Mineral Deformation Behavior and Slip System Limitation: Electron Backscatter Diffraction Misorientation and Subgrain Boundary Trace Analysis
Received date: 2024-09-23
Revised date: 2024-11-27
Online published: 2025-02-28
Supported by
the International (Regional) Cooperation and Exchange Projects of the National Natural Science Foundation of China(42320104007);The National Natural Science Foundation of China(42302262)
Clearly defining mineral deformation and slip systems is crucial for an in-depth analysis of the intrinsic mechanisms governing mineral responses to external stress and temperature, as well as their rheological weakening processes. The rapid advancement of science and technology and its deep integration into the geological field provide an opportunity for a detailed analysis of structural deformation behavior and mechanisms. In this study, quartz and amphibole from representative naturally deformed rocks were used as examples. Based on microstructural analysis, a comprehensive assessment was conducted using a substantial dataset of mineral lattice preferred orientation measurements obtained via an electron backscatter diffraction (EBSD) probe mounted on a field-emission scanning electron microscope. By examining microstructural features, EBSD mapping data, dislocation geometry types, and properties, a detailed analytical method for grain boundary trace and misorientation axes was developed. The results reveal that the strain adjustment and grain refinement process in quartz occur mainly through the {m}<a> slip system, dominated by the subgrain rotational recrystallization mechanism in quartz veins. It was also found that in mylonitic amphibolites, amphibole porphyroclasts exhibit pronounced fine-grained deformation behavior, primarily driven by subgrain rotational recrystallization. Furthermore, amphibole undergoes multi-slip system interactions, predominantly governed by the [001] direction through dislocation creep in banded amphibolites. Thus, integrating EBSD grain boundary trace analysis with misorientation axis analysis and microstructural characterization enables a comprehensive determination of microgeological information—including composition, shape, grain size, orientation, boundaries, and strain—of deformed minerals. This approach further elucidates the evolution of orientation from the grain interior to intergranular regions (or matrix). Moreover, the dominant slip system in mineral deformation processes can be effectively defined and correlated with the deformation environment, which has substantial geological implications.
Shuting WANG , Shuyun CAO , Lefan ZHAN , Jianhua LIU , Xuemei CHENG . Mineral Deformation Behavior and Slip System Limitation: Electron Backscatter Diffraction Misorientation and Subgrain Boundary Trace Analysis[J]. Advances in Earth Science, 2024 , 39(12) : 1227 -1242 . DOI: 10.11867/j.issn.1001-8166.2024.090
1 | de MEER S, DRURY M R, de BRESSER J H P, et al. Current issues and new developments in deformation mechanisms, rheology and tectonics[J]. Geological Society, London, Special Publications, 2002, 200(1): 1-27. |
2 | CAO Shuyun, LIU Junlai, HU Ling. Micro- and submicrostructural evidence for high-temperature brittle-ductile transition deformation of hornblende:case study of high-grade mylonites from Diancangshan,western Yunnan[J]. Science China:Earth Sciences, 2007, 50(10): 1 459-1 470. |
曹淑云,刘俊来,胡玲. 角闪石高温脆—韧性转变变形的显微与亚微构造证据——以滇西点苍山深变质剪切糜棱岩为例[J]. 中国科学:地球科学, 2007, 37(8): 1 004-1 013. | |
3 | XIA Haoran, LIU Junlai. The crystallographic preferred orientation of quartz and its applications[J]. Geological Bulletin of China, 2011, 30(1): 58-70. |
夏浩然, 刘俊来. 石英结晶学优选与应用[J]. 地质通报, 2011, 30(1): 58-70. | |
