciences, 2023, 40( 3): 350- 373. |
80 | LIU Yulu, DU Qicheng, HUANG Yong. The topograpical enhancement mechanism of short-time heavy rainfall in Huangshan Mountain[J]. Meteorological Monthly, 2017, 43( 2): 181- 188. |
刘裕禄, 杜其成, 黄勇. 黄山地区短时强降雨的地形增幅机制[J]. 气象, 2017, 43( 2): 181- 188. | |
81 | WANG Congmei, YU Xiaoding, LI Zhixia, et al. Investigation of extreme flash-rain events on the impact of Taihang Mountain[J]. Meteorological Monthly, 2017, 43( 4): 425- 433. |
王丛梅, 俞小鼎, 李芷霞, 等. 太行山地形影响下的极端短时强降水分析[J]. 气象, 2017, 43( 4): 425- 433. | |
82 | WANG J, FENG J M, YAN Z W, et al. Nested high-resolution modeling of the impact of urbanization on regional climate in three vast urban agglomerations in China[J]. Journal of Geophysical Research: Atmospheres, 2012, 117( D21). DOI: 10.1029/2012JD018226 . |
83 | ZHANG Y, SMITH J A, LUO L F, et al. Urbanization and rainfall variability in the Beijing metropolitan region[J]. Journal of Hydrometeorology, 2014, 15( 6): 2 219- 2 235. |
84 | MIAO S G, CHEN F, LI Q C, et al. Impacts of urban processes and urbanization on summer precipitation: a case study of heavy rainfall in Beijing on 1 August 2006[J]. Journal of Applied Meteorology and Climatology, 2011, 50( 4): 806- 825. |
85 | DOU J J, WANG Y C, BORNSTEIN R, et al. Observed spatial characteristics of Beijing urban climate impacts on summer thunderstorms[J]. Journal of Applied Meteorology and Climatology, 2015, 54( 1): 94- 105. |
86 | LIANG P, DING Y H. The long-term variation of extreme heavy precipitation and its link to urbanization effects in Shanghai during 1916-2014[J]. Advances in Atmospheric Sciences, 2017, 34( 3): 321- 334. |
87 | JIANG X L, LUO Y L, ZHANG D L, et al. Urbanization enhanced summertime extreme hourly precipitation over the Yangtze River Delta[J]. Journal of Climate, 2020, 33( 13): 5 809- 5 826. |
88 | JIANG X L, ZHANG D L, LUO Y L. Influences of urbanization on an afternoon heavy rainfall event over the Yangtze River Delta region[J]. Monthly Weather Review, 2023, 151( 3): 815- 832. |
89 | LI W B, CHEN S, CHEN G X, et al. Urbanization signatures in strong versus weak precipitation over the Pearl River Delta metropolitan regions of China[J]. Environmental Research Letters, 2011, 6( 3). DOI: 10.1088/1748-9326/6/3/034020 . |
90 | HUANG S H, WEN Z P, CHEN X D, et al. The Henan extreme rainfall in July 2021: modulation of the northward-shift monsoon trough on the synoptic-scale wave train[J]. Advances in Climate Change Research, 2022, 13( 6): 819- 825. |
91 | von GLASOW R, JICKELLS T D, BAKLANOV A, et al. Megacities and large urban agglomerations in the coastal zone: interactions between atmosphere, land, and marine ecosystems[J]. AMBIO, 2013, 42( 1): 13- 28. |
92 | MILLER S T K, KEIM B D, TALBOT R W, et al. Sea breeze: structure, forecasting, and impacts[J]. Reviews of Geophysics, 2003, 41( 3). DOI: 10.1029/2003RG000124 . |
93 | GU Wen, ZHANG Jing, TAN Jianguo, et al. Characteristics and circulation background of Shanghai summer sea breeze front and its induced convection[J]. Journal of Tropical Meteorology, 2017, 33( 5): 644- 653. |
顾问, 张晶, 谈建国, 等. 上海夏季海风锋及其触发对流的时空分布和环流背景分析[J]. 热带气象学报, 2017, 33( 5): 644- 653. | |
94 | CHEN Lei, WANG Fuxia, YU Yinghua, et al. Evolution characteristics of heavy precipitation supercell under the influence of the multi-cell strong storm[J]. Meteorological Monthly, 2024, 50( 8): 966- 980. |
陈磊, 王福侠, 尉英华, 等. 多单体强风暴影响下的一次强降水超级单体演变特征分析[J]. 气象, 2024, 50( 8): 966- 980. | |
