Reconstruction of Long-term Terrestrial Water Storage Anomalies and Associated Hydrological Drought Characteristics in the Dongting Lake Basin

  • Zhiyong HUANG ,
  • Tianhao GU ,
  • Yuannan LONG ,
  • Xuhui CHEN ,
  • Xiangyun YANG ,
  • Xuanyu LIU ,
  • Minghao HUANG ,
  • Qinglin HU ,
  • Siting ZHOU
Expand
  • 1.School of Hydraulic and Ocean Engineering, Changsha University of Science & Technology, Changsha 410114, China
    2.Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
    3.Satellite Application Center for Ecology and Environment, Beijing 100094, China
HUANG Zhiyong, research areas include satellite gravimetry and hydrology. E-mail: huangzy9084@126.com
CHEN Xuhui, research areas include ecological assessment and aquatic ecology. E-mail: xhchen23@163.com

Received date: 2024-10-14

  Revised date: 2024-11-30

  Online published: 2025-02-19

Supported by

the National Natural Science Foundation of China(42301404);The Natural Science Foundation of Hunan Province(2022JJ40480);University Student Innovation Training Project of Hunan Province(S202310536102)

Abstract

Long-term Terrestrial Water Storage Anomalies (TWSA) can be used to quantitatively characterize hydrological drought features. TWSA data in the Dongting Lake Basin (DTLB) were retrieved from multiple datasets, including satellite gravimetry (Gravity Recovery and Climate Experiment satellites and the succeeding Follow-On mission), global hydrology models (WaterGAP Global Hydrology Model, v2.2e), and a reanalysis model (Modern-Era Retrospective Analysis for Research and Applications, version 2). These TWSA datasets, along with observed temperature and precipitation data, were utilized to compare the suitability of two methods—the General Regression Neural Network and Long Short-Term Memory Neural Network—for reconstructing long-term TWSA in the DTLB. Quantitative analyses of hydrological drought characteristics were conducted using the long-term TWSA. The results indicate that in the DTLB, the reconstructed TWSA using General Regression Neural Network is superior to that obtained using Long Short-Term Memory Neural Network, and reconstructions using Modern-Era Retrospective Analysis for Research and Applications-2 as input data outperform those using WaterGAP Global Hydrology Model. Since 1980, terrestrial water storage in the DTLB has shown an increasing trend, partly influenced by the rising water storage capacity of reservoirs. The water storage deficit index, estimated by removing the increasing trend in reservoir storage, provided a more accurate representation of historical hydrological drought characteristics. From July to December 2022, the DTLB experienced an extreme drought, with a total terrestrial water storage deficit intensity reaching -790 mm, of which -140 mm was attributed to the water storage deficit after adjusting for the increasing trend in reservoir storage. This study ① emphasized the significant influence of reservoir water storage trend on accurate assessment of hydrological drought; ② provided a theoretical and methodological guidance on dynamic monitoring of water resources, drought and flood monitoring and assessment for the Dongting Lake Basin and other basins or regions globally;③ provided references for scientific and rational management of basin-scale water resources.

Cite this article

Zhiyong HUANG , Tianhao GU , Yuannan LONG , Xuhui CHEN , Xiangyun YANG , Xuanyu LIU , Minghao HUANG , Qinglin HU , Siting ZHOU . Reconstruction of Long-term Terrestrial Water Storage Anomalies and Associated Hydrological Drought Characteristics in the Dongting Lake Basin[J]. Advances in Earth Science, 2024 , 39(12) : 1285 -1298 . DOI: 10.11867/j.issn.1001-8166.2024.097