4 | SUN Lijing, ZHAO Zhongbao, WANG Genhou, et al. Research advances of microstructural deformation mechanism and rheological features of quartz[J]. Acta Geologica Sinica, 2019, 93(10): 2 698-2 714. |
孙丽静, 赵中宝, 王根厚, 等. 石英显微变形机制及流变学特征研究进展[J]. 地质学报, 2019, 93(10): 2 698-2 714. | |
5 | CASALE G, LEVINE J S F, ECONOMOU J. Extracting quartz deformation fabrics from polymineralic rocks[J]. Journal of Structural Geology,2023,173(21). DOI: 10.1016/j.jsg.2023.104893 . |
6 | WANG Shuting, CAO Shuyun, ZHAN Lefan,et al. Deformation behavior and fluid action of quartz veins in the Xuelongshan metamorphic complex, western Yunnan[J]. Science China: Earth Sciences, 2023, 53(9): 2 011-2 033. |
王淑婷,曹淑云,占乐凡,等. 滇西雪龙山变质杂岩中石英脉的变形行为与流体作用[J]. 中国科学:地球科学,2023, 53(9): 2 035-2 058. | |
7 | LIU J H, CAO S Y. Development of amphibole Crystal Preferred Orientations (CPOs) and their effects on seismic anisotropy in deformed amphibolites[J]. Journal of Geophysical Research: Solid Earth, 2023, 128(4). DOI: 10.1029/2022JB026136 . |
8 | TRéPIED L, DOUKHAN J C, PAQUET J. Subgrain boundaries in quartz theoretical analysis and microscopic observations[J]. Physics and Chemistry of Minerals, 1980, 5(3): 201-218. |
9 | PASSCHIER C W, TROUW R A J. Microtectonics[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. |
10 | LLOYD G E, KNIPE R J. Deformation mechanisms accommodating faulting of quartzite under upper crustal conditions[J]. Journal of Structural Geology, 1992, 14(2): 127-143. |
11 | LIU Junlai. Microstructures of deformed rocks and rheology of the lithosphere[J]. Geological Bulletin of China, 2004, 23(): 980-985. |
刘俊来. 变形岩石的显微构造与岩石圈流变学[J]. 地质通报, 2004, 23(): 980-985. | |
12 | WANG Qin, JI Shaocheng, XU Zhiqin. Lattice-preferred orientation, water content and seismic anisotropy of olivine: implications for deformation environment of continental subduction zones[J]. Acta Petrologica Sinica, 2007, 23(12): 3 065-3 077. |
王勤, 嵇少丞, 许志琴. 橄榄石的晶格优选定向、含水量与地震波各向异性: 对大陆俯冲带变形环境的约束[J]. 岩石学报, 2007, 23(12): 3 065-3 077. | |
13 | LLOYD G E, BUTLER R W H, CASEY M, et al. Mica, deformation fabrics and the seismic properties of the continental crust[J]. Earth and Planetary Science Letters, 2009, 288(1/2): 320-328. |
14 | ZHANG Jinjiang, SHANG Shan, WEI Chunjing, et al. Present status and development prospect of studies of rheology of continental lithosphere[J]. Acta Geoscientica Sinica, 2019, 40(1): 9-16. |
张进江, 商姗, 魏春景, 等. 大陆岩石圈流变学研究的发展现状与前景[J]. 地球学报, 2019, 40(1): 9-16. | |
15 | SANTOS S C, LAGOEIRO L, CAVALCANTE C, et al. Deformation mechanisms and seismic anisotropy in lower crustal rocks from the Barro Alto complex, Central Brazil[J]. Tectonophysics, 2021, 819. DOI: 10.1016/j.tecto.2021.229087 . |
16 | YEO T, SHIGEMATSU N, KATORI T. Dynamically recrystallized grains identified via the application of Gaussian mixture model to EBSD data[J]. Journal of Structural Geology, 2023, 167. DOI: 10.1016/j.jsg.2023.104800 . |
17 | SUN Shengsi, DONG Yunpeng, LI Yixi, et al. Rheology of continental lithosphere and seismic anisotropy[J]. Science China: Earth Sciences, 2024, 54(1): 31-60. |
孙圣思,董云鹏,黎乙希,等. 大陆岩石圈流变与地震波速各向异性[J]. 中国科学:地球科学,2023, 54(1): 31-63. | |
18 | KOHLSTEDT D L, GOETZE C, DURHAM W B, et al. New technique for decorating dislocations in olivine[J]. Science, 1976, 191(4 231): 1 045-1 046. |
19 | LLOYD G E. Microstructural evolution in a mylonitic quartz simple shear zone: the significant roles of dauphine twinning and misorientation[J]. Geological Society, London, Special Publications, 2004, 224(1): 39-61. |
20 | GUTMANN M J, KOCKELMANN W, CHAPON L C, et al. Phase imaging using time-of-flight neutron diffraction[J]. Journal of Applied Crystallography, 2006, 39(1): 82-89. |
21 | HU Ling, LIU Junlai, JI Mo, et al. Manual for identification of deformation microstructure[M]. Beijing: Geological Publishing House,2009. |
胡玲,刘俊来,纪沫,等. 变形显微构造识别手册[M]. 北京:地质出版社,2009. | |
22 | XU Zhiqin, WANG Qin, LIANG Fenghua, et al. Electron Backscatter Diffraction (EBSD) technique and its application to study of continental dynamics[J]. Acta Petrologica Sinica, 2009, 25(7): 1 721-1 736. |
许志琴, 王勤, 梁凤华, 等. 电子背散射衍射(EBSD)技术在大陆动力学研究中的应用[J]. 岩石学报, 2009, 25(7): 1 721-1 736. | |
23 | PRIOR D J, MARIANI E, WHEELER J. EBSD in the Earth sciences: applications, common practice, and challenges[M]//Electron backscatter diffraction in materials science. Boston, MA: Springer US, 2009: 345-360. |
24 | ZHANG Qing, LI Xin. The application and associated problems of EBSD technique in fabric analysis[J]. Acta Petrologica Sinica, 2021, 37(4): 1 000-1 014. |
张青, 李馨. 电子背散射衍射技术(EBSD)在组构分析中的应用和相关问题[J]. 岩石学报, 2021, 37(4): 1 000-1 014. | |
25 | KARATO S. Scanning electron microscope observation of dislocations in olivine[J]. Physics and Chemistry of Minerals, 1987, 14(3): 245-248. |
26 | LIU Junlai, CAO Shuyun, ZOU Yunxin, et al. EBSD analysis of rock fabrics and its application[J]. Geological Bulletin of China, 2008, 27(10): 1 638-1 645. |
刘俊来, 曹淑云, 邹运鑫, 等. 岩石电子背散射衍射(EBSD)组构分析及应用[J]. 地质通报, 2008, 27(10): 1 638-1 645. | |
27 | CAO Shuyun, LIU Junlai. Modern techniques for the analysis of rock microstructure: EBSD and its application[J]. Advances in Earth Science, 2006, 21(10): 1 091-1 096. |
曹淑云, 刘俊来. 岩石显微构造分析现代技术: EBSD技术及应用[J]. 地球科学进展, 2006, 21(10): 1 091-1 096. | |
28 | BESTMANN M, PRIOR D J. Intragranular dynamic recrystallization in naturally deformed calcite marble: diffusion accommodated grain boundary sliding as a result of subgrain rotation recrystallization[J]. Journal of Structural Geology, 2003, 25(10): 1 597-1 613. |
29 | RANDLE V. Microtexture determination and its applications[M]. 2nd ed. London: Maney for the Institute of Materials, Minerals and Mining, 2003. |
30 | SOUSTELLE V, TOMMASI A, DEMOUCHY S, et al. Deformation and fluid-rock interaction in the supra-subduction mantle: microstructures and water contents in peridotite xenoliths from the avacha volcano, Kamchatka[J]. Journal of Petrology, 2010, 51(1/2): 363-394. |
31 | FALUS G, TOMMASI A, SOUSTELLE V. The effect of dynamic recrystallization on olivine crystal preferred orientations in mantle xenoliths deformed under varied stress conditions[J]. Journal of Structural Geology, 2011, 33(11): 1 528-1 540. |
32 | PALASSE L N, VISSERS R L M, PAULSSEN H, et al. Microstructural and seismic properties of the upper mantle underneath a rifted continental terrane (Baja California): an example of sub-crustal mechanical asthenosphere?[J]. Earth and Planetary Science Letters, 2012, 345: 60-71. |
33 | SOUSTELLE V, MANTHILAKE G. Deformation of olivine-orthopyroxene aggregates at high pressure and temperature: implications for the seismic properties of the asthenosphere[J]. Tectonophysics, 2017, 694: 385-399. |
34 | ELYASZADEH R, PRIOR D J, SARKARINEJAD K, et al. Different slip systems controlling crystallographic preferred orientation and intracrystalline deformation of amphibole in mylonites from the Neyriz mantle diapir, Iran[J]. Journal of Structural Geology, 2018, 107: 38-52. |
35 | KRUSE R, STüNITZ H, KUNZE K. Dynamic recrystallization processes in plagioclase porphyroclasts[J]. Journal of Structural Geology, 2001, 23(11): 1 781-1 802. |
36 | LLOYD G E, FARMER A B, MAINPRICE D. Misorientation analysis and the formation and orientation of subgrain and grain boundaries[J]. Tectonophysics, 1997, 279(1/2/3/4): 55-78. |