95 | YI Xiaoyuan, CHEN Hong, ZHANG Qing, et al. Causes of an extreme local short-time heavy precipitation event along the west coast of Bohai Bay[J]. Journal of Marine Meteorology, 2024, 44( 3): 1- 13. |
易笑园, 陈宏, 张庆, 等. 渤海湾西岸一次局地极端短时强降水事件的成因分析[J]. 海洋气象学报, 2024, 44( 3): 1- 13. | |
96 | DONG Gaohong, LIU Yiwei, SUN Mina, et al. Effect of urban heat island and sea breeze front superimposition on a local heavy rainfall[J]. Meteorological Monthly, 2013, 39( 11): 1 422- 1 430. |
东高红, 刘一玮, 孙蜜娜, 等. 城市热岛与海风锋叠加作用对一次局地强降水的影响[J]. 气象, 2013, 39( 11): 1 422- 1 430. | |
97 | WU Qingmei, GUO Hu, YANG Bo, et al. Effects of topography and urban heat circulation on a meso-β torrential rain in Beijing area[J]. Meteorological Monthly, 2009, 35( 12): 58- 64. |
吴庆梅, 郭虎, 杨波, 等. 地形和城市热力环流对北京地区一次β中尺度暴雨的影响[J]. 气象, 2009, 35( 12): 58- 64. | |
98 | WALSER A, LüTHI D, SCH?R C. Predictability of precipitation in a cloud-resolving model[J]. Monthly Weather Review, 2004, 132( 2): 560- 577. |
99 | ZHENG Yongguang, ZHOU Kanghui, SHENG Jie, et al. Advances in techniques of monitoring, forecasting and warning of severe convective weather[J]. Journal of Applied Meteorological Science, 2015, 26( 6): 641- 657. |
郑永光, 周康辉, 盛杰, 等. 强对流天气监测预报预警技术进展[J]. 应用气象学报, 2015, 26( 6): 641- 657. | |
100 | YU Xiaoding, ZHOU Xiaogang, WANG Xiuming. The advances in the nowcasting techniques on thunderstorms and severe convection[J]. Acta Meteorologica Sinica, 2012, 70( 3): 311- 337. |
俞小鼎, 周小刚, 王秀明. 雷暴与强对流临近天气预报技术进展[J]. 气象学报, 2012, 70( 3): 311- 337. | |
101 | TANG Wenyuan, ZHENG Yongguang. Improvement of hourly precipitation forecast using a time-lagged ensemble based on rapid refresh assimilation and forecast[J]. Meteorological Monthly, 2019, 45( 3): 305- 317. |
唐文苑, 郑永光. 基于快速更新同化数值预报的小时降水量时间滞后集合订正技术[J]. 气象, 2019, 45( 3): 305- 317. | |
102 | LIU Guozhong, HUANG Kaigang, LUO Jianying, et al. Research on the short-term forecasting technique of persistent rainstorm with conceptual model and ingredients-based method[J]. Meteorological Monthly, 2013, 39( 1): 20- 27. |
刘国忠, 黄开刚, 罗建英, 等. 基于概念模型及配料法的持续性暴雨短期预报技术探究[J]. 气象, 2013, 39( 1): 20- 27. | |
103 | ZHANG Hualong, WU Zhifang, XIAO Liusi, et al. A probabilistic forecast model of short-time heavy rainfall in Guangdong Province based on factor analysis and its operational experiments[J]. Acta Meteorologica Sinica, 2021, 79( 1): 15- 30. |
张华龙, 伍志方, 肖柳斯, 等. 基于因子分析的广东省短时强降水预报模型及其业务试验[J]. 气象学报, 2021, 79( 1): 15- 30. | |
104 | TIAN Fuyou, ZHENG Yongguang, SUN Jianhua, et al. Forecasting system for short-term multi-category convective phenomena combining physical understanding and fuzzy logic part Ⅰ: system construction[J]. Meteorological Monthly, 2024, 50( 5): 521- 531. |
田付友, 郑永光, 孙建华, 等. 融合物理理解与模糊逻辑的分类强对流客观短期预报系统: (1)系统构成[J]. 气象, 2024, 50( 5): 521- 531. | |
105 | HAN Feng, YANG Lu, ZHOU Chuxuan, et al. An experimental study of the short-time heavy rainfall event forecast based on ensemble learning and sounding data[J]. Journal of Applied Meteorological Science, 2021, 32( 2): 188- 199. |
韩丰, 杨璐, 周楚炫, 等. 基于探空数据集成学习的短时强降水预报试验[J]. 应用气象学报, 2021, 32( 2): 188- 199. | |
106 | ZHU Yan, ZHAI Danhua, WU Zhipeng, et al. A method of short-duration heavy rain forecast based on XGBoost algorithm[J]. Meteorological Science and Technology, 2021, 49( 3): 406- 418. |
朱岩, 翟丹华, 吴志鹏, 等. 基于XGBoost算法的短时强降水预报方法[J]. 气象科技, 2021, 49( 3): 406- 418. | |
107 | ZHI Xiefei, ZHANG Kejun, TIAN Ye, et al. Probabilistic precipitation forecast in East and South China based on neural network and geographic information[J]. Transactions of Atmospheric Sciences, 2021, 44( 3): 381- 393. |