References

1 ZHANG Xiang, HUANG Shuzhe, GUAN Yuhang. Research progress, challenges, and prospects in drought propagation[J]. Advances in Earth Science202338(6): 563-579.
  张翔, 黄舒哲, 管宇航. 干旱传播的研究进展、挑战与展望[J]. 地球科学进展202338(6): 563-579.
2 ZHANG Qiang, ZHANG Liang, CUI Xiancheng, et al. Progresses and challenges in drought assessment and monitoring[J]. Advances in Earth Science201126(7): 763-778.
  张强, 张良, 崔显成, 等. 干旱监测与评价技术的发展及其科学挑战[J]. 地球科学进展201126(7): 763-778.
3 CHEN Yaning, LI Yupeng, LI Zhi, et al. Analysis of the impact of global climate change on dryland areas[J]. Advances in Earth Science202237(2): 111-119.
  陈亚宁, 李玉朋, 李稚, 等. 全球气候变化对干旱区影响分析[J]. 地球科学进展202237(2): 111-119.
4 AGHAKOUCHAK A, FARAHMAND A, MELTON F S, et al. Remote sensing of drought: progress, challenges and opportunities[J]. Reviews of Geophysics201553(2): 452-480.
5 van LOON A F. Hydrological drought explained[J]. Wiley Interdisciplinary Reviews Water20152(4): 359-392.
6 SHUKLA S, WOOD A W. Use of a standardized runoff index for characterizing hydrologic drought[J]. Geophysical Research Letters200835(2). DOI:10.1029/2007GL032487 .
7 YIRDAW S Z, SNELGROVE K R, AGBOMA C O. GRACE satellite observations of terrestrial moisture changes for drought characterization in the Canadian Prairie[J]. Journal of Hydrology2008356(1/2): 84-92.
8 NARASIMHAN B, SRINIVASAN R. Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring[J]. Agricultural and Forest Meteorology2005133(1/2/3/4): 69-88.
9 THOMAS A C, REAGER J T, FAMIGLIETTI J S, et al. A GRACE-based water storage deficit approach for hydrological drought characterization[J]. Geophysical Research Letters201441(5): 1 537-1 545.
10 SINHA D, SYED T H, FAMIGLIETTI J S, et al. Characterizing drought in India using GRACE observations of terrestrial water storage deficit[J]. Journal of Hydrometeorology201718(2): 381-396.
11 WANG X W, de LINAGE C, FAMIGLIETTI J, et al. Gravity Recovery and Climate Experiment (GRACE) detection of water storage changes in the Three Gorges Reservoir of China and comparison with in situ measurements[J]. Water Resources Research201147(12). DOI:10.1029/2011WR010534 .
12 HUANG Z Y, JIAO J J, LUO X, et al. Drought and flood characterization and connection to climate variability in the Pearl River basin in southern China using long-term GRACE and reanalysis data[J]. Journal of Climate202134(6): 2 053-2 078.
13 WU J F, YUAN X, YAO H X, et al. Reservoirs regulate the relationship between hydrological drought recovery water and drought characteristics[J]. Journal of Hydrology2021, 603. DOI:10.1016/j.jhydrol.2021.127127 .
14 WU J F, CHEN X W, YAO H X, et al. Non-linear relationship of hydrological drought responding to meteorological drought and impact of a large reservoir[J]. Journal of Hydrology2017551: 495-507.
15 WU J F, LIU Z Y, YAO H X, et al. Impacts of reservoir operations on multi-scale correlations between hydrological drought and meteorological drought[J]. Journal of Hydrology2018563: 726-736.
16 LONG D, SHEN Y J, SUN A, et al. Drought and flood monitoring for a large karst plateau in Southwest China using extended GRACE data[J]. Remote Sensing of Environment2014155: 145-160.
17 CHEN X H, JIANG J B, LI H. Drought and flood monitoring of the Liao river basin in northeast China using extended GRACE data[J]. Remote Sensing201810(8). DOI:10.3390/rs10081168 .