37 | NEUMANN B. Texture development of recrystallised quartz polycrystals unravelled by orientation and misorientation characteristics[J]. Journal of Structural Geology, 2000, 22(11/12): 1 695-1 711. |
38 | CECCATO A, PENNACCHIONI G, MENEGON L, et al. Crystallographic control and texture inheritance during mylonitization of coarse grained quartz veins[J]. Lithos, 2017, 290: 210-227. |
39 | PRIOR D J, WHEELER J, PERUZZO L, et al. Some garnet microstructures: an illustration of the potential of orientation maps and misorientation analysis in microstructural studies[J]. Journal of Structural Geology, 2002, 24(6/7): 999-1 011. |
40 | HILDYARD R C, PRIOR D J, FAULKNER D R, et al. Microstructural analysis of anhydrite rocks from the Triassic evaporites, Umbria-Marche Apennines, central Italy: an insight into deformation mechanisms and possible slip systems[J]. Journal of Structural Geology, 2009, 31(1): 92-103. |
41 | TRIMBY P W, PRIOR D J. Microstructural imaging techniques: a comparison between light and scanning electron microscopy[J]. Tectonophysics, 1999, 303(1/2/3/4): 71-81. |
42 | CROSS A J, PRIOR D J, STIPP M, et al. The recrystallized grain size piezometer for quartz: an EBSD-based calibration[J]. Geophysical Research Letters, 2017, 44(13): 6 667-6 674. |
43 | CAO S Y, LIU J L, LEISS B. Orientation-related deformation mechanisms of naturally deformed amphibole in amphibolite mylonites from the Diancang Shan, SW Yunnan, China[J]. Journal of Structural Geology, 2010, 32(5): 606-622. |
44 | HU Gengxiang, CAI Xun, RONG Yonghua. Fundamentals of materials science[M]. 3rd ed. Shanghai: Shanghai Jiao Tong University Press, 2010. |
胡赓祥, 蔡珣, 戎咏华. 材料科学基础[M]. 3版. 上海: 上海交通大学出版社, 2010. | |
45 | ZHAN Lefan, CAO Shuyun. The effect of Dauphiné twinning on the crystallographic preferred orientation and deformation mechanism in quartz[J]. Acta Petrologica et Mineralogica, 2022, 41(6): 1 135-1 146. |
占乐凡, 曹淑云. 石英道芬双晶对晶格优选取向及变形机制的贡献和意义[J]. 岩石矿物学杂志, 2022, 41(6): 1 135-1 146. | |
46 | BARRIE C D, BOYLE A P, COX S F, et al. Slip systems and critical resolved shear stress in pyrite: an Electron Backscatter Diffraction (EBSD) investigation[J]. Mineralogical Magazine, 2008, 72(6): 1 181-1 199. |
47 | KO B, JUNG H. Crystal preferred orientation of an amphibole experimentally deformed by simple shear[J]. Nature Communications, 2015, 6. DOI: 10.1038/ncomms7586 . |
48 | STIPP M, STüNITZ H, HEILBRONNER R, et al. The eastern Tonale fault zone: a ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700 ℃[J]. Journal of Structural Geology, 2002, 24(12): 1 861-1 884. |
49 | CAO S Y, NEUBAUER F, BERNROIDER M, et al. Structures, microfabrics and textures of the Cordilleran-type Rechnitz metamorphic core complex, Eastern Alps[J]. Tectonophysics, 2013, 608: 1 201-1 225. |
50 | CAO S Y, NEUBAUER F, BERNROIDER M, et al. The lateral boundary of a metamorphic core complex: the Moutsounas shear zone on Naxos, Cyclades, Greece[J]. Journal of Structural Geology, 2013, 54: 103-128. |
51 | GLEASON G C, TULLIS J. A flow law for dislocation creep of quartz aggregates determined with the molten salt cell[J]. Tectonophysics, 1995, 247(1/2/3/4): 1-23. |
52 | JUNG H, KARATO S I. Effects of water on dynamically recrystallized grain-size of olivine[J]. Journal of Structural Geology, 2001, 23(9): 1 337-1 344. |
53 | PRéCIGOUT J, PRIGENT C, PALASSE L, et al. Water pumping in mantle shear zones[J]. Nature Communications, 2017, 8. DOI: 10.1038/NCOMMS15736 . |
54 | LI Limin, LIU Xiangwen, XIE Zhanjun. Deformation mechanism and rheological property of granulite in the continental lower crust: a review[J]. Advances in Earth Science, 2011, 26(3): 275-285. |
李丽敏, 刘祥文, 谢战军. 大陆下地壳麻粒岩的流变学研究进展[J]. 地球科学进展, 2011, 26(3): 275-285. |
/
〈 |
|
〉 |