智协飞, 张珂珺, 田烨, 等. 基于神经网络和地理信息的华东及华南地区降水概率预报[J]. 大气科学学报, 2021, 44( 3): 381- 393. | |
108 | LI W D, GAO X, HAO Z H, et al. Using deep learning for precipitation forecasting based on spatio-temporal information: a case study[J]. Climate Dynamics, 2022, 58( 1): 443- 457. |
109 | LIU X, ZHENG Y, ZHUANG X R, et al. Spatiotemporal convolutional approach for the short-term forecast of hourly heavy rainfall probability integrating numerical weather predictions and surface observations[J]. Weather and Forecasting, 2024, 39( 3): 597- 612. |
110 | HOFFMAN R N, KALNAY E. Lagged average forecasting, an alternative to Monte Carlo forecasting[J]. Tellus A, 1983, 35A( 2): 100- 118. |
111 | STEINHEIMER M, HAIDEN T. Improved nowcasting of precipitation based on convective analysis fields[J]. Advances in Geosciences, 2007, 10: 125- 131. |
112 | PULKKINEN S, NERINI D, PéREZ HORTAL A A, et al. Pysteps: an open-source Python library for probabilistic precipitation nowcasting (v1.0)[J]. Geoscientific Model Development, 2019, 12( 10): 4 185- 4 219. |
113 | CAO Chunyan, CHEN Yuanzhao, LIU Donghua, et al. The optical flow method and its application to nowcasting[J]. Acta Meteorologica Sinica, 2015, 73( 3): 471- 480. |
曹春燕, 陈元昭, 刘东华, 等. 光流法及其在临近预报中的应用[J]. 气象学报, 2015, 73( 3): 471- 480. | |
114 | GERMANN U, ZAWADZKI I. Scale dependence of the predictability of precipitation from continental radar images. part II: probability forecasts[J]. Journal of Applied Meteorology, 2004, 43( 1): 74- 89. |
115 | CHEN X L, WANG M J, WANG S X, et al. Weather radar nowcasting for extreme precipitation prediction based on the temporal and spatial generative adversarial network[J]. Atmosphere, 2022, 13( 8). DOI: 10.3390/atmos13081291 . |
116 | SCHMIDHUBER J. Deep learning in neural networks: an overview[J]. Neural Networks, 2015, 61: 85- 117. |
117 | SHI X J, GAO Z H, LAUSEN L, et al. Deep learning for precipitation nowcasting: a benchmark and a new model[C]// Proceedings of the 31st international conference on neural information processing systems. Long Beach: Curran Associates Inc., 2017: 5 622-5 632. |
118 | ZHOU Kanghui, ZHENG Yongguang, HAN Lei, et al. Advances in application of machine learning to severe convective weather monitoring and forecasting[J]. Meteorological Monthly, 2021, 47( 3): 274- 289. |
周康辉, 郑永光, 韩雷, 等. 机器学习在强对流监测预报中的应用进展[J]. 气象, 2021, 47( 3): 274- 289. | |
119 | CAO Weihua, Gangqiang NAN, CHEN Mingxuan, et al. A study on fine scale precipitation nowcasting in Beijing-Tianjin-Hebei region based on deep learning[J]. Acta Meteorologica Sinica, 2022, 80( 4): 546- 564. |
曹伟华, 南刚强, 陈明轩, 等. 基于深度学习的京津冀地区精细尺度降水临近预报研究[J]. 气象学报, 2022, 80( 4): 546- 564. | |
120 | LIU J, XU L, CHEN N C. A spatiotemporal deep learning model ST-LSTM-SA for hourly rainfall forecasting using radar echo images[J]. Journal of Hydrology, 2022, 609. DOI: 10.1016/j.jhydrol.2022.127748 . |
121 | SHI X J, CHEN Z R, WANG H, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C]// Proceedings of the 28th international conference on neural information processing systems. Montreal: MIT Press, 2015: 802- 810. |
122 | WANG Y B, LONG M S, WANG J M, et al. PredRNN[C]// Proceedings of the 31st international conference on neural information processing systems. Long Beach, California, USA: ACM, 2017: 879- 888. |
123 | WANG Y B, GAO Z F, LONG M S, et al. PredRNN++: towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning[EB/OL]. 2018. [ 2024-09-15]. . |