18 XIE J K, XU Y P, GAO C, et al. Total basin discharge from GRACE and water balance method for the Yarlung Tsangpo River Basin, southwestern China[J]. Journal of Geophysical Research: Atmospheres2019124(14): 7 617-7 632.
19 JING W L, ZHANG P Y, ZHAO X D, et al. Extending GRACE terrestrial water storage anomalies by combining the random forest regression and a spatially moving window structure[J]. Journal of Hydrology2020, 590. DOI:10.1016/j.jhydrol.2020.125239 .
20 LI F P, KUSCHE J, RIETBROEK R, et al. Comparison of data-driven techniques to reconstruct (1992-2002) and predict (2017-2018) GRACE‐like gridded total water storage changes using climate inputs[J]. Water Resources Research202056(5). DOI:10.1029/2019WR026551 .
21 LI F P, KUSCHE J, CHAO N F, et al. Long-term (1979-present) total water storage anomalies over the global land derived by reconstructing GRACE data[J]. Geophysical Research Letters202148(8). DOI:10.1029/2021GL093492 .
22 KUMAR D, BHATTACHARJYA R K. GRNN Model for prediction of groundwater fluctuation in the state of Uttarakhand of India using GRACE data under limited bore well data[J]. Journal of Hydroinformatics202123(3): 567-588.
23 WEI L Y, JIANG S H, REN L L, et al. Spatiotemporal changes of terrestrial water storage and possible causes in the closed Qaidam Basin, China using GRACE and GRACE Follow-On data[J]. Journal of Hydrology2021, 598. DOI:10.1016/j.jhydrol.2021.126274 .
24 WANG F, CHEN Y N, LI Z, et al. Developing a Long Short-Term Memory (LSTM)-based model for reconstructing terrestrial water storage variations from 1982 to 2016 in the Tarim River Basin, northwest China[J]. Remote Sensing202113(5). DOI:10.3390/rs13050889 .
25 YANG Ling, DENG Min, WANG Jinlong, et al. Spatial-temporal evolution of land use and ecological risk in Dongting Lake Basin during 1980-2018[J]. Acta Ecologica Sinica202141(10): 3 929-3 939.
  杨伶, 邓敏, 王金龙, 等. 近40年来洞庭湖流域土地利用及生态风险时空演变分析[J]. 生态学报202141(10): 3 929-3 939.
26 XIAO Peng. Attribution of hydrological trend in Dongting Lake Basin[D]. Beijing: Tsinghua University, 2014.
  肖鹏. 洞庭湖流域水资源演变归因分析[D]. 北京: 清华大学, 2014.
27 SAVE H, BETTADPUR S, TAPLEY B D. High-resolution CSR GRACE RL05 mascons[J]. Journal of Geophysical Research: Solid Earth2016121(10): 7 547-7 569.
28 WATKINS M M, WIESE D N, YUAN D N, et al. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons[J]. Journal of Geophysical Research: Solid Earth2015120(4): 2 648-2 671.
29 LUTHCKE S B, SABAKA T J, LOOMIS B D, et al. Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution[J]. Journal of Glaciology201359(216): 613-631.
30 CHEN C, HE M N, CHEN Q W, et al. Triple collocation-based error estimation and data fusion of global gridded precipitation products over the Yangtze River basin[J]. Journal of Hydrology2022, 605. DOI:10.1016/j.jhydrol.2021.127307 .
31 CHEN F, CROW W T, BINDLISH R, et al. Global-scale evaluation of SMAP, SMOS and ASCAT soil moisture products using triple collocation[J]. Remote Sensing of Environment2018214: 1-13.
32 RODELL M, HOUSER P R, JAMBOR U, et al. The global land data assimilation system[J]. Bulletin of the American Meteorological Society200485(3): 381-394.
33 LI B L, RODELL M, KUMAR S, et al. Global GRACE data assimilation for groundwater and drought monitoring: advances and challenges[J]. Water Resources Research201955(9): 7 564-7 586.
34 KOSTER R D, SUAREZ M J, DUCHARNE A, et al. A catchment-based approach to modeling land surface processes in a general circulation model: 1. model structure[J]. Journal of Geophysical Research: Atmospheres2000105(D20): 24 809-24 822.
35 EK M B, MITCHELL K E, LIN Y, et al. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model[J]. Journal of Geophysical Research: Atmospheres2003108(D22). DOI:10.1029/2002JD003296 .
36 KOSTER R D, SUAREZ M J. Energy and water balance calculations in the Mosaic LSM[M]. Greenbelt, Maryland: National Aeronautics and Space Administration, Goddard Space Flight Center, Laboratory for Atmospheres, Data Assimilation Office: Laboratory for Hydrospheric Processes, 1996.
37 MüLLER S H, CáCERES D, EISNER S, et al. The global water resources and use model WaterGAP v2.2d: model description and evaluation[J]. Geoscientific Model Development202114(2): 1 037-1 079.
38 GELARO R, MCCARTY W, SUáREZ M J, et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2)[J]. Journal of Climate201730(14): 5 419-5 454.
39 LIAO Mengsi. Change of water reserves in recent ten years from GRACE and GLDAS in Dongting Lake Basin[D]. Changsha: Hunan Normal University, 2015.
  廖梦思. 基于GRACE和GLDAS数据反演近十年洞庭湖流域水储量变化[D]. 长沙: 湖南师范大学, 2015.
40 CLEVELAND R B, CLEVELAND W S, MCRAE J E, et al. STL: a seasonal-trend decomposition procedure based on loess[J]. Journal of Official Statistics19906(1): 3-73.
41 HUMPHREY V, GUDMUNDSSON L, SENEVIRATNE S I. Assessing global water storage variability from GRACE: trends, seasonal cycle, subseasonal anomalies and extremes[J]. Surveys in Geophysics201637: 357-395.
42 LU S B, LI W Q, YAO G B, et al. The changes prediction on terrestrial water storage in typical regions of China based on neural networks and satellite gravity data[J]. Scientific Reports202414(1). DOI:10.1038/s41598-024-67611-8 .
43 KRATZERT F, KLOTZ D, BRENNER C, et al. Rainfall-runoff modelling using Long Short-Term Memory (LSTM) networks[J]. Hydrology and Earth System Sciences201822: 6 005-6 022.
44 SUN Z L, ZHU X F, PAN Y Z, et al. Drought evaluation using the GRACE terrestrial water storage deficit over the Yangtze River Basin, China[J]. Science of the Total Environment2018634: 727-738.
45 MüLLER S H, TRAUTMANN T, ACKERMANN S, et al. The global water resources and use model WaterGAP v2.2e: description and evaluation of modifications and new features[J]. Geoscientific Model Development Discussions20232023: 1-46.
46 GUAN Xuewen, ZENG Ming. Characteristics and enlightenment of low water in Changjiang River Basin in 2022[J]. Yangtze River202253(12): 1-5, 36.
  官学文, 曾明. 2022年长江流域枯水特征分析与启示[J]. 人民长江202253(12): 1-5, 36.
47 GE Guohua, XIONG Yuanji, LI Zhenxing. Analysis and enlightenment of drought characteristics in Dongting Lake area in 2022[J]. Hunan Hydro & Power2023(2): 54-59.
  葛国华, 熊元基, 黎振兴. 2022年洞庭湖区干旱特征分析与启示[J]. 湖南水利水电2023(2): 54-59.
48 KUANG Yanwu, MA Zhonghong. Analysis and thinking on 2022 hydrological drought of Dongting Lake[J]. Hunan Hydro & Power2024(2): 62-64.
  匡燕鹉, 马忠红. 2022年洞庭湖水文大干旱分析与思考[J]. 湖南水利水电2024(2): 62-64.
49 Juan Lü, QU Yanping, SU Zhicheng, et al. Drought situation in the Yangtze River Basin in 2022 and reflections [J]. Disaster Reduction in China202232(21): 50-52.
  吕娟, 屈艳萍, 苏志诚, 等. 2022年长江流域干旱情势及思考[J]. 中国减灾202232(21): 50-52.
Outlines

/