Influence of the “Vital Effect” on Carbon and Oxygen Isotopes of Large Benthic Foraminifera Shells in Reef Areas
Received date: 2024-10-02
Revised date: 2024-11-25
Online published: 2025-02-10
Supported by
the National Natural Science Foundation of China(42402007);Guangxi Natural Science Foundation Project(2024GXNSFBA010231)
Carbon and oxygen isotopes of benthic foraminifera are widely used for paleoenvironmental reconstructions. However, large benthic foraminifera (LBF) shells, as the predominant sediment type in coral reef areas, exhibit isotope values influenced by many factors, especially the “vital effect”, which limits their application. Therefore, this study systematically categorizes the main factors contributing to deviations in the carbon and oxygen isotope values of LBF, including symbiotic algae, the calcification process, individual development, and seasonal variation. Furthermore, the mechanisms underlying these factors are thoroughly examined. Additionally, the potential applications of LBF carbon and oxygen isotope indices are analyzed. Despite the influence of vital effects, these indicators can still serve as powerful tools for paleoenvironmental reconstruction in coral reef areas by selecting suitable species, employing micro-area analysis, and integrating these indices with other paleoenvironmental proxies.
Mei LI , Xiaoting HUANG , Siqi WU . Influence of the “Vital Effect” on Carbon and Oxygen Isotopes of Large Benthic Foraminifera Shells in Reef Areas[J]. Advances in Earth Science, 2024 , 39(12) : 1262 -1271 . DOI: 10.11867/j.issn.1001-8166.2024.094
1 | YU K F. Coral reefs in the South China Sea: their response to and records on past environmental changes[J]. Science China Earth Sciences, 2012, 55(8): 1 217-1 229. |
2 | HALLOCK P. Production of carbonate sediments by selected large benthic foraminifera on two Pacific coral reefs[J]. SEPM Journal of Sedimentary Research, 1981, 51: 467-474. |
3 | LANGER M R. Oxygen and carbon isotopic composition of recent larger and smaller foraminifera from the Madang Lagoon (Papua New Guinea)[J]. Marine Micropaleontology, 1995, 26(1/2/3/4): 215-221. |
4 | LEA D W. Trace elements in foraminiferal calcite[M]// Modern foraminifera. Dordrecht: Springer Netherlands, 1999: 259-277. |
5 | BOUDAGHER-FADEL M K. Evolution and geological significance of larger benthic foraminifera[M]. Amsterdam: Elsevier, 2008. |
6 | SARASWATI P K. Larger benthic foraminifera through space and time[M]. Cham: Springer, 2024. |
7 | HALLOCK P, SEDDIGHI M. Why did some larger benthic foraminifera become so large and flat?[J]. Sedimentology, 2022, 69(1): 74-87. |
8 | BEAVINGTON-PENNEY S J, RACEY A. Ecology of extant nummulitids and other larger benthic foraminifera: applications in Palaeoenvironmental analysis[J]. Earth-Science Reviews, 2004, 67(3/4): 219-265. |
9 | RAJA R, SARASWATI P K, IWAO K. A field-based study on variation in Mg/Ca and Sr/Ca in larger benthic foraminifera[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(10). DOI: 10.1029/2006GC001478 . |
10 | HOOGAKKER B, ISHIMURA T, de NOOIJER L, et al. A review of benthic foraminiferal oxygen and carbon isotopes[J]. Quaternary Science Reviews, 2024, 342. DOI:10.1016/j.quascirev.2024.108896 . |
11 | SHACKLETON N J, OPDYKE N D. Oxygen isotope and Palaeomagnetic stratigraphy of equatorial Pacific core V28-238: oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale[J]. Quaternary Research, 1973, 3(1): 39-55. |
12 | MUDELSEE M, BICKERT T, LEAR C H, et al. Cenozoic climate changes: a review based on time series analysis of marine benthic δ18O records[J]. Reviews of Geophysics, 2014, 52(3): 333-374. |
13 | V?LPEL R, MULITZA S, PAUL A, et al. Water mass versus sea level effects on benthic foraminiferal oxygen isotope ratios in the Atlantic Ocean during the LGM[J]. Paleoceanography and Paleoclimatology, 2019, 34(1): 98-121. |
14 | CEN Y, WANG J S, DING X, et al. Tracing the methane events by stable carbon isotopes of benthic foraminifera at glacial periods in the andaman sea[J]. Journal of Earth Science, 2022, 33(6): 1 571-1 582. |
15 | DANSGAARD W. The O18-abundance in fresh water[J]. Geochimica et Cosmochimica Acta, 1954, 6(5/6): 241-260. |
16 | LI Yue, WANG Rujian, LI Wenbao. Review on research on paleo-sea level reconstruction based on foraminiferal oxygen isotope in deep sea sediments[J]. Advances in Earth Science, 2016, 31(3): 310-319. |
李悦, 王汝建, 李文宝. 利用有孔虫氧同位素重建古海平面变化的研究进展[J]. 地球科学进展, 2016, 31(3): 310-319. | |
17 | PEARSON P N. Oxygen isotopes in foraminifera: overview and historical review[J]. The Paleontological Society Papers, 2012, 18: 1-38. |
18 | GUO Qimei, LI Baohua, WANG Xiaoyan,et al. Applications of benthic foraminifera in paleoceanography[J] Acta Palaeontologica Sinica,2020,59(3):347-361. |
郭启梅,李保华,王晓燕,等. 深海底栖有孔虫在古海洋学研究中的应用 [J].古生物学报,2020,59 (3):347-361. | |
19 | CURRY W B, OPPO D W. Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean [J]. Paleoceanography,2005,20 (1). DOI:10.1029/2004pa001021 . |
20 | CENTER W. Foraminiferal colonization of hydrocarbon-seep bacterial mats and underlying sediment,Gulf of Mexico slope [J]. Journal of Foraminiferal Research,1997,27(4): 292-300. |
21 | XIANG Rong, LIU Fang, CHEN Zhong, et al. Recent progress in cold seep benthic foraminifera[J]. Advances in Earth Science, 2010, 25(2): 193-202. |
向荣, 刘芳, 陈忠, 等. 冷泉区底栖有孔虫研究进展[J]. 地球科学进展,2010, 25(2): 193-202. | |
22 | LU Yinghan, YANG Hailin, HUANG Baoqi, et al. Foraminifera associated with cold seeps in marine sediments [J]. Frontiers in Marine Science, 2023, 10. DOI:10.3389/fmars.2023.1157879 . |
23 | DUPLESSY J C, SHACKLETON N J, MATTHEWS R K, et al. 13C record of benthic foraminifera in the last interglacial ocean: implications for the carbon cycle and the global deep water circulation[J]. Quaternary Research, 1984, 21(2): 225-243. |
24 | KROOPNICK P M. The distribution of 13C of ΣCO2 in the world oceans[J]. Deep Sea Research Part A: Oceanographic Research Papers, 1985, 32(1): 57-84. |
25 | SARASWATI P K, SETO K, NOMURA R. Oxygen and carbon isotopic variation in co-existing larger foraminifera from a reef flat at Akajima, Okinawa, Japan[J]. Marine Micropaleontology, 2004, 50(3/4): 339-349. |
26 | ISHIMURA T, TSUNOGAI U, HASEGAWA S, et al. Variation in stable carbon and oxygen isotopes of individual benthic foraminifera: tracers for quantifying the magnitude of isotopic disequilibrium[J]. Biogeosciences, 2012, 9(11): 4 353-4 367. |
27 | MILLIMAN J D. Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state[J]. Global Biogeochemical Cycles, 1993, 7(4): 927-957. |
28 | SPERO H J, DENIRO M J. The influence of symbiont photosynthesis on the δ18O and δ13C values of planktonic foraminiferal shell calcite [M]. UK: Balaban Publishers, 1987. |
29 | WEFER G, KILLINGLEY J S, LUTZE G F. Stable isotopes in recent larger foraminifera[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1981, 33(1/2/3): 253-270. |
30 | CORLISS B H. Microhabitats of benthic foraminifera within deep-sea sediments[J]. Nature, 1985, 314: 435-438. |
31 | J?HNCK J, HOLBOURN A, KUHNT W, et al. Oxygen isotope offsets in deep-water benthic foraminifera[J]. Journal of Foraminiferal Research, 2021, 51(3): 225-244. |
32 | WOODRUFF F, SAVIN S M, DOUGLAS R G. Biological fractionation of oxygen and carbon isotopes by recent benthic foraminifera[J]. Marine Micropaleontology, 1980, 5: 3-11. |
33 | MUGLIA J, MULITZA S, REPSCHL?GER J, et al. A global synthesis of high-resolution stable isotope data from benthic foraminifera of the last deglaciation[J]. Scientific Data, 2023, 10(1). DOI: 10.1038/s41597-023-02024-2 . |
34 | TACHIKAWA K, ELDERFIELD H. Microhabitat effects on Cd/Ca and δ13C of benthic foraminifera[J]. Earth and Planetary Science Letters, 2002, 202(3/4): 607-624. |
35 | EREZ J. Vital effect on stable-isotope composition seen in foraminifera and coral skeletons[J]. Nature, 1978, 273: 199-202. |
36 | BILLUPS K, EICHLER P P B, RAVELO C, et al. Stable isotopic variability in individual benthic foraminifera from the continental shelf of tropical Brazil[J]. Journal of Foraminiferal Research, 2022, 52(4): 212-228. |
37 | HALLOCK P. Symbiont-bearing foraminifera[M]// Modern foraminifera. Dordrecht: Springer Netherlands, 1999: 123-139. |
38 | MARQUES W S, MENOR E A, SIAL A N, et al. Oceanographic parameters in continental margin of the State of Ceará (northeastern Brazil) deduced from C and O isotopes in foraminifers[J]. Anais da Academia Brasileira de Ciencias, 2007, 79(1): 129-139. |
39 | MULLER P H. 14 Carbon fixation and loss in a foraminiferal-algal symbiont system[J]. The Journal of Foraminiferal Research, 1978, 8(1): 35-41. |
40 | WILLIAMS D F, R?TTGER R, SCHMALJOHANN R, et al. Oxygen and carbon isotopic fractionation and algal symbiosis in the benthic foraminiferan Heterostegina depressa [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1981, 33(1/2/3): 231-251. |
41 | EREZ J. The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies[J]. Reviews in Mineralogy and Geochemistry, 2003, 54(1): 115-149. |
42 | de NOOIJER L J, TOYOFUKU T, KITAZATO H. Foraminifera promote calcification by elevating their intracellular pH[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(36): 15 374-15 378. |
43 | TEN K B, EREZ J. Uptake of inorganic carbon and internal carbon cycling in symbiont-bearing benthonic foraminifera[J]. Marine Biology, 1987, 94(4): 499-509. |
44 | TER K B, EREZ J. The size and function of the internal inorganic carbon pool of the foraminifer Amphistegina lobifera [J]. Marine Biology, 1988, 99(4): 481-487. |
45 | TARUTANI T, CLAYTON R N, MAYEDA T K. The effect of polymorphism and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water[J]. Geochimica et Cosmochimica Acta, 1969, 33(8): 987-996. |
46 | JIMéNEZ-LóPEZ C, ROMANEK C S, HUERTAS F J, et al. Oxygen isotope fractionation in synthetic magnesian calcite[J]. Geochimica et Cosmochimica Acta, 2004, 68(16): 3 367-3 377. |
47 | MAVROMATIS V, SCHMIDT M, BOTZ R, et al. Experimental quantification of the effect of Mg on calcite-aqueous fluid oxygen isotope fractionation[J]. Chemical Geology, 2012, 310: 97-105. |
48 | LOUGH J M. Small change, big difference: sea surface temperature distributions for tropical coral reef ecosystems, 1950-2011[J]. Journal of Geophysical Research: Oceans, 2012, 117(C9). DOI: 10.1029/2012JC008199 . |
49 | SEGEV E, EREZ J. Effect of Mg/Ca ratio in seawater on shell composition in shallow benthic foraminifera[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(2). DOI:10.1029/2005GC000969 . |
50 | RAJA R, SARASWATI P K, ROGERS K, et al. Magnesium and strontium compositions of recent symbiont-bearing benthic foraminifera[J]. Marine Micropaleontology, 2005, 58(1): 31-44. |
51 | BENTOV S, EREZ J. Impact of biomineralization processes on the Mg content of foraminiferal shells: a biological perspective[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(1). DOI:10.1029/2005GC001015 . |
52 | ROSENTHAL Y, BOYLE E A, SLOWEY N. Temperature control on the incorporation of magnesium, strontium, fluorine, and cadmium into benthic foraminiferal shells from little bahama bank: prospects for thermocline paleoceanography[J]. Geochimica et Cosmochimica Acta, 1997, 61(17): 3 633-3 643. |
53 | ROBBINS L L, KNORR P O, WYNN J G, et al. Interpreting the role of pH on stable isotopes in large benthic foraminifera[J]. ICES Journal of Marine Science, 2017, 74(4): 955-964. |
54 | ZEEBE R E. An explanation of the effect of seawater carbonate concentration on foraminiferal oxygen isotopes[J]. Geochimica et Cosmochimica Acta, 1999, 63(13/14): 2 001-2 007. |
55 | BALESTRA B, ORLAND I J, FESSENDEN-RAHN J, et al. Paired analyses of oxygen isotope and elemental ratios within individual shells of benthic foraminifera genus Uvigerina [J]. Chemical Geology, 2020, 533. DOI:10.1016/j.chemgeo.2019.119377 . |
56 | ROLLION-BARD C, EREZ J, ZILBERMAN T. Intra-shell oxygen isotope ratios in the benthic foraminifera genus Amphistegina and the influence of seawater carbonate chemistry and temperature on this ratio[J]. Geochimica et Cosmochimica Acta, 2008, 72(24): 6 006-6 014. |
57 | FUJITA K, NISHI H, SAITO T. Population dynamics of Marginopora kudakajimensis gudmundsson (Foraminifera: Soritidae) in the Ryukyu Islands, the subtropical northwest Pacific[J]. Marine Micropaleontology, 2000, 38(3/4): 267-284. |
58 | MAEDA A, FUJITA K, HORIKAWA K, et al. Evaluation of oxygen isotope and Mg/Ca ratios in high-magnesium calcite from benthic foraminifera as a proxy for water temperature[J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(1): 185-199. |
59 | SUZUKI A, KAWAHATA H, TANIMOTO Y, et al. Skeletal isotopic record of a Porites coral during the 1998 mass bleaching event[J]. Geochemical Journal, 2000, 34(4): 321-329. |
60 | SUZUKI A, HIBINO K, IWASE A, et al. Intercolony variability of skeletal oxygen and carbon isotope signatures of cultured Porites corals: temperature-controlled experiments[J]. Geochimica et Cosmochimica Acta, 2005, 69(18): 4 453-4 462. |
61 | EPSTEIN S, BUCHSBAUM R, LOWENSTAM H A, et al. Revised carbonate-water isotopic temperature scale[J]. Geological Society of America Bulletin, 1953, 64(11). DOI:10.1130/0016-7606(1951)62 [417:CITS]2.0.CO;2. |
62 | KIM S T, O’NEIL J R. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates[J]. Geochimica et Cosmochimica Acta, 1997, 61(16): 3 461-3 475. |
63 | ZHANG Q H, WENDLER I, XU X X, et al. Structure and magnitude of the carbon isotope excursion during the Paleocene-Eocene thermal maximum[J]. Gondwana Research, 2017, 46: 114-123. |
64 | ZHANG Q H, DING L, KITAJIMA K, et al. Constraining the magnitude of the carbon isotope excursion during the Paleocene-Eocene thermal maximum using larger benthic foraminifera[J]. Global and Planetary Change, 2020, 184. DOI:10.1016/j.gloplacha.2019.103049 . |
/
〈 |
|
〉 |