124 | BOUGET V, BéRéZIAT D, BRAJARD J, et al. Fusion of rain radar images and wind forecasts in a deep learning model applied to rain nowcasting[J]. Remote Sensing, 2021, 13( 2). DOI: 10.3390/rs13020246 . |
125 | AYZEL G, SCHEFFER T, HEISTERMANN M. RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting[J]. Geoscientific Model Development, 2020, 13( 6): 2 631- 2 644. |
126 | ROSENFELD D, ULBRICH C W. Cloud microphysical properties, processes, and rainfall estimation opportunities[J]. Meteorological Monographs, 2003, 30( 52). DOI: 10.1175/0065-9401(2003)030<0237:CMPPAR>2.0.CO;2 . |
127 | ZHANG F H, WANG X D, GUAN J P, et al. RN-net: a deep learning approach to 0-2 hour rainfall nowcasting based on radar and automatic weather station data[J]. Sensors, 2021, 21( 6). DOI: 10.3390/s21061981 . |
128 | CASERI A N, LIMA S L B, STEPHANY S. A convolutional recurrent neural network for strong convective rainfall nowcasting using weather radar data in Southeastern Brazil[J]. Artificial Intelligence in Geosciences, 2022, 3: 8- 13. |
129 | OH S G, SON S W, KIM Y H, et al. Deep learning model for heavy rainfall nowcasting in South Korea[J]. Weather and Climate Extremes, 2024, 44. DOI: 10.1016/j.wace.2024.100652 . |
130 | ZHANG Y C, LONG M S, CHEN K Y, et al. Skilful nowcasting of extreme precipitation with NowcastNet[J]. Nature, 2023, 619( 7 970): 526- 532. |
131 | RITVANEN J, HARNIST B, ALDANA M, et al. Advection-free convolutional neural network for convective rainfall nowcasting[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 1 654- 1 667. |
132 | KIM W, JEONG C H, KIM S. Improvements in deep learning-based precipitation nowcasting using major atmospheric factors with radar rain rate[J]. Computers & Geosciences, 2024, 184. DOI: 10.1016/j.cageo.2024.10552 . |
133 | ZHUANG Xiaoran, ZHENG Yu, WANG Yaqiang, et al. A deep learning-based precipitation nowcast model and its application over East China[J]. Acta Meteorologica Sinica, 2023, 81( 2): 286- 303. |
庄潇然, 郑玉, 王亚强, 等. 基于深度学习的融合降水临近预报方法及其在中国东部地区的应用研究[J]. 气象学报, 2023, 81( 2): 286- 303. | |
134 | YANG Lu, CHEN Min, CHEN Mingxuan, et al. Fusion of 3D high temporal and spatial resolution wind field and its application in nowcasting of severe convective weather[J]. Acta Meteorologica Sinica, 2019, 77( 2): 243- 255. |
杨璐, 陈敏, 陈明轩, 等. 高时空分辨率三维风场在强对流天气临近预报中的融合应用研究[J]. 气象学报, 2019, 77( 2): 243- 255. | |
135 | ZHANG Hanbin, LI Yuhuan, CHEN Min, et al. Implementation of hybrid en-3DVAR assimilation scheme in rapid cycling assimilation system[J]. Chinese Journal of Atmospheric Sciences, 2020, 44( 6): 1 349- 1 363. |
张涵斌, 李玉焕, 陈敏, 等. 集合变分混合同化方案在快速循环同化系统中的应用研究[J]. 大气科学, 2020, 44( 6): 1 349- 1 363. | |
136 | CUI Chunguang, DU Muyun, XIAO Yanjiao, et al. Study on data assimilation and approaching forecast of severe convective weather[J]. Meteorological Monthly, 2021, 47( 8): 901- 918. |
崔春光, 杜牧云, 肖艳姣, 等. 强对流天气资料同化和临近预报技术研究[J]. 气象, 2021, 47( 8): 901- 918. | |
137 | SUN J Z, ZHANG Y, BAN J M, et al. Impact of combined assimilation of radar and rainfall data on short-term heavy rainfall prediction: a case study[J]. Monthly Weather Review, 2020, 148( 5): 2 211- 2 232. |
138 | PRICE I, SANCHEZ-GONZALEZ A, ALET F, et al. Probabilistic weather forecasting with machine learning[J]. Nature, 2025, 637( 8 044): 84- 90. |
139 | XIAHOU Jie, XIAO An, NIE Daoyang. Observation based deep learning model for short-duration heavy rain nowcasting[J]. Plateau Meteorology, 2023, 42( 4): 1 005- 1 017. |
夏侯杰, 肖安, 聂道洋. 基于观测的短时强降水深度学习预报模型[J]. 高原气象, 2023, 42( 4): 1 005- 1 017. |
/
〈 |
|
〉